
Software Requirements Specification for ProgName:
subtitle describing software

Author Name(s)

November 8, 2018

1

1 Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

i

2 Reference Material

This section records information for easy reference.

2.1 Table of Units

Throughout this document SI (Système International d’Unités) is employed as the unit sys-
tem. In addition to the basic units, several derived units are used as described below. For
each unit, the symbol is given followed by a description of the unit and the SI name.

symbol unit SI

m length metre

kg mass kilogram

s time second
◦C temperature centigrade

J energy Joule

W power Watt (W = J s−1)

[Only include the units that your SRS actually uses. —SS]
[Derived units, like newtons, pascal, etc, should show their derivation (the units they

are derived from) if their constituent units are in the table of units (that is, if the units
they are derived from are used in the document). For instance, the derivation of pascals as
Pa = N m−2 is shown if newtons and m are both in the table. The derivations of newtons
would not be shown if kg and s are not both in the table. —SS]

2.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their
units. The choice of symbols was made to be consistent with the heat transfer literature
and with existing documentation for solar water heating systems. The symbols are listed in
alphabetical order.

symbol unit description

AC m2 coil surface area

Ain m2 surface area over which heat is transferred in

[Use your problems actual symbols. The si package is a good idea to use for units. —SS]

ii

2.3 Abbreviations and Acronyms

symbol description

A Assumption

DD Data Definition

GD General Definition

GS Goal Statement

IM Instance Model

LC Likely Change

PS Physical System Description

R Requirement

SRS Software Requirements Specification

ProgName [put your program name here —SS]

T Theoretical Model

[Add any other abbreviations or acronyms that you add —SS]

iii

Contents

1 Revision History i

2 Reference Material ii
2.1 Table of Units . ii
2.2 Table of Symbols . ii
2.3 Abbreviations and Acronyms . iii

3 Introduction 1
3.1 Purpose of Document . 1
3.2 Scope of Requirements . 1
3.3 Characteristics of Intended Reader . 1
3.4 Organization of Document . 1

4 General System Description 1
4.1 System Context . 1
4.2 User Characteristics . 2
4.3 System Constraints . 2

5 Specific System Description 2
5.1 Problem Description . 2

5.1.1 Terminology and Definitions . 2
5.1.2 Physical System Description . 2
5.1.3 Goal Statements . 2

5.2 Solution Characteristics Specification . 3
5.2.1 Assumptions . 3
5.2.2 Theoretical Models . 3
5.2.3 General Definitions . 4
5.2.4 Data Definitions . 4
5.2.5 Instance Models . 5
5.2.6 Data Constraints . 6
5.2.7 Properties of a Correct Solution . 7

6 Requirements 7
6.1 Functional Requirements . 7
6.2 Nonfunctional Requirements . 7

7 Likely Changes 8

8 Traceability Matrices and Graphs 8

iv

9 Appendix 13
9.1 Symbolic Parameters . 13

v

3 Introduction

[This SRS template is based on Smith and Lai (2005); Smith et al. (2007). It will get you
started, but you will have to make changes. Any changes to section headings should be
approved by the instructor, since that implies a deviation from the template. Although the
bits shown below do not include type information, you may need to add this information for
your problem. —SS]

[Feel free to change the appearance of the report by modifying the LaTeX commands.
—SS]

[If you are documenting a family of models, you can start from this same template, but
you will have to add a section for variabilities. For program families you should look at
Smith (2006); Smith et al. (2017). You should be able to do one document that captures
the commonality analysis and the requirements. —SS]

3.1 Purpose of Document

3.2 Scope of Requirements

3.3 Characteristics of Intended Reader

3.4 Organization of Document

4 General System Description

This section identifies the interfaces between the system and its environment, describes the
user characteristics and lists the system constraints.

4.1 System Context

[Your system context will likely include an explicit list of user and system responsibilities
—SS]

• User Responsibilities:

–

• ProgName Responsibilities:

– Detect data type mismatch, such as a string of characters instead of a floating
point number

–

1

4.2 User Characteristics

The end user of ProgName should have an understanding of undergraduate Level 1 Calculus
and Physics.

4.3 System Constraints

[You may not have any system constraints —SS]

5 Specific System Description

This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, definitions and finally the instance models. [Add any
project specific details that are relevant for the section overview. —SS]

5.1 Problem Description

ProgName is [what problem does your program solve? —SS]

5.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning, with the purpose of reducing ambiguity and making it easier to correctly under-
stand the requirements:

•

5.1.2 Physical System Description

The physical system of ProgName, as shown in Figure ?, includes the following elements:

PS1:

PS2: ...

[A figure here may make sense for most SRS documents —SS]

5.1.3 Goal Statements

Given the [inputs —SS], the goal statements are:

GS1: [One sentence description of the goal. There may be more than one. Each Goal should
have a meaningful label. —SS]

2

5.2 Solution Characteristics Specification

The instance models that govern ProgName are presented in Subsection 5.2.5. The informa-
tion to understand the meaning of the instance models and their derivation is also presented,
so that the instance models can be verified.

5.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by
filling in the missing information for the physical system. The numbers given in the square
brackets refer to the theoretical model [T], general definition [GD], data definition [DD],
instance model [IM], or likely change [LC], in which the respective assumption is used.

A1: [Short description of each assumption. Each assumption should have a meaningful
label. Use cross-references to identify the appropriate traceability to T, GD, DD etc.,
using commands like dref, ddref etc. —SS]

5.2.2 Theoretical Models

This section focuses on the general equations and laws that ProgName is based on. [Modify
the examples below for your problem, and add additional models as appropriate. —SS]

Number T1

Label Conservation of thermal energy

Equation −∇ · q + g = ρC ∂T
∂t

Description The above equation gives the conservation of energy for transient heat trans-
fer in a material of specific heat capacity C (J kg−1 ◦C−1) and density ρ
(kg m−3), where q is the thermal flux vector (W m−2), g is the volumetric
heat generation (W m−3), T is the temperature (◦C), t is time (s), and ∇
is the gradient operator. For this equation to apply, other forms of energy,
such as mechanical energy, are assumed to be negligible in the system (A??).
In general, the material properties (ρ and C) depend on temperature.

Source http://www.efunda.com/formulae/heat_transfer/conduction/

overview_cond.cfm

Ref. By GD??

3

http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm
http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm

5.2.3 General Definitions

This section collects the laws and equations that will be used in deriving the data definitions,
which in turn are used to build the instance models. [Some projects may not have any content
for this section, but the section heading should be kept. —SS] [Modify the examples below
for your problem, and add additional definitions as appropriate. —SS]

Number GD1

Label Newton’s law of cooling

SI Units W m−2

Equation q(t) = h∆T (t)

Description Newton’s law of cooling describes convective cooling from a surface. The
law is stated as: the rate of heat loss from a body is proportional to the
difference in temperatures between the body and its surroundings.

q(t) is the thermal flux (W m−2).

h is the heat transfer coefficient, assumed independent of T (A??)
(W m−2 ◦C−1).

∆T (t)= T (t)− Tenv(t) is the time-dependent thermal gradient between the
environment and the object (◦C).

Source Citation here

Ref. By DD1, DD??

Detailed derivation of simplified rate of change of temperature

[This may be necessary when the necessary information does not fit in the description field.
—SS]

5.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models. The
dimension of each quantity is also given. [Modify the examples below for your problem, and
add additional definitions as appropriate. —SS]

4

Number DD1

Label Heat flux out of coil

Symbol qC

SI Units W m−2

Equation qC(t) = hC(TC − TW (t)), over area AC

Description TC is the temperature of the coil (◦C). TW is the temperature of the water
(◦C). The heat flux out of the coil, qC (W m−2), is found by assuming that
Newton’s Law of Cooling applies (A??). This law (GD1) is used on the
surface of the coil, which has area AC (m2) and heat transfer coefficient hC
(W m−2 ◦C−1). This equation assumes that the temperature of the coil is
constant over time (A??) and that it does not vary along the length of the
coil (A??).

Sources Citation here

Ref. By IM1

5.2.5 Instance Models

This section transforms the problem defined in Section 5.1 into one which is expressed in
mathematical terms. It uses concrete symbols defined in Section 5.2.4 to replace the abstract
symbols in the models identified in Sections 5.2.2 and 5.2.3.

The goals [reference your goals —SS] are solved by [reference your instance models —SS].
[other details, with cross-references where appropriate. —SS] [Modify the examples below
for your problem, and add additional models as appropriate. —SS]

5

Number IM1

Label Energy balance on water to find TW

Input mW , CW , hC , AC , hP , AP , tfinal, TC , Tinit, TP (t) from IM??

The input is constrained so that Tinit ≤ TC (A??)

Output TW (t), 0 ≤ t ≤ tfinal, such that

dTW
dt

= 1
τW

[(TC − TW (t)) + η(TP (t)− TW (t))],

TW (0) = TP (0) = Tinit (A??) and TP (t) from IM??

Description TW is the water temperature (◦C).

TP is the PCM temperature (◦C).

TC is the coil temperature (◦C).

τW = mWCW

hCAC
is a constant (s).

η = hPAP

hCAC
is a constant (dimensionless).

The above equation applies as long as the water is in liquid form, 0 < TW <
100oC, where 0oC and 100oC are the melting and boiling points of water,
respectively (A??, A??).

Sources Citation here

Ref. By IM??

Derivation of ...

[May be necessary to include this subsection in some cases. —SS]

5.2.6 Data Constraints

Table 1 shows the data constraints on the input output variables. The column for physical
constraints gives the physical limitations on the range of values that can be taken by the
variable. The column for software constraints restricts the range of inputs to reasonable
values. The constraints are conservative, to give the user of the model the flexibility to
experiment with unusual situations. The column of typical values is intended to provide a
feel for a common scenario. The uncertainty column provides an estimate of the confidence
with which the physical quantities can be measured. This information would be part of the
input if one were performing an uncertainty quantification exercise.

The specification parameters in Table 1 are listed in Table 2.

(*) [you might need to add some notes or clarifications —SS]

6

Table 1: Input Variables

Var Physical Constraints Software Constraints Typical Value Uncertainty

L L > 0 Lmin ≤ L ≤ Lmax 1.5 m 10%

Table 2: Specification Parameter Values

Var Value

Lmin 0.1 m

5.2.7 Properties of a Correct Solution

A correct solution must exhibit [fill in the details —SS]. [These properties are in addition to
the stated requirements. There is no need to repeat the requirements here. These additional
properties may not exist for every problem. Examples include conservation laws (like conser-
vation of energy or mass) and known constraints on outputs (which are usually summarized
in tabular form. A sample table is shown in Table 3 —SS]

Table 3: Output Variables

Var Physical Constraints

TW Tinit ≤ TW ≤ TC (by A??)

6 Requirements

This section provides the functional requirements, the business tasks that the software is
expected to complete, and the nonfunctional requirements, the qualities that the software is
expected to exhibit.

6.1 Functional Requirements

R1: [Requirements for the inputs that are supplied by the user. This information has to
be explicit. —SS]

R2: [It isn’t always required, but often echoing the inputs as part of the output is a good
idea. —SS]

R3: [Calculation related requirements. —SS]

R4: [Verification related requirements. —SS]

R5: [Output related requirements. —SS]

6.2 Nonfunctional Requirements

[List your nonfunctional requirements. You may consider using a fit criterion to make them
verifiable. —SS]

7

7 Likely Changes

LC1: [Give the likely changes, with a reference to the related assumption (aref), as appro-
priate. —SS]

8 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be
additionally modified if a certain component is changed. Every time a component is changed,
the items in the column of that component that are marked with an “X” may have to be
modified as well. Table 4 shows the dependencies of theoretical models, general definitions,
data definitions, and instance models with each other. Table 5 shows the dependencies
of instance models, requirements, and data constraints on each other. Table 6 shows the
dependencies of theoretical models, general definitions, data definitions, instance models,
and likely changes on the assumptions.

[You will have to modify these tables for your problem. —SS]

T1 T?? T?? GD1 GD?? DD1 DD?? DD?? DD?? IM1 IM?? IM?? IM??

T1

T?? X

T??

GD1

GD?? X

DD1 X

DD?? X

DD??

DD?? X

IM1 X X X X

IM?? X X X X X

IM?? X

IM?? X X X X X X

Table 4: Traceability Matrix Showing the Connections Between Items of Different Sections

The purpose of the traceability graphs is also to provide easy references on what has to be
additionally modified if a certain component is changed. The arrows in the graphs represent
dependencies. The component at the tail of an arrow is depended on by the component at
the head of that arrow. Therefore, if a component is changed, the components that it points
to should also be changed. Figure ?? shows the dependencies of theoretical models, general

8

IM1 IM?? IM?? IM?? 5.2.6 R?? R??

IM1 X X X

IM?? X X X X

IM?? X X

IM?? X X X

R??

R?? X

R?? X

R2 X X X X

R?? X

R?? X

R?? X

R?? X

R4 X X

R?? X

R?? X

Table 5: Traceability Matrix Showing the Connections Between Requirements and Instance
Models

9

A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A?? A??

T1 X

T??

T??

GD1 X

GD?? X X X X

DD1 X X X

DD?? X X X

DD??

DD??

IM1 X X X X X X

IM?? X X X X X

IM?? X X

IM?? X X

LC?? X

LC?? X

LC?? X

LC?? X

LC?? X

LC?? X

Table 6: Traceability Matrix Showing the Connections Between Assumptions and Other Items

10

definitions, data definitions, instance models, likely changes, and assumptions on each other.
Figure ?? shows the dependencies of instance models, requirements, and data constraints on
each other.

11

References

W. Spencer Smith. Systematic development of requirements documentation for general
purpose scientific computing software. In Proceedings of the 14th IEEE International
Requirements Engineering Conference, RE 2006, pages 209–218, Minneapolis / St. Paul,
Minnesota, 2006. URL http://www.ifi.unizh.ch/req/events/RE06/.

W. Spencer Smith and Lei Lai. A new requirements template for scientific computing. In
J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors, Proceedings of the First International
Workshop on Situational Requirements Engineering Processes – Methods, Techniques and
Tools to Support Situation-Specific Requirements Engineering Processes, SREP’05, pages
107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements
Engineering Conference.

W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineering com-
putation: A systematic approach for improving software reliability. Reliable Computing,
Special Issue on Reliable Engineering Computation, 13(1):83–107, February 2007.

W. Spencer Smith, John McCutchan, and Jacques Carette. Commonality analysis for a fam-
ily of material models. Technical Report CAS-17-01-SS, McMaster University, Department
of Computing and Software, 2017.

12

http://www.ifi.unizh.ch/req/events/RE06/

9 Appendix

[Your report may require an appendix. For instance, this is a good point to show the values
of the symbolic parameters introduced in the report. —SS]

9.1 Symbolic Parameters

[The definition of the requirements will likely call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance. —SS]

13

[The following is not part of the template, just some things to consider when filing in the
template. —SS]
[Grammar, flow and LATEXadvice:

• *.DS Store should be in .gitignore

• LATEX and formatting rules

– Variables are italic, everything else not, includes subscripts (link to document)

∗ Conventions

∗ Watch out for implied multiplication

– Use BibTeX

– Use cross-referencing

• Grammar and writing rules

– Acronyms expanded on first usage (not just in table of acronyms)

– “In order to” should be “to”

—SS]
[Advice on using the template:

• Difference between physical and software constraints

• Properties of a correct solution means additional properties, not a restating of the
requirements (may be “not applicable” for your problem). If you have a table of
output constraints, then these are properties of a correct solution.

• Assumptions have to be invoked somewhere

• “Referenced by” implies that there is an explicit reference

• Think of traceability matrix, list of assumption invokations and list of reference by
fields as automatically generatable

• If you say the format of the output (plot, table etc), then your requirement could be
more abstract

—SS]
[The relationships between the parts of the document are show in the following figure —SS]

14

https://physics.nist.gov/cuu/pdf/typefaces.pdf

refined

may ref

may ref

Theoretical Models
may ref

refined

may ref

may ref

General Definitions
may ref

may ref

may ref

may ref

Instanced Models

may ref may ref may ref

may ref

Data Definitions

Assumptions
may ref

may ref

Likely Changes

15

	Revision History
	Reference Material
	Table of Units
	Table of Symbols
	Abbreviations and Acronyms

	Introduction
	Purpose of Document
	Scope of Requirements
	Characteristics of Intended Reader
	Organization of Document

	General System Description
	System Context
	User Characteristics
	System Constraints

	Specific System Description
	Problem Description
	Terminology and Definitions
	Physical System Description
	Goal Statements

	Solution Characteristics Specification
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions
	Instance Models
	Data Constraints
	Properties of a Correct Solution

	Requirements
	Functional Requirements
	Nonfunctional Requirements

	Likely Changes
	Traceability Matrices and Graphs
	Appendix
	Symbolic Parameters

