
Module Interface Specification for ...

Author Name

November 6, 2018

1 Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

i

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at [give url —SS]
[Also add any additional symbols, abbreviations or acronyms —SS]

ii

Contents

1 Revision History i

2 Symbols, Abbreviations and Acronyms ii

3 Introduction 1

4 Notation 1

5 Module Decomposition 1

6 MIS of [Module Name —SS] 3
6.1 Module . 3
6.2 Uses . 3
6.3 Syntax . 3

6.3.1 Exported Constants . 3
6.3.2 Exported Access Programs . 3

6.4 Semantics . 3
6.4.1 State Variables . 3
6.4.2 Environment Variables . 3
6.4.3 Assumptions . 3
6.4.4 Access Routine Semantics . 3
6.4.5 Local Functions . 4

7 Appendix 6

iii

3 Introduction

The following document details the Module Interface Specifications for [Fill in your project
name and description —SS]

Complementary documents include the System Requirement Specifications and Module
Guide. The full documentation and implementation can be found at [provide the url
for your repo —SS]

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]
The structure of the MIS for modules comes from Hoffman and Strooper (1995), with

the addition that template modules have been adapted from Ghezzi et al. (2003). The
mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance,
the symbol := is used for a multiple assignment statement and conditional rules follow the
form (c1 ⇒ r1|c2 ⇒ r2|...|cn ⇒ rn).

The following table summarizes the primitive data types used by Program Name.

Data Type Notation Description

character char a single symbol or digit

integer Z a number without a fractional component
in (-∞, ∞)

natural number N a number without a fractional component
in [1, ∞)

real R any number in (-∞, ∞)

The specification of Program Name uses some derived data types: sequences, strings, and
tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of
characters. Tuples contain a list of values, potentially of different types. In addition, Program
Name uses functions, which are defined by the data types of their inputs and outputs. Local
functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

1

...

Level 1 Level 2

Hardware-Hiding

Behaviour-Hiding

Input Parameters
Output Format
Output Verification
Temperature ODEs
Energy Equations
Control Module
Specification Parameters Module

Software Decision
Sequence Data Structure
ODE Solver
Plotting

Table 1: Module Hierarchy

2

6 MIS of [Module Name —SS]

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R1. —SS]
[It is also possible to use LATEXfor hypperlinks to external documents. —SS]

6.1 Module

[Short name for the module —SS]

6.2 Uses

6.3 Syntax

6.3.1 Exported Constants

6.3.2 Exported Access Programs

Name In Out Exceptions
[accessProg
—SS]

- - -

6.4 Semantics

6.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

6.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module
has external interaction with the environment, such as for a device driver, screen interface,
keyboard, file, etc. —SS]

6.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for
practical purposes assumptions are sometimes appropriate. —SS]

6.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

3

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state
transition. In this case a state transition can only occur if the module is changing the state
of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one
or the other. —SS]

6.4.5 Local Functions

[As appropriate —SS] [These functions are for the purpose of specification. They are not nec-
essarily something that is going to be implemented explicitly. Even if they are implemented,
they are not exported; they only have local scope. —SS]

4

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Main-
tenance: A Practical Approach. International Thomson Computer Press, New York, NY,
USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

5

http:// citeseer.ist.psu.edu/428727.html

7 Appendix

[Extra information if required —SS]

6

	Revision History
	Symbols, Abbreviations and Acronyms
	Introduction
	Notation
	Module Decomposition
	MIS of [Module Name —SS]
	Module
	Uses
	Syntax
	Exported Constants
	Exported Access Programs

	Semantics
	State Variables
	Environment Variables
	Assumptions
	Access Routine Semantics
	Local Functions

	Appendix

