CAS 741 (Development of Scientific Computing
Software)

Winter 2024

Module Interface Specification
(MIS)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 5, 2024

McMaster
University %ﬁ

Module Interface Specification (MIS)

Administrative details

Questions?

Module guide example

MIS example

Integration testing

MIS overview

Modules with external interaction
Abstract objects

Abstract data types

Generic MIS

Inheritance

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS)

2/59

Administrative Details

e Friday's class in ITB/201
@ Mathematical review
> [3]
» Review Slides
» MIS Format
@ Potential software for drawing figures

» draw.io
» Tkiz

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 3/59

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Lectures/MathReviewPlusExample
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/MISFormat/MISFormat.pdf
https://app.diagrams.net/
https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf

Administrative Details: Report Deadlines

MG + MIS Week 09 Mar 15
Final Documentation Week 13 Apr 12

@ The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

@ If you need an extension for a written doc, please ask

@ When ready, assign issues to your primary and secondary
reviewers

@ GitHub issues due two days after assignment deadlines

@ From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 4/59

Administrative Details: Presentations

POC Demo Week 07 Week of Feb 26
MG 4+ MIS Week 09 Week of Mar 11
MG + MIS Week 09 Week of Mar 11

Unit VnV/Implement Week 12 Week of Apr 3
@ Specific schedule depends on final class registration
@ Informal presentations with the goal of improving
everyone's written deliverables

@ Domain experts and secondary reviewers (and others) will
ask questions

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS)

5/59

Presentation Schedule

@ Syst V&V Plan Present (L11, L12) (20 min)
@ MG-+MIS Present (L17, L18) (20 minutes)

» Mar 12: Nada, Morteza, Kim Ying, Atiyeh
» Mar 15: Fatemeh, Yiding, Tanya, Volunteer?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 6/59

Presentation Sched Cont’d

@ Implementation Present (L22-L25) (15 min each)
> Mar 29: Fatemeh, Wagqar, Al, Tanya, Atiyeh, Yi-Leng
» Apr 2: Nada, Phil, Xinyu, Fasil, Seyed Ali, Kim Ying
» Apr 5: Gaofeng, Morteza, Valerie, Hunter, Cynthia,
Adrian
» Apr 9: Yiding

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 7/59

Presentation Schedule

@ 3 presentations each

» SRS everyone

» VnV and POC subset of class
» Design subset of class

» Implementation everyone

o If you will miss a presentation, please trade with someone

@ Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 8/59

MG and MIS Presentations

@ MG-+MIS Presentation

» Likely Changes

» Decomposition Hierarchy Figure

» Uses Relation Hierarchy

» Secrets of Most Important Modules

» Syntax
> Access Programs (types of inputs and outputs)
» State Variables
» Environment Variables
> Type of module (record, library, abstract object, ADT,

generic)

» Semantics - don't get caught up with them at this point
» What modules cause state or environment transitions?
» Can you describe access program behaviour in words?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 9/59

Questions?

Questions on administrative details?
Questions about Module Guide?
Questions about upcoming presentation?

Questions about design?

Questions about anything (course related)?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 10/59

Emphasis

@ Math notation (stoichiometry example on Friday)
@ GUI modules (environment variables)

@ Types of modules

@ Abstract Data Types (graph example)

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 11/59

Solar Water Heating System Example

@ https://github.com/smiths/swhs

@ Solve ODEs for temperature of water and PCM
@ Solve for energy in water and PCM

@ Generate plots

PCM

qp ——
Tank

Ac

e

Coil

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 12/59

https://github.com/smiths/swhs

Anticipated Changes?

What are some anticipated changes?

Hint: the software follows the Input — Calculate — Output
design pattern

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 13/59

Anticipated Changes

The specific hardware on which the software is to run
The format of the initial input data

The format of the input parameters

The constraints on the input parameters

The format of the output data

The constraints on the output results

How the governing ODEs are defined using the input
parameters

How the energy equations are defined using the input
parameters

How the overall control of the calculations is orchestrated
The implementation of the sequence data structure

The algorithm used for the ODE solver

The implementation of plotting data

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 14/59

Module Hierarchy by Secrets

Level 1 Level 2

Hardware-Hiding
Module

Input Parameters Module
Output Format Module
Behaviour-Hiding ~ Temperature ODEs Module
Module Energy Equations Module
Control Module
Specification Parameters

Sequence Data Structure Module

ODE Solver Module
Plotting Module

Software Decision
Module

Table: Module Hierarchy

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 15/59

Example Modules from SWHS

Hardware Hiding Modules

Secrets: The data structure and algorithm used to
implement the virtual hardware.

Services: Serves as a virtual hardware used by the rest of
the system. This module provides the interface
between the hardware and the software. So, the
system can use it to display outputs or to accept
inputs.

Implemented By: OS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 16/59

Example Modules from SWHS

Input Parameters Module

Secrets: The data structure for input parameters, how the
values are input and how the values are verified.
The load and verify secrets are isolated to their
own access programs (like submodules).

Services: Gets input from user (including material
properties, processing conditions, and numerical
parameters), stores input and verifies that the
input parameters comply with physical and
software constraints. Throws an error if a
parameter violates a physical constraint. Throws
a warning if a parameter violates a software
constraint.

Implemented By: SWHS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 17/59

Example Modules from SWHS
ODE Solver Module

Secrets: The algorithm to solve a system of first order
ODEs initial value problem from a given starting
time until the given event function shows
termination.

Services: Solves an ODE using the governing equation,
initial conditions, event function and numerical
parameters.

Implemented By: Matlab

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 18/59

SWHS Uses Hierarchy (approximately)

Control Module

(M7)
ODE Solver gg'gsiﬁs;lee Energy Equations Output Format Output Verification Plotting Module
Module (M10) (M5) Module (M6) Module (M3) Module (M4)

Input Parameters

Module (M2)
Sequence Data Specification -
Structure Module Parameters Hah;\ %‘a‘/ﬂl’: (’:/l\til)ng
(M9) Module (M8)

Mesh Generator Example

v
1A A
y Sy y
i l‘II
%39; D /!\ rR 70\
NS, &) 2 (16) &) ?
3 6 9 12 N
~ N AN D Ve
e ® @ @ @9—
W, 2 5 8 11 —> Tx
N N o /N /3
O, ® @) @) (—
1 4 7 10 SN
— (1) (5) (9) (13) (17 >
hof koA o AN
| |
| L |

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 20/59

Mesh Generator Complex Circular Geometry

N
0

=
Al

e

&

21/59

Module Interface Specification (MIS)

CAS 741 Winter 2024

Dr. Smith

Mesh Generator Example: Design Goals

Independent and flexible representation for each mesh
entity

Complete separation of geometric data from the topology
The mesh generator should work with different coordinate
systems

A flexible data structure to store sets of vertices, edges
and triangles

Different mesh generation algorithms with a minimal
amount of local changes

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS)

22/59

Example Mesh Gen Modular Decomposition
Link

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 23/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Lectures/L14_ModuleDecompositionContinued/DecompBySecretHierarchyExample.png

Another Mesh Generator Uses Hierarchy [1]

List
|

Topological_Operation

Triangle

Edge

I

Vertex

Geometric_Operation

Handle_Server

Geometric_Coordinate_system

Coordinate_system

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS)

24/59

Examples of Modules [2]

@ Record
» Consists of only data
> Has state but no behaviour
@ Collection of related procedures (library)

» Has behaviour but no state
» Procedural abstractions

@ Abstract object

» Consists of data (fields) and procedures (methods)

» Consists of a collection of constructors, selectors, and
mutators

» Has state and behaviour

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 25/59

Examples of Modules Continued

@ Abstract data type (ADT)

» Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

» Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

» Encapsulates the details of the implementation of the
type

@ Generic Modules

» A single abstract description for a family of abstract
objects or ADTs

» Parameterized by type

» Eliminates the need for writing similar specifications for
modules that only differ in their type information

» A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 26/59

Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 27/59

Module Testing [2]

@ Scaffolding needed to create the environment in which
the module should be tested

@ Stubs - a module used by the module under test

@ Driver - module activating the module under test

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 28/59

Testing a Functional Module [2]

PROCEDURE)
STUB - UNDER TEST - DRIVER
CALL CALL

ACCESS TO NONLOCAL VARIABLES

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 29/59

Integration Testing

@ Big-bang approach
» First test individual modules in isolation
> Then test integrated system

@ Incremental approach

» Modules are progressively integrated and tested
» Can proceed both top-down and bottom-up according to
the USES relation

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 30/59

Integration Testing and USES relation

o If integration and test proceed bottom-up only need
drivers

@ Otherwise if we proceed top-down only stubs are needed

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 31/59

Example [2]

My Mo

Maq1 My

—» :DD

(*] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M272}

@ In what order would you test these modules?

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 32/59

Example [2]

My Mo

Mo Mo

-) L

(*] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M272}
e Casel
» Test My providing a stub for My and a driver for M;
» Then provide an implementation for M, 1 and a stub for
Mo »
o Case 2
» Implement M5 > and test it by using a driver
» Implement M, and test the combination of M5 and
My (i.e. Mp) by using a driver
» Finally implement M; and test it with M, using a driver
for My

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 33/59

Overview of MIS

@ See Hoffman and Strooper [3]

@ The MIS precisely specifies the modules observable
behaviour - what the module does

@ The MIS does not specify the internal design

@ The idea of an MIS is inspired by the principles of
software engineering

@ Advantages

>
4
4

Improves many software qualities

Programmers can work in parallel

Assumptions about how the code will be used are
recorded

Test cases can be decided on early, and they benefit
from a clear specification of the behaviour

A well designed and documented MIS is easier to read
and understand than complex code

Can use the interface without understanding details

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 34/59

Overview of MIS

@ Options for specifying an MIS
» Trace specification
» Pre and post conditions specification
» Input/output specification
> Before/after specification - module state machine
» Algebraic specification

@ Best to follow a template
e Aim for declarative specification

» Say what service is provided, but not how to provide it
» Simpler
» Allows for change in implementation

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 35/59

MIS Example: SWHS

@ https://github.com/smiths/swhs

@ Has some constant values

@ Input parameters

@ Solve ODEs for temperature of water and PCM
@ Solve for energy in water and PCM

@ Output results

@ Generate plots

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 36/59

https://github.com/smiths/swhs

MIS Template

@ Uses
» Imported constants, data types and access programs
@ Syntax

» Exported constants and types
» Exported functions (access routine interface syntax)
@ Semantics
» State variables
State invariants
Assumptions
Access routine semantics
Local functions
Local types
Local constants
Considerations

VVVYyVYVYYVY

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 37/59

MIS Uses Section

@ Specify imported constants
@ Specify imported types
@ Specify imported access programs

@ The specification of one module will often depend on
using the interface specified by another module

@ When there are many modules the uses information is
very useful for navigation of the documentation

@ Documents the use relation between modules

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 38/59

MIS Syntax Section

@ Specify exported constants

@ Specify exported types

@ Specify access routine names, the input and output
parameter types and exceptions

@ Show access routines in tabular form

» Important design decisions are made at this point
» The goal is to have the syntax match many
implementation languages

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 39/59

Syntax of a Sequence Module

Exported Constants

MAX_SIZE = 100

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 40/59

Syntax of a Sequence Module Continued

Exported Access Programs

Routine name | In Out Exceptions
seq_init

seq_add integer, integer FULL, POS
seq_del integer POS
seq_setval integer, integer POS
seq_getval integer integer | POS
seq_size integer

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS)

41/59

MIS Semantics Section

@ State variables

> Give state variable(s) name and type
» State variables define the state space
» |f a module has state then it will have “memory”

@ State invariant

» A predicate on the state space that restricts the “legal”
states of the module

» After every access routine call, the state should satisfy
the invariant

» Cannot have a state invariant without state variables

» Just stating the invariant does not “enforce” it, the
access routine semantics need to maintain it

» Useful for understandability, testing and for proof

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 42/59

Semantics Section Continued

@ Local functions, local types and local constants

» Declared for specification purposes only

» Not available at run time

» Helpful to make complex specifications easier to read
e Considerations

» For information that does not fit elsewhere

» Useful to tell the user if the module violates a quality

criteria

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 43/59

Sequence MIS Semantics

State Variables
s: sequence of integer

State Invariant
|s| < MAX_SIZE

Assumptions
seq_init() is called before any other access program

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 44/59

Sequence MIS Semantics Continued

Access Routine Semantics

seq_init():
@ transition: s :=<>

@ exception: none

seq_add(i, p):
e transition: s :=s[0..i — 1]|| < p > ||s[i..|s| — 1]

@ exception:
exc := (|s| = MAX_SIZE = FULL | i ¢ [0..]s|]] = POS)

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 45/59

Access Routine Semantics Continued

seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

seq_setval(i, p):
@ transition: s[i] :=p
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

seq_getval(i):
@ output: out := sJi]
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 46/59

Access Routine Semantics Continued
seq_size():
@ output: out := |s]

@ exception: none

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 47/59

Exception Signalling

@ Useful to think about exceptions in the design process
@ Will need to decide how exception signalling will be done

» A special return value, a special status parameter, a
global variable

» Invoking an exception procedure

» Using built-in language constructs

@ Caused by errors made by programmers, not by users
@ Write code so that it avoids exceptions
@ Exceptions will be particularly useful during testing

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 48/59

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 49/59

Examples of Modules: Record [2]

@ Consists of only data
@ Has state but no behaviour

e Example
» Specification Parameters Module in SWHS

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 50/59

Examples of Modules: Library [2]

@ Collection of related procedures (library)
@ Has behaviour but no state

@ Procedural abstractions

e Example

» Library of trigonometric functions
» ODE Solver Module in SWHS
» Sequence Services Module

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 51/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2/A2.pdf

Examples of Modules: Abstract Object [2]

o Consists of data (fields) and procedures (methods)

@ Consists of a collection of constructors, selectors, and
mutators

@ Has state and behaviour
@ There is only ONE
e Example

» Input Parameters Module for SWHS
> Logger

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 52/59

Examples of Modules: Abstract Data Type [2]

What you are used to for OO programming

Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

Defines the set of possible values for the type and the
associated procedures that manipulate instances of the

type
Encapsulates the details of the implementation of the type
Multiple instances of the object
Keyword Template in MIS
Example
» Curve ADT Module

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 53/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2-CurveADT/A2.pdf

Examples of Modules: Generic [2]

@ A single abstract description for a family of abstract
objects or ADTs

e Parameterized by type

@ Eliminates the need for writing similar specifications for
modules that only differ in their type information

@ A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.
e Example
» Generic Sequence ADT Module

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 54/59

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A2/A2.pdf

Getting Started

1. Find a similar example to your problem as use that as a
starting point

2. Draft module names and secrets

3. For each module sketch out:

» Classify module type (record, library, abstract object,
abstract data type, generic ADT)

» Access program syntax

> State variables (if applicable)

4. lterate on design

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 55/59

Graph Example

@ Assume need to calculate degree and shortest path, all
edges of length 1
@ Problems with working directly with adjacency matrix
» Data structure changes - only need half of matrix, binary
instead of integer
» What if distance between connected nodes is not 1?7
» What if you have information to store with the nodes?
» What if you need more calculations on the graph?

@ Abstract version, start from G = (V, E)
@ Maybe too abstract, try vertices are natural numbers

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 56/59

Appendix: Information Hiding Examples

@ Hoffman and Strooper (1995) textbook on software
development: The running example is of a symbol table.
A very complete example. There is a complete chapter on
the module guide in the text. It is well explained there.

@ Parnas Et Al (1984) “The Module Structure of Complex
Systems” : This example is right back to the source. The
example focuses on the A7E military fighter jet.

@ Parnas (1979) “Designing Software For Ease of Extension
and Contraction”

@ von Mohrenschildt (2005) “The Maze Tracing Robot A
Sample Specification”: This is a small and complete
example.

Dr. Smith CAS 741 Winter 2024: Module Interface Specification (MIS) 57/59

https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/HoffmanAndStrooper1995.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/ParnasEtAl1984.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/ParnasEtAl1984.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/Parnas1979.pdf
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/Parnas1979.pdf
http://www.cas.mcmaster.ca/~mohrens/maze.pdf
http://www.cas.mcmaster.ca/~mohrens/maze.pdf

Appendix Cont'd: Information Hiding Examples

@ Jegatheesan and Maclachlan (2018), Module Guide for
Solar Water Heating Systems Incorporating Phase Change

Material
@ Liu (2020) Module Guide for Radio Signal Strength
Calculator
@ Key points
» One module, one secret
» Secrets are often nouns (data structure, algorithm,
hardware, etc.)
» Secrets are sometimes phrased with “How to ..."
» Secrets ideally will have a one to one mapping with the

anticipated changes for the software

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 58/59

https://github.com/smiths/swhs/blob/master/docs/Design/MG/PCM_MG.pdf
https://github.com/smiths/swhs/blob/master/docs/Design/MG/PCM_MG.pdf
https://github.com/smiths/swhs/blob/master/docs/Design/MG/PCM_MG.pdf
https://github.com/XingzhiMac/CAS741-Proj/blob/master/docs/Design/MG/MG.pdf
https://github.com/XingzhiMac/CAS741-Proj/blob/master/docs/Design/MG/MG.pdf

References |

[Ahmed H. EISheikh, W. Spencer Smith, and Samir E.

Chidiac.
Semi-formal design of reliable mesh generation systems.
Advances in Engineering Software, 35(12):827-841, 2004.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.

Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.

International Thomson Computer Press, New York, NY,
USA, 1995.

Dr. Smith

CAS 741 Winter 2024: Module Interface Specification (MIS) 59/59

