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Administrative Details

Problem statement should be clear on input and output

Presentations
I VGA by default, ask if need adapter
I Can use my laptop

Do NOT reproduce all of the cas 741 repo in your repo,
just the blank project template (moved to the top level)

Use the same names as the original

Delete example text from templates

80 columns in tex files

Spell check

Replace “in order to” by “to”

Use a .gitignore file

Look at work of class mates
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Administrative Details: Deadlines

Problem Statement Week 02 Sept 15
SRS Present Week 04 Week of Sept 25
SRS Week 05 Oct 4
V&V Present Week 06 Week of Oct 16
V&V Plan Week 07 Oct 25
MG Present Week 08 Week of Oct 30
MG Week 09 Nov 8
MIS Present Week 10 Week of Nov 13
MIS Week 11 Nov 22
Impl. Present Week 12 Week of Nov 27
Final Documentation Week 13 Dec 6
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Administrative Details: Presentation Schedule

SRS Present
I Tuesday: Paul, Isobel, Keshav
I Friday: Devi, Shushen, Xiaoye

V&V Present
I Tuesday: Steven, Alexandre P., Alexander S.
I Friday: Geneva, Jason, Yuzhi

MG Present
I Tuesday: Xiaoye, Shushen, Devi, Keshav, Alex P, Paul
I Friday: Yuzhi, Jason, Geneva, Alex S, Isobel, Steven

MIS Present
I Tuesday: Isobel, Keshav, Paul
I Friday: Shushen, Xiaoye, Devi

Impl. Present
I Tuesday: Alexander S., Steven, Alexandre P.
I Friday: Jason, Geneva, Yuzhi
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Questions?

Questions about problem statements?

Questions about SRS?
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Specification Qualities

What are the important qualities for a specification?
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Specification Qualities

The qualities we previously discussed (usability,
maintainability, reusability, verifiability etc.)

Clear, unambiguous, understandable

Consistent

Complete
I Internal completeness
I External completeness

Incremental

Validatable

Abstract

Traceable

Summarized in [24, p. 406]

Dr. Smith CAS 741, CES 741 Fall 2017: 05 Program Families 8/88



Clear, Unambiguous, Understandable

Specification fragment for a word-processor
I Selecting is the process of designating areas of the

document that you want to work on. Most editing and
formatting actions require two steps: first you select
what you want to work on, such as text or graphics;
then you initiate the appropriate action.

What are the potential problems with this specification?

I Can an area be scattered?
I Can both text and graphics be selected?
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Clear, Unambiguous, Understandable

Specification fragment from a real safety-critical system
I The message must be triplicated. The three copies must

be forwarded through three different physical channels.
The receiver accepts the message on the basis of a
two-out-of-three voting policy.

What is a potential problems with this specification?

I Can a message be accepted as soon as we receive 2 out
of 3 identical copies, or do we need to wait for receipt of
the 3rd
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Unambiguous, Validatable

Specification fragment for an end-user program
I The program shall be user friendly.

What is a potential problems with this specification?

I What does it mean to be user friendly?
I Who is a typical user?
I How would you measure success or failure in meeting

this requirement?
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Unambiguous, Validatable

Specification fragment for a linear solver
I Given A and b, solve the linear system Ax = b for x ,

such that the error in any entry of x is less than 5 %.

What is a potential problems with this specification?

I Is A constrained to be square?
I Can A be singular?
I Even if the problem is made completely unambiguous,

the requirement cannot be validated.
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Consistent

Specification fragment for a word-processor
I The whole text should be kept in lines of equal length.

The length is specified by the user. Unless the user gives
an explicit hyphenation command, a carriage return
should occur only at the end of a word.

What is a potential problems with this specification?

I What if the length of a word exceeds the length of the
line?
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Same Symbol/Term Different Meaning

Can you think of some symbols/terms that have different
meanings depending on the context?
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Consistent

Language and terminology must be consistent within the
specification

Potential problem with homonyms, for instance consider
the symbol σ

I Represents standard deviation
I Represents stress
I Represents the Stefan-Boltzmann constant (for radiative

heat transfer)

Changing the symbol may be necessary for consistency,
but it could adversely effect understandability

Potential problem with synonyms
I Externally funded graduate students, versus eligible

graduate students, versus non-VISA students
I Material behaviour model versus constitutive equation
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Complete

Internal completeness
I The specification must define any new concept or

terminology that it uses
I A glossary is helpful for this purpose

External completeness
I The specification must document all the needed

requirements
I Difficulty: when should one stop?
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Incremental

Referring to the specification process
I Start from a sketchy document and progressively add

details
I A document template can help with this

Referring to the specification document
I Document is structured and can be understood in

increments
I Again a document template can help with this
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Traceable

Explicit links
I Within document
I Between documents

Use labels, cross-references, traceability matricies

Common sense suggests traceability improves
maintainability

Shows consequence of change

Minimizes cost of recertification

Additional advantages
I Program comprehension
I Impact analysis
I Reuse

Dr. Smith CAS 741, CES 741 Fall 2017: 05 Program Families 18/88



Accuracy Versus Precision

What is the distinction between accuracy and precision?

Dr. Smith CAS 741, CES 741 Fall 2017: 05 Program Families 19/88



Program Families

Can think of general purpose (or multi-purpose) SC
software as a program family

Some examples of physical models are also appropriate for
consideration as a family

A program family is a set of programs where it makes
more sense to develop them together as opposed to
separately

Analogous to families in other domains
I Automobiles
I Computers
I ...

Need to identify the commonalities

Need to identify the variabilities

Discussed in general in [12, 18]
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Background

Program family idea since the 1970s (Dijkstra, Parnas,
Weiss, Pohl, ...) - variabilities are often from a finite set
of simple options [16, 17, 14]

Families of algorithms and code generation in SC
(Carette, ATLAS, Blitz++, ...) - not much emphasis on
requirements [8, 34, 30, 6]

Work on requirements for SC
I Template for a single physical model [26, 25]
I Template for a family of multi-purpose tool [21, 23, 22]
I Template for a family of physical models [29, 28, 15]
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Motivation

Requirements documentation
I Allows judgement of quality
I Improves communication

I Between domain experts
I Between domain experts and programmers
I Explicit assumptions
I Range of applicability

A family approach, potentially including a DSL to allow
generation of specialized programs

I Improves efficiency of product and process
I Facilitates reuse of requirements and design, which

improves reliability
I Improves usability and learnability
I Clarifies the state of the art
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Advantages of Program Families to SC?

Usual benefits
I Reduced development time
I Improved quality
I Reduced maintenance effort
I Increased ability to cope with complexity

Reusability
I Underused potential for reuse in SC
I Reuse commonalities
I Systematically handle variabilities

Usability
I Documentation often lacking in SC
I Documentation part of program family methodology
I Create family members that are only as general purpose

as necessary

Improved performance
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Is SC Suited to a Program Family Approach?

Based on criteria from Weiss [1, 32, 33, 13, 31]

The redevelopment hypothesis
I A significant portion of requirements, design and code

should be common between family members
I Common model of software development in SC is to

rework an existing program
I Progress is made by removing assumptions

The oracle hypothesis
I Likely changes should be predictable
I Literature on SC, example systems, mathematics

The organizational hypothesis
I Design so that predicted changes can be made

independently
I Tight coupling between data structures and algorithms
I Need a suitable abstraction
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Challenges

1. Validatable
I Requirements can be complete, consistent, traceable and

unambiguous, but still not validatable
I Input and outputs are continuously valued variables
I Correct solution is unknown a priori
I Given dy/dt = f (t, y) and y(t0) = y0, find y(tn)

2. Abstract
I If too abstract, then difficult to meet NFRs for accuracy

and speed
I Assumptions can help restrict scope, but possibly as

much work as solving the original problem
I Ax = b
I xTAx > 0,∀x

I Algorithm selection should occur at the design stage
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Challenges (Continued)

3. Nonfunctional requirements
I Proving accuracy requirements with a priori error

analysis is a difficult mathematical exercise that
generally leads to weak error bounds

I Context sensitive tradeoffs between NFRs can be
difficult to specify

I Absolute quantitative requirements are often unrealistic

4. Capture and Reuse Existing Knowledge
I Cannot ignore the enormous wealth of information that

currently exists
I A good design will often involve integrating existing

software libraries
I Reuse software and the requirements documentation
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Overview of Process

Real 
World

Requirement
Analysis

Module 
Interface 

Specification

Code

Derivation
Validation
Acceptance TestingCommonality 

Analysis

Module 
Architecture
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CA to SRS to Design

CA

SRS1 SRS2 SRSi

DES1 DES2 DESj

...

? ?

...
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Proposed Methodology

1. Identify family of interest
I Specific physical model?
I Multipurpose tool?

2. Commonality Analysis (CA)
I Terminology
I Commonalities
I Variabilities
I Parameters of variation
I Binding time

3. Domain Specific Language (DSL)

4. Generation of family members
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CA Template From [21]
1. Reference Material: a) Table of Contents b) Table of

Symbols c) Abbreviations and Acronyms

2. Introduction: a) Purpose of the Document b)
Organization of the Document

3. General System Description: a) Potential System
Contexts b) Potential User Characteristics c)
Potential System Constraints

4. Commonalities: a) Background Overview b)
Terminology Definition c) Goal Statements d)
Theoretical Models

5. Variabilities: a) Input Assumptions b) Calculation c)
Output

6. Traceability Matrix

7. References
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Abstract Requirements

Appropriate level of abstraction by refining from goal to
theory to input assumptions

A goal is a functional objective the software should
achieve:
G1: Find the roots of an equation

Goals are refined into theoretical models:
T1: Given a function f (x) and an interval
{x |xlower ≤ xupper}, return the points where f (x) = 0

Introduce simplifying assumptions to allow theoretical
model to be solved:
VA1,2: f (x) is continuous on the interval and/or f (x)
has at least one sign change on the interval
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Abstract Requirements (Continued)

Each variability has an associated parameter of variation
and a binding time

I Specification time
I Compile time
I Run time
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Capture Existing Knowledge

Systematic consideration from general to specific

Communication between experts

Standard template allows comparison

Convenient framework for summarizing existing literature

Eventually a library of requirements documentation

CA refined by a family of SRSs
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System Requirements Specification (SRS)

Based on IEEE Standard 830 and Volere requirements
specification template

Sections from CA are refined in SRS

“Potential” descriptions are made specific

Variabilities are set

Binding times are set
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SRS Template
1. Reference Material

2. Introduction

3. General System Description

4. Specific System Description: a) Background
Overview, b) Terminology Definition, c) Goal
Statements d) Theoretical Models, e) Assumptions, f)
Data Constraints, g) System Behaviour

5. Non-functional Requirements: a) Accuracy of Input
Data, b) Sensitivity of the Model, c) Tolerance of
Solution, d) Performance, ... i) Portability,

6. Solution Validation Strategies,

7. Other System Issues:

8. Traceability Matrix
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NFRs

Rather than absolute quantification of NFRs, use relative
comparison between other program family members

Specify requirements in big O notation

Relative importance between NFRs using Analytic
Hierarchy Process (AHP) [20]

I Addresses challenge of comparing attributes that are
measured in different (or hard to quantify) units

I Series of pair-wise comparisons between attributes
I 1 for equal importance, 3 for moderately strong

importance, ..., 9 for extreme importance
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Validatable Requirements

Relative comparison between programs is a validatable
requirement

Focus on a posteriori description, rather than a priori
specification

Solution validation strategies
I Solve using different techniques
I Identify benchmark test problems
I Test cases built starting from assumed solutions

(Method of Manufactured Solutions)
I Partially validate for a simpler subset where the solution

is known
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Mesh Generating Software
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Commonality Analysis for a Mesh Generator

From Chen’s work [11, 23, 22]. Alternate approach in
[5, 19, 2, 3, 4]

Terminology
I requirement
I structured mesh, ...

Commonalities
I discretization
I input from user is required, ...

Variabilities
I shape of elements
I coordinate system used, ...

Parameters of variation
I line, triangle, quadrilateral, tetrahedral, hexahedral
I Cartesian, polar, spherical, ...
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Definition of a Mesh

Let Ω be a closed bounded domain in R or R2 or R3 and let K
be a simple shape, such as a line segment in 1D, a triangle or
a quadrilateral in 2D, or a tetrahedron or hexahedron in 3D. A
mesh of Ω, denoted by τ , has the following properties:

1. Ω ≈ ∪(K |K ετ : K ), where ∪ is first closed and then
opened

2. the length of every element K , of dimension 1, in τ is
greater than zero

3. the interior of every element K , of dimension 2 or greater,
in τ is nonempty

4. the intersection of the interior of two elements is empty
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Example Commonality
Item Number C1
Description A mesh generator discretizes a given com-

putational domain (closed boundary Ω) into
a covering up of a finite number of simpler
shapes.

Related Vari-
ability

V6, V8, V12, V14, V15, V16, V17, V18

History Created - May 7, 2004
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Mesh Generator (MG) Goals

G1 Input spatial domain Ω output a mesh M that covers this
domain.

G2 Transform information on the materials, material
properties and the locations of the different materials

G3 Transform information on the boundary condition types,
values and locations

G4 Transform system information, such as numerical
algorithm parameters
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Element Variability

Location of nodes: sequence of LocationT
Number of dof at nodes: sequence of N
LocationT = tuple of (L1 : natT, L2 : natT, L3 : natT)
natT = { s : R|0 ≤ s ≤ 1 : s }

1

3

2
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Local Topology Variability

Quad Triangle1 Triangle2 

Triangle3 Triangle4 Triangle5 

Triangle6 Triangle7 Triangle8 
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DSL Using XML

<e l e m e n t S e t>
<geometrySpec>

<shape> t r i a n g l e 1</ shape>
<nodeGeo count=”3”>

<node i d=”1”>
< l o c a t i o n>1 , 0 ,0</ l o c a t i o n>

</ node>
<node i d=”2”>

< l o c a t i o n>0 , 1 ,0</ l o c a t i o n>
</ node>
. . .

</ nodeGeo>
</ geometrySpec>

</ e l e m e n t S e t>
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Proof of Concept Implementation

From Cao’s work [7, 27]

XML document that customizes a Java object

The Java object customizes the general purpose MG as it
is loaded
General purpose MG

I All variabilities bound at run-time
I Corresponds to an empty XML specification
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Linear Systems of Equations

Ax = b

Commonality analysis presented in [21]
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Goal and Theoretical Model

G1: Given a system of n linear equations represented by matrix
A and column vector b, return x such that Ax = b, if possible
T1: Given square matrix A and column vector b, the possible
solutions for x are as follows:

1. A unique solution x = A−1b, if A is nonsingular

2. An infinite number of solutions if A is singular and
b ∈ span(A)

3. No solution if A is singular and b /∈ span(A)
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Variabilities for Input Assumptions
Variability Parameter of Variation
Allowed
structure A

Set of { full, sparse, banded, tridiagonal,
block triangular, ..., Hessenberg }

Allowed def-
initeness A

Set of { not definite, positive definite, ...,
negative semi-definite }

Allowed
class of A

Set of { diagonally dominant, Toeplitz,
Vandermonde }

Symmetry
assumed?

boolean

Possible val-
ues for n

set of N

Possible en-
tries in A

set of R

... ...
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Variabilities for Calculation
Variability Parameter of Variation
Check
input?

boolean (false if the input is assumed to
satisfy the input assumptions)

Exceptions
generated?

boolean (false if the goal is non-stop
arithmetic)

Norm used
for residual

Set of {1-norm, 2-norm, ∞-norm }
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Variabilities for Output
Variability Parameter of Variation
Destination
for output x

Set of { to file, to screen, to memory }

Encoding of
output x

Set of {binary, text }

Format of
output x

Set of {arbitrary, ordered }

Output
residual

boolean (true if the program returns the
residual)

Possible en-
tries in x

set of R ∪ {−∞,∞, undef }
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Analytic Hierarchy Process

Example 1
I Embedded real-time system for digital signal processing
I n = 10
I A is assumed to be Toeplitz

Speed Accuracy Portability Priority
Speed 1 3 5 0.64
Accuracy 1/3 1 3 0.26
Portability 1/5 1/3 1 0.11
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Solution Validation Strategies

Create test cases with known solutions
I Assume A and x , calculate b
I Given A and b calculate x∗ and compare to the assumed

x

Comparison with Matlab

Comparison with NAG library

Where possible compare solution to interval arithmetic
solution

Experiments to describe how accuracy changes with
increasing condition number
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Connection to Design

Abstract requirements to concrete design decisions

Reuse existing packages within the program family

Summarize existing software by the parameters of
variation and binding time

If functional requirements match, then use NFRs
I AHP to compare each design against each of the NFRs
I Contribution of each NFR for each design alternative is

found by multiplying the contribution of each alternative
to the given NFR with the corresponding priority of that
NFR

I Sum the contributions
I The highest overall score is the “winning” alternative
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A Family of Material Models

From McCutchan’s work [10, 27, 28, 9, 29, 15]
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Terminology Definitions
Label: D YieldFunction
Symbol: F = F (σ, κ)
Type: (tensor2DT× R)→ R
Related: D Stress, D HardeningParameter
Sources: ...
Descrip: The yield function defines a surface F = 0

in the six dimensional stress space ...

F = 0

∂Q

∂σ

Q = 0

Dr. Smith CAS 741, CES 741 Fall 2017: 05 Program Families 56/88



Goal Statement
Label: G StressDetermination
Descrip: Given the initial stress and the deformation

history of a material particle, determine the
stress within the material particle.

Refine: T ConstitEquation

y

x

z

σxx

σxy

σxz

σyy

σyx

σyz

σzz
σzx

σzy
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Assumptions
Label: A AdditivityPostulate
Related: D StrainRate
Equation: ε̇ = ε̇e + ε̇vp

with the following types and units
ε̇ : tensor2DT (1/t) (1/s)
ε̇e : tensor2DT (1/t) (1/s)
ε̇vp : tensor2DT (1/t) (1/s)

Descrip: The total strain rate (ε̇) is assumed to de-
compose into elastic (ε̇e) and viscoplastic
(ε̇vp) strain rates.

Rationale This is a standard assumption for elastoplas-
tic and elastoviscoplastic materials. The ap-
propriateness of this assumption is born out
by the success of theories built upon it.

Source: [6, page 339]; [7, page 181]
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Theoretical Model
Label: T ConstitEquation
Related: A CauchyStress, A DeformationHistory,

A PerzynaConstit, A AdditivityPostulate,
A ElasticConstit, A DescriptionOfMotion,
V MaterialProperties

Input: σ0 : tensor2DT (StressU) (Pa)
tbegin : R (t) (s)
tend : R (t) (s)
ε̇(t) : {t : R|tbegin ≤ t ≤ tend : t} →

tensor2DT (1/t) (1/s)
mat prop val : string→ R
E : R+ (StressU) (Pa)
ν : poissonT (dimensionless)
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Theoretical Model Continued
Label: T ConstitEquation
Output: σ(t) : {t : R|tbegin ≤ t ≤ tend : t} →

tensor2DT such that

σ̇ = D

(
ε̇− γ < ϕ(F (σ, κ)) >

∂Q(σ)

∂σ

)
and σ(tbegin) = σ0, the components of σ
have the units of StressU (Pa)

Derive: The governing differential equation
is found by first solving for ε̇e in
A AdditivityPostulate and then ...

Descrip: The theoretical model is only completely
defined once the associated variabili-
ties (V MaterialProperties) that define the
material have been set. ...
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Variabilities

F = F (σ, κ) : R6 × R→ R
Q = Q(σ) : R6 → R
κ = κ(εvp) : R6 → R
ϕ = ϕ(F ) : R→ R
γ : R
mat prop names : set of string
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Dependency Graph
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Dependency Graph Between Commonalities and

Variabilities
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Example
Label: E StrainHardening
V MatName name =“Strain-Hardening Viscoelastic”

V YieldFunct F = qκ
n−1
m (StressU) (Pa)

V PlasticPot Q = q (StressU) (Pa)
V HardParam κ = εvpq (L/L) (m/m)

V Phi ϕ = F
m
n (StressU

m
n ) (Pa

m
n )

V FluParam γ = nA
1
n (StressU−mt−1) (Pa−ms−1)

V MatProps mat prop names = {“A”, “m”, “n” },
where the type of the material properties
are ...

V Description descript = “This constitutive equation
combines a power-law viscoelastic mate-
rial with a strain hardening (softening)
material. ...”
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Code Generation

Specify variabilities

Symbolically calculate terms needed by numerical
algorithm, including ∂Q

∂σ
, ∂F

∂σ
, etc.

Symbolic processing avoids tedious and error-prone hand
calculations

I Reduces workload
I Allows non-experts to deal with new problems
I Increases reliability

Use Maple Computer Algebra System for model
manipulation

Convert math expressions into C expressions using
“CodeGeneration”

Inline into a C++ class defining the material model

A finite element program can this interface to realize the
numerical algorithm
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BNF of DSL for F

〈expression〉→〈number〉|
(〈expression〉)|
〈expression〉ˆ〈expression〉|
〈expression〉∗〈expression〉|

...

〈simulation-variable-F〉|〈user-defined-constants〉
〈simulation-variable-F〉→Kappa|〈simulation-
variable-stress〉|〈simulation-variable-stress-macros〉
〈simulation-variable-
stress〉→SigmaXX|SigmaYY|SigmaZZ|SigmaXY|
SigmaYZ|SigmaXZ
〈simulation-variable-stress-
macros〉→Sxx|Syy|Szz|Sxy|Syz|Sxz|Sm|J2|J3|q
〈user-defined-constants〉→〈string〉

Dr. Smith CAS 741, CES 741 Fall 2017: 05 Program Families 66/88



Concluding Remarks

Case studies of applying software engineering
methodologies to mesh generating systems and linear
solvers

Appropriate and advantageous to apply program family
strategy

Challenges for software engineers

General purpose scientific software is best studied as a
program family

I Variabilities are assumptions about problems that can be
handled

I Derive requirements from commonality analysis

Eventually hope for automatic code generation
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Concluding Remarks (Continued)

A new methodology for documenting requirements for general
purpose scientific computing software

1. Validatable requirements
I Relative comparison between program family members
I Focus on description rather than specification
I Solution validation strategy

2. Abstract
I Refine goal statement to theoretical model to input

assumptions
I In some cases one may want to turn off input checking
I Connection to design
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Concluding Remarks (Continued)

3. NFRs
I Relative comparison
I AHP

4. Capture and reuse
I Systematic consideration from general to specific
I CA refined by a family of SRSs
I CA and SRS summarize existing knowledge and

currently available software
I Standard template allows comparison
I Convenient framework for summarizing existing literature
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Concluding Remarks

A new template for a family of models of physical
phenomena

Refinement of Goals to Theoretical Models using Data
Definitions and Assumptions

Variabilities are identified in the Theoretical Model

A constitutive equation can be written using a
(declarative) DSL and the code can be generated

A DSL has been built, using Maple, for a virtual material
testing laboratory
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Concluding Remarks

SC software is a great candidate for development as a
program family

Produce programs that are as special or general purpose
as needed

Improve reusability, usability and reliability

Potential to improve performance

A commonality analysis facilitates the design of a DSL

Symbolic processing and code generation are very useful
techniques

We will return to code generation later
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K. Pohl, G. Böckle, and F. van der Linden.
Software Product Line Engineering: Foundations,
Principles, and Techniques.
Springer-Verlag, 2005.

Dr. Smith CAS 741, CES 741 Fall 2017: 05 Program Families 79/88



References IX
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