
CAS 741 (Development of Scientific Computing
Software)

Winter 2024

Module Interface Specification
(MIS)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 5, 2024

Module Interface Specification (MIS)

Administrative details

Questions?

Module guide example

MIS example

Integration testing

MIS overview

Modules with external interaction

Abstract objects

Abstract data types

Generic MIS

Inheritance

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 2/59

Administrative Details

Friday’s class in ITB/201

Mathematical review
▶ [3]
▶ Review Slides
▶ MIS Format

Potential software for drawing figures
▶ draw.io
▶ Tkiz

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 3/59

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Lectures/MathReviewPlusExample
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/MISFormat/MISFormat.pdf
https://app.diagrams.net/
https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf

Administrative Details: Report Deadlines

MG + MIS Week 09 Mar 15
Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 4/59

Administrative Details: Presentations

POC Demo Week 07 Week of Feb 26
MG + MIS Week 09 Week of Mar 11
MG + MIS Week 09 Week of Mar 11
Unit VnV/Implement Week 12 Week of Apr 3

Specific schedule depends on final class registration

Informal presentations with the goal of improving
everyone’s written deliverables

Domain experts and secondary reviewers (and others) will
ask questions

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 5/59

Presentation Schedule

Syst V&V Plan Present (L11, L12) (20 min)

MG+MIS Present (L17, L18) (20 minutes)
▶ Mar 12: Nada, Morteza, Kim Ying, Atiyeh
▶ Mar 15: Fatemeh, Yiding, Tanya, Volunteer?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 6/59

Presentation Sched Cont’d

Implementation Present (L22–L25) (15 min each)
▶ Mar 29: Fatemeh, Waqar, Al, Tanya, Atiyeh, Yi-Leng
▶ Apr 2: Nada, Phil, Xinyu, Fasil, Seyed Ali, Kim Ying
▶ Apr 5: Gaofeng, Morteza, Valerie, Hunter, Cynthia,

Adrian
▶ Apr 9: Yiding

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 7/59

Presentation Schedule

3 presentations each
▶ SRS everyone
▶ VnV and POC subset of class
▶ Design subset of class
▶ Implementation everyone

If you will miss a presentation, please trade with someone

Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 8/59

MG and MIS Presentations

MG+MIS Presentation
▶ Likely Changes
▶ Decomposition Hierarchy Figure
▶ Uses Relation Hierarchy
▶ Secrets of Most Important Modules
▶ Syntax

▶ Access Programs (types of inputs and outputs)
▶ State Variables
▶ Environment Variables
▶ Type of module (record, library, abstract object, ADT,

generic)
▶ Semantics - don’t get caught up with them at this point

▶ What modules cause state or environment transitions?
▶ Can you describe access program behaviour in words?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 9/59

Questions?

Questions on administrative details?

Questions about Module Guide?

Questions about upcoming presentation?

Questions about design?

Questions about anything (course related)?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 10/59

Emphasis

Math notation (stoichiometry example on Friday)

GUI modules (environment variables)

Types of modules

Abstract Data Types (graph example)

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 11/59

Solar Water Heating System Example

https://github.com/smiths/swhs
Solve ODEs for temperature of water and PCM
Solve for energy in water and PCM
Generate plots

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 12/59

https://github.com/smiths/swhs

Anticipated Changes?

What are some anticipated changes?

Hint: the software follows the Input → Calculate → Output
design pattern

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 13/59

Anticipated Changes

The specific hardware on which the software is to run

The format of the initial input data

The format of the input parameters

The constraints on the input parameters

The format of the output data

The constraints on the output results

How the governing ODEs are defined using the input
parameters

How the energy equations are defined using the input
parameters

How the overall control of the calculations is orchestrated

The implementation of the sequence data structure

The algorithm used for the ODE solver

The implementation of plotting data
Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 14/59

Module Hierarchy by Secrets

Level 1 Level 2

Hardware-Hiding
Module

Behaviour-Hiding
Module

Input Parameters Module
Output Format Module
Temperature ODEs Module
Energy Equations Module
Control Module
Specification Parameters

Software Decision
Module

Sequence Data Structure Module
ODE Solver Module
Plotting Module

Table: Module Hierarchy

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 15/59

Example Modules from SWHS

Hardware Hiding Modules

Secrets: The data structure and algorithm used to
implement the virtual hardware.

Services: Serves as a virtual hardware used by the rest of
the system. This module provides the interface
between the hardware and the software. So, the
system can use it to display outputs or to accept
inputs.

Implemented By: OS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 16/59

Example Modules from SWHS

Input Parameters Module

Secrets: The data structure for input parameters, how the
values are input and how the values are verified.
The load and verify secrets are isolated to their
own access programs (like submodules).

Services: Gets input from user (including material
properties, processing conditions, and numerical
parameters), stores input and verifies that the
input parameters comply with physical and
software constraints. Throws an error if a
parameter violates a physical constraint. Throws
a warning if a parameter violates a software
constraint.

Implemented By: SWHS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 17/59

Example Modules from SWHS

ODE Solver Module

Secrets: The algorithm to solve a system of first order
ODEs initial value problem from a given starting
time until the given event function shows
termination.

Services: Solves an ODE using the governing equation,
initial conditions, event function and numerical
parameters.

Implemented By: Matlab

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 18/59

SWHS Uses Hierarchy (approximately)

Control Module
(M7)

Temperature
ODEs Module

(M5)
Energy Equations

Module (M6)
ODE Solver

Module (M10)
Plotting Module

(M11)
Output Format
Module (M3)

Input Parameters
Module (M2)

Sequence Data
Structure Module

(M9)
Hardware Hiding

Module (M1)

Output Verification
Module (M4)

Specification
Parameters
Module (M8)

Mesh Generator Example

x

vi

yy

1

20

2

3

4

1

i

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

10

11

12

W

L

ui

y

x

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 20/59

Mesh Generator Complex Circular Geometry

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 21/59

Mesh Generator Example: Design Goals

Independent and flexible representation for each mesh
entity

Complete separation of geometric data from the topology

The mesh generator should work with different coordinate
systems

A flexible data structure to store sets of vertices, edges
and triangles

Different mesh generation algorithms with a minimal
amount of local changes

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 22/59

Example Mesh Gen Modular Decomposition

Link

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 23/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Lectures/L14_ModuleDecompositionContinued/DecompBySecretHierarchyExample.png

Another Mesh Generator Uses Hierarchy [1]

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 24/59

Examples of Modules [2]

Record
▶ Consists of only data
▶ Has state but no behaviour

Collection of related procedures (library)
▶ Has behaviour but no state
▶ Procedural abstractions

Abstract object
▶ Consists of data (fields) and procedures (methods)
▶ Consists of a collection of constructors, selectors, and

mutators
▶ Has state and behaviour

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 25/59

Examples of Modules Continued

Abstract data type (ADT)
▶ Consists of a collection of abstract objects and a

collection of procedures that can be applied to them
▶ Defines the set of possible values for the type and the

associated procedures that manipulate instances of the
type

▶ Encapsulates the details of the implementation of the
type

Generic Modules
▶ A single abstract description for a family of abstract

objects or ADTs
▶ Parameterized by type
▶ Eliminates the need for writing similar specifications for

modules that only differ in their type information
▶ A generic module facilitates specification of a stack of

integers, stack of strings, stack of stacks etc.

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 26/59

Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 27/59

Module Testing [2]

Scaffolding needed to create the environment in which
the module should be tested

Stubs - a module used by the module under test

Driver - module activating the module under test

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 28/59

Testing a Functional Module [2]

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 29/59

Integration Testing

Big-bang approach
▶ First test individual modules in isolation
▶ Then test integrated system

Incremental approach
▶ Modules are progressively integrated and tested
▶ Can proceed both top-down and bottom-up according to

the USES relation

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 30/59

Integration Testing and USES relation

If integration and test proceed bottom-up only need
drivers

Otherwise if we proceed top-down only stubs are needed

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 31/59

Example [2]

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
In what order would you test these modules?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 32/59

Example [2]

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
Case 1
▶ Test M1 providing a stub for M2 and a driver for M1

▶ Then provide an implementation for M2,1 and a stub for
M2,2

Case 2
▶ Implement M2,2 and test it by using a driver
▶ Implement M2,1 and test the combination of M2,1 and

M2,2 (i.e. M2) by using a driver
▶ Finally implement M1 and test it with M2 using a driver

for M1

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 33/59

Overview of MIS

See Hoffman and Strooper [3]
The MIS precisely specifies the modules observable
behaviour - what the module does
The MIS does not specify the internal design
The idea of an MIS is inspired by the principles of
software engineering
Advantages
▶ Improves many software qualities
▶ Programmers can work in parallel
▶ Assumptions about how the code will be used are

recorded
▶ Test cases can be decided on early, and they benefit

from a clear specification of the behaviour
▶ A well designed and documented MIS is easier to read

and understand than complex code
▶ Can use the interface without understanding details

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 34/59

Overview of MIS

Options for specifying an MIS
▶ Trace specification
▶ Pre and post conditions specification
▶ Input/output specification
▶ Before/after specification - module state machine
▶ Algebraic specification

Best to follow a template

Aim for declarative specification
▶ Say what service is provided, but not how to provide it
▶ Simpler
▶ Allows for change in implementation

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 35/59

MIS Example: SWHS

https://github.com/smiths/swhs

Has some constant values

Input parameters

Solve ODEs for temperature of water and PCM

Solve for energy in water and PCM

Output results

Generate plots

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 36/59

https://github.com/smiths/swhs

MIS Template

Uses
▶ Imported constants, data types and access programs

Syntax
▶ Exported constants and types
▶ Exported functions (access routine interface syntax)

Semantics
▶ State variables
▶ State invariants
▶ Assumptions
▶ Access routine semantics
▶ Local functions
▶ Local types
▶ Local constants
▶ Considerations

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 37/59

MIS Uses Section

Specify imported constants

Specify imported types

Specify imported access programs

The specification of one module will often depend on
using the interface specified by another module

When there are many modules the uses information is
very useful for navigation of the documentation

Documents the use relation between modules

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 38/59

MIS Syntax Section

Specify exported constants

Specify exported types

Specify access routine names, the input and output
parameter types and exceptions

Show access routines in tabular form
▶ Important design decisions are made at this point
▶ The goal is to have the syntax match many

implementation languages

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 39/59

Syntax of a Sequence Module

Exported Constants

MAX SIZE = 100

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 40/59

Syntax of a Sequence Module Continued

Exported Access Programs

Routine name In Out Exceptions
seq init
seq add integer, integer FULL, POS
seq del integer POS
seq setval integer, integer POS
seq getval integer integer POS
seq size integer

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 41/59

MIS Semantics Section

State variables
▶ Give state variable(s) name and type
▶ State variables define the state space
▶ If a module has state then it will have “memory”

State invariant
▶ A predicate on the state space that restricts the “legal”

states of the module
▶ After every access routine call, the state should satisfy

the invariant
▶ Cannot have a state invariant without state variables
▶ Just stating the invariant does not “enforce” it, the

access routine semantics need to maintain it
▶ Useful for understandability, testing and for proof

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 42/59

Semantics Section Continued

Local functions, local types and local constants
▶ Declared for specification purposes only
▶ Not available at run time
▶ Helpful to make complex specifications easier to read

Considerations
▶ For information that does not fit elsewhere
▶ Useful to tell the user if the module violates a quality

criteria

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 43/59

Sequence MIS Semantics

State Variables
s: sequence of integer

State Invariant
|s| ≤ MAX SIZE

Assumptions
seq init() is called before any other access program

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 44/59

Sequence MIS Semantics Continued

Access Routine Semantics

seq init():

transition: s :=<>

exception: none

seq add(i , p):

transition: s := s[0..i − 1]|| < p > ||s[i ..|s| − 1]

exception:
exc := (|s| = MAX SIZE ⇒ FULL | i /∈ [0..|s|] ⇒ POS)

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 45/59

Access Routine Semantics Continued

seq del(i):

transition: s := s[0..i − 1]||s[i + 1..|s| − 1]

exception: exc := (i /∈ [0..|s| − 1] ⇒ POS)

seq setval(i , p):

transition: s[i] := p

exception: exc := (i /∈ [0..|s| − 1] ⇒ POS)

seq getval(i):

output: out := s[i]

exception: exc := (i /∈ [0..|s| − 1] ⇒ POS)

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 46/59

Access Routine Semantics Continued

seq size():

output: out := |s|
exception: none

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 47/59

Exception Signalling

Useful to think about exceptions in the design process

Will need to decide how exception signalling will be done
▶ A special return value, a special status parameter, a

global variable
▶ Invoking an exception procedure
▶ Using built-in language constructs

Caused by errors made by programmers, not by users

Write code so that it avoids exceptions

Exceptions will be particularly useful during testing

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 48/59

Assumptions versus Exceptions

The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

Assumptions are expressed in prose

Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

Interface design should provide the programmer with a
means to check so that they can avoid exceptions

When an exceptions occurs no state transitions should
take place, any output is don’t care

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 49/59

Examples of Modules: Record [2]

Consists of only data

Has state but no behaviour

Example
▶ Specification Parameters Module in SWHS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 50/59

Examples of Modules: Library [2]

Collection of related procedures (library)

Has behaviour but no state

Procedural abstractions

Example
▶ Library of trigonometric functions
▶ ODE Solver Module in SWHS
▶ Sequence Services Module

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 51/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2/A2.pdf

Examples of Modules: Abstract Object [2]

Consists of data (fields) and procedures (methods)

Consists of a collection of constructors, selectors, and
mutators

Has state and behaviour

There is only ONE

Example
▶ Input Parameters Module for SWHS
▶ Logger

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 52/59

Examples of Modules: Abstract Data Type [2]

What you are used to for OO programming

Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

Encapsulates the details of the implementation of the type

Multiple instances of the object

Keyword Template in MIS

Example
▶ Curve ADT Module

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 53/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2-CurveADT/A2.pdf

Examples of Modules: Generic [2]

A single abstract description for a family of abstract
objects or ADTs

Parameterized by type

Eliminates the need for writing similar specifications for
modules that only differ in their type information

A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.

Example
▶ Generic Sequence ADT Module

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 54/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A2/A2.pdf

Getting Started

1. Find a similar example to your problem as use that as a
starting point

2. Draft module names and secrets

3. For each module sketch out:
▶ Classify module type (record, library, abstract object,

abstract data type, generic ADT)
▶ Access program syntax
▶ State variables (if applicable)

4. Iterate on design

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 55/59

Graph Example

Assume need to calculate degree and shortest path, all
edges of length 1

Problems with working directly with adjacency matrix
▶ Data structure changes - only need half of matrix, binary

instead of integer
▶ What if distance between connected nodes is not 1?
▶ What if you have information to store with the nodes?
▶ What if you need more calculations on the graph?

Abstract version, start from G = (V, E)

Maybe too abstract, try vertices are natural numbers

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 56/59

Appendix: Information Hiding Examples

Hoffman and Strooper (1995) textbook on software
development: The running example is of a symbol table.
A very complete example. There is a complete chapter on
the module guide in the text. It is well explained there.

Parnas Et Al (1984) “The Module Structure of Complex
Systems” : This example is right back to the source. The
example focuses on the A7E military fighter jet.

Parnas (1979) “Designing Software For Ease of Extension
and Contraction”

von Mohrenschildt (2005) “The Maze Tracing Robot A
Sample Specification”: This is a small and complete
example.

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 57/59

https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/HoffmanAndStrooper1995.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/ParnasEtAl1984.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/ParnasEtAl1984.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/Parnas1979.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/Parnas1979.pdf
http://www.cas.mcmaster.ca/~mohrens/maze.pdf
http://www.cas.mcmaster.ca/~mohrens/maze.pdf

Appendix Cont’d: Information Hiding Examples

Jegatheesan and MacLachlan (2018), Module Guide for
Solar Water Heating Systems Incorporating Phase Change
Material

Liu (2020) Module Guide for Radio Signal Strength
Calculator

Key points
▶ One module, one secret
▶ Secrets are often nouns (data structure, algorithm,

hardware, etc.)
▶ Secrets are sometimes phrased with “How to . . . ”
▶ Secrets ideally will have a one to one mapping with the

anticipated changes for the software

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 58/59

https://github.com/smiths/swhs/blob/master/docs/Design/MG/PCM_MG.pdf
https://github.com/smiths/swhs/blob/master/docs/Design/MG/PCM_MG.pdf
https://github.com/smiths/swhs/blob/master/docs/Design/MG/PCM_MG.pdf
https://github.com/XingzhiMac/CAS741-Proj/blob/master/docs/Design/MG/MG.pdf
https://github.com/XingzhiMac/CAS741-Proj/blob/master/docs/Design/MG/MG.pdf

References I

Ahmed H. ElSheikh, W. Spencer Smith, and Samir E.
Chidiac.
Semi-formal design of reliable mesh generation systems.
Advances in Engineering Software, 35(12):827–841, 2004.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.
International Thomson Computer Press, New York, NY,
USA, 1995.

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 59/59

