
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2020

Artifact Generation

Dr. Spencer Smith

Faculty of Engineering, McMaster University

November 27, 2020

Artifact Generation

Start recording

Administrative details

Artifact generation (Drasil)

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 2/50

Administrative Details

Upcoming classes
I L20 - Artifact Generation (Today)
I L21 - Drasil Demos
I L22 – L24 - Implementation and testing presentations

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 3/50

Administrative Details

For final documentation, make sure you have addressed
and closed all open issues

MIS marking scheme on Avenue

Course evaluation
I Wed, Nov 25, 10:00 am to Wed, Dec 9, 11:59 pm
I https://evals.mcmaster.ca

MG/MIS Reviews
I Assign issues to your domain expert and secondary

reviewer
I Due two days after assignment (but we can be flexible

on this)

Further Deliverable Reviews
I Not part of marking scheme for course
I Encouraged to do anyway, maybe as a quid pro quo?

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 4/50

https://evals.mcmaster.ca

Administrative Details: Report Deadlines

MG + MIS (Traditional) Nov 23

Drasil Code and Report (Drasil) Nov 23

Final Documentation Dec 9

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written deliverable, please
ask

You should inform your primary and secondary reviewers
of the extension

Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 5/50

Admin Details: Presentation Schedule

Drasil Project Present (20 min each)
I Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Test or Impl. Present (15 min each)
I Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
I Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
I Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago

4 presentations each

If you will miss a presentation, please trade with someone
else

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 6/50

Implementation and Testing Presentations

You can present anything related to implementation or testing

Show off your code, or as much of it as you have
completed

Unit VnV Plan

Test case report

Verification/validation activities
Demonstrate technology
I Continuous integration
I Valgrind
I Doxygen for API documentation
I Etc.

Drasil presentations - emphasize testing

Fine to show work in progress

Good to ask the audience for advice, feedback

Other ideas are likely fine
Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 7/50

Questions?

Questions on administrative details?

Questions about Module Guide?

Questions about upcoming presentation?

Questions about MIS?

Other questions?

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 8/50

Implementing Your MIS

The mapping between the MIS and the code is generally
not “term” by “term”

You do not need to use the mathematical type listed in
the spec

Consider A2 (Allocation to Engineering Programs) for set
types
I Problem Description
I Source Code

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 9/50

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Assignments/PreviousYears/2019/A2/A2Soln/src

Abstract for Artifact Generation Talk

Goal – Improve quality of SCS

Idea – Adapt ideas from SE

Document Driven Design
I Good – improves quality
I Bad – “manual” approach is too much work

Solution
I Capture knowledge
I Generate all things
I Avoid duplication
I Traceability

Showing great promise
I Significant work yet to do
I Looking for examples/partners

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 10/50

Scope: Large/Multiyear

Scope: Program Families

Scope: End User Developers

Scope: Physical Science

Motivation: Safety

Motivation: (Re)certification

Motivation: Improve Quality

CorrectnessUnderstandability

Verifiability

Usability Maintainability

Reusability

Reproducibility

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 17/50

Current Approach

Agile like [1]

Amethododical [3]

Knowledge acquisition driven [4]

Each stage reports counterproductive [10]

Limited tool use [13]

Limited testing of code [5]

Lack of understanding of testing [7]

Missed opportunities for reuse [8]

Emphasis on:

1. Science [6]
2. Code

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 18/50

Documentation Advantages

Improves verifiability, reusability, reproducibility, etc.

From [9]
I easier reuse of old designs
I better communication about requirements
I more useful design reviews
I easier integration of separately written modules
I more effective code inspection
I more effective testing
I more efficient corrections and improvements

New doc found 27 errors [12]

Developers see advantage [11]

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 19/50

Study Of Documentation in SC [11]

1. Select 5 small to medium size SCS

2. Interview code owners

3. Redevelop using Document Driven Design (DDD)

4. Interview code owners

5. Analyze responses

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 20/50

Summary of Case Studies

LOC Lng ND Ag SE Prg Tst VC Bug

SWHS 1000 F77 1 5 7 X 7 7 7

Astro 5000 C 2 10 7 X 7 7 7

Glass 1300 F90 1 <1 7 X 7 7 7

Soil 800 M 1 5 X X X X 7

Neuro 1000 M 1 5 X X 7 X 7

Acoust 200 M 4 2.5 7 X 7 7 7

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 21/50

Perceived Advantages from Participants

Documentation of assumptions

All variables have explicit units

SRS helpful with new graduate students

Modules result in more user friendly code

Traceability between modules and requirements useful

Better organized code

Information sharing on design choices

Detailed record of knowledge capital

Code is produced to make testing easier

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 22/50

Disadvantages (Perceived and Real)

SRS is too long

SRS is not necessary

DDD will not work in reality, since needs upfront
requirements

Too much SE jargon

Difficult without a team of people

Too difficult to maintain

Not amenable to change

Too tied to waterfall process

Reports counterproductive [10]

The Solution?

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 23/50

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 24/50

Knowledge Capture

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 25/50

Drasil

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 26/50

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 27/50

Jtol in SRS.pdf

Refname DD:sdf.tol

Label Stress Distribution Factor (Function) Based on Pbtol

Units Unitless

Equation Jtol = log

✓
log

⇣
1

1�Pbtol

⌘
(a

1000
b

1000)
m�1

k
⇣⇣

E·1000(h
1000)

2
⌘⌘m

·LDF

◆

Description Jtol is the stress distribution factor (Function) based on Pbtol
Pbtol is the tolerable probability of breakage
a is the plate length (long dimension) (m)
b is the plate width (short dimension) (m)
m is the surface flaw parameter (m

12

N7)

k is the surface flaw parameter (m
12

N7)

E is the modulus of elasticity of glass (Pa)
h is the actual thickness (m)
LDF is the load duration factor

6.2.5 Instance Models

This section transforms the problem defined in Section 6.1 into one which is expressed in
mathematical terms. It uses concrete symbols defined in Section 6.2.4 to replace the abstract
symbols in the models identified in Section 6.2.2 and Section 6.2.3.

Refname T:probOfBr

Label Probability of Glass Breakage

Equation Pb = 1 � e�B

Description Pb is the calculated probability of breakage. B is the risk of failure.

17

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 28/50

Jtol in SRS.tex

\noindent \begin{minipage }{\ textwidth}

\begin{tabular }{p{0.2\ textwidth} p{0.73\ textwidth }}

\toprule \textbf{Refname} & \textbf{DD:sdf.tol}

\phantomsection

\label{DD:sdf.tol}

\\ \midrule \\

Label & J_{tol}
\\ \midrule \\

Units &

\\ \midrule \\

Equation & J_{tol} =

$\log\left(\log\left(\frac {1}{1 -P_{btol
}}\ right)\frac{\left(\frac{a}{1000}\

frac{b}{1000}\ right)^{m -1}}{k\left(\

left(E*1000\ right)\left(\frac{h

}{1000}\ right)^{2}\ right)^{m}*LDF}\

right)$
\\ \midrule \\

Description & J_{tol} is the stress distribution

factor (Function) based on

Pbtol\newlineP_{btol} is the

tolerable probability of breakage

...

\end{minipage }\\

Jtol in SRS.html

<div class="equation">

J<sub >tol </sub > = log(log(<div class="

fraction">

1

1 − P<sub >btol </sub >

</div >)<div class="fraction">

(<div class="fraction">

a

1000

</div ><div class="fraction">

...

Jtol in Python

def calc_j_tol(inparams):

j_tol = math.log((math.log (1.0 / (1.0 - inparams

.pbtol))) * ((((inparams.a / 1000.0) * (

inparams.b / 1000.0)) ** (inparams.m - 1.0))

/ ((inparams.k * (((inparams.E * 1000.0) * ((

inparams.h / 1000.0) ** 2.0)) ** inparams.m))

* inparams.ldf)))

return j_tol

Jtol in Java

public static double calc_j_tol(InputParameters

inparams) {

double j_tol = Math.log((Math.log (1.0 / (1.0

- inparams.pbtol))) * ((Math.pow((

inparams.a / 1000.0) * (inparams.b /

1000.0) , inparams.m - 1.0)) / ((inparams.

k * (Math.pow((inparams.E * 1000.0) * (

Math.pow(inparams.h / 1000.0 , 2.0)),

inparams.m))) * inparams.ldf)));

return j_tol;

}

Jtol in Drasil (Haskell)

stressDistFac = makeVC "stressDistFac" (nounPhraseSP

$ "stress distribution" ++ " factor (Function)")

cJ

sdf_tol = makeVC "sdf_tol" (nounPhraseSP $
"stress distribution" ++

" factor (Function) based on Pbtol")

(sub (eqSymb stressDistFac) (Atomic "tol"))

tolStrDisFac_eq :: Expr

tolStrDisFac_eq = log (log ((1) /((1) - (C pb_tol)))

* ((Grouping (((C plate_len) / (1000)) * ((C

plate_width) / (1000))) :^

((C sflawParamM) - (1)) / ((C sflawParamK) *

(Grouping (Grouping ((C mod_elas * 1000) *

(square (Grouping ((C act_thick) / (1000)))))) :^

(C sflawParamM) * (C lDurFac))))))

tolStrDisFac :: QDefinition

tolStrDisFac = mkDataDef ’ sdf_tol tolStrDisFac_eq

(aGrtrThanB +:+ hRef +:+ ldfRef +:+ pbTolUsr)

Jtol without Unit Conversion

tolStrDisFac_eq :: Expr

tolStrDisFac_eq = log (log ((1) /((1) - (C pb_tol)))

* ((Grouping ((C plate_len) * (C plate_width)) :^

((C sflawParamM) - (1)) / ((C sflawParamK) *

(Grouping (Grouping ((C mod_elas * 1000) *

(square (Grouping (C act_thick))))) :^

(C sflawParamM) * (C lDurFac))))))

Traceability Graph

Figure 2: Traceability Matrix Showing the Connections Between Items of Di↵erent Sections

Figure 3: Traceability Matrix Showing the Connections Between Requirements, Instance
Models, and Data Constraints

29

Maintainability

A1: The only form of energy that is relevant for this problem
is thermal energy. All other forms of energy, such as
mechanical energy, are assumed to be negligible [T1].

A2: All heat transfer coefficients are constant over time
[GD1].

A3: The water in the tank is fully mixed, so the temperature
is the same throughout the entire tank [GD2, DD2].

A4: The PCM has the same temperature throughout [GD2,
DD2, LC1].

A5: etc.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 36/50

Verifiability

Var Constraints Typical Value Uncertainty

L L > 0 1.5 m 10%

ρP ρP > 0 1007 kg/m3 10%

EW =

∫ t

0

hCAC (TC−TW (t))dt−
∫ t

0

hPAP(TW (t)−TP(t))dt

If wrong, wrong everywhere

Sanity checks captured and reused

Generate guards against invalid input

Generate test cases

Generate view suitable for inspection

Traceability for verification of change
Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 37/50

Reusability

Num. T1

Label Conservation of energy

Eq −∇ · q + q′′′ = ρC ∂T
∂t

Descrip The above equation gives the conservation of en-
ergy for time varying heat transfer in a material
of specific heat capacity C and density ρ, where
q is the thermal flux vector, q′′′ is the volumetric
heat generation, T is the temperature, ∇ is the del
operator and t is the time.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 38/50

Reusability

De-embed knowledge
Reuse throughout document
I Units
I Symbols
I Descriptions
I Traceability information

Reuse between documents
I SRS
I MIS
I Code
I Test cases

Reuse between projects
I Knowledge reuse
I A family of related models, or reuse of pieces
I Conservation of thermal energy
I Interpolation, Etc.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 39/50

Reproducibility

Usual emphasis is on reproducing code execution

However, [2] show reproducibility challenges due to
undocumented:
I Assumptions
I Modifications
I Hacks

Shouldn’t it be easier to independently replicate the work
of others?

Require theory, assumptions, equations, etc.

Drasil can potentially check for completeness and
consistency

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 40/50

Smith and Koothoor (2016) [12]

Rcode
1 =

f

8πkAV
+

1

2πrf hg
(1)

Rmanual
1 =

f

8πkAV
+

1

2πrf hg
+

τc
4πrf kc

(2)

Uncovered 27 issues with the previous documentation
I Incompleteness (Rgap)
I Inconsistency(r , r0, hg)
I Verifiability problems (R1)
I Lack of traceability (circuit analogy)

Advantages of proposed approach
I Abstract to concrete
I Separation of concerns
I Every equation, assumption, definition, model,

derivation, source and traceability between them
Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 41/50

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 42/50

Future Work

Drasil Framework for LSS

SCS has the opportunity to lead other software fields
Document driven design is feasible
Requires an investment of time
Documentation does not have to be painful
Develop/refactor via practical case studies
Ontology may naturally emerge
Open source Drasil here

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 44/50

https://github.com/JacquesCarette/literate-scientific-software

Drasil Links

Drasil on GitHub

Design Language for Code Variabilities in Chapter 6 of
Brook’s thesis

Drasil Generated Examples

Drasil Haddock Documentation

Package Dependency Graph (at the bottom of the page)

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 45/50

https://github.com/JacquesCarette/literate-scientific-software
https://macsphere.mcmaster.ca/handle/11375/25542
https://macsphere.mcmaster.ca/handle/11375/25542
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/docs/index.html
https://jacquescarette.github.io/Drasil/

References I

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post.
Software development environments for scientific and
engineering software: A series of case studies.
In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 550–559,
Washington, DC, USA, 2007. IEEE Computer Society.

Cezar Ionescu and Patrik Jansson.
Dependently-Typed Programming in Scientific Computing
— Examples from Economic Modelling.
In Revised Selected Papers of the 24th International
Symposium on Implementation and Application of
Functional Languages, volume 8241 of Lecture Notes in

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 46/50

References II

Computer Science, pages 140–156. Springer International
Publishing, 2012.

Diane Kelly.
Industrial scientific software: A set of interviews on
software development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON
’13, pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

Diane Kelly.
Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.
Journal of Systems and Software, 109:50–61, 2015.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 47/50

References III

Diane Kelly and Rebecca Sanders.
The challenge of testing scientific software.
In Proceedings of the Conference for the Association for
Software Testing, pages 30–36, 2008.

Diane F. Kelly.
A software chasm: Software engineering and scientific
computing.
IEEE Software, 24(6):120–119, 2007.

Zeeya Merali.
Computational science: ...error.
Nature, 467:775–777, 2010.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 48/50

References IV

Steven J. Owen.
A survey of unstructured mesh generation technology.
In INTERNATIONAL MESHING ROUNDTABLE, pages
239–267, 1998.

David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125–148,
2010.

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 49/50

References V

W. Spencer Smith, Thulasi Jegatheesan, and Diane F.
Kelly.
Advantages, disadvantages and misunderstandings about
document driven design for scientific software.
In Proceedings of the Fourth International Workshop on
Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCE),
November 2016.
8 pp.

W. Spencer Smith and Nirmitha Koothoor.
A document-driven method for certifying scientific
computing software for use in nuclear safety analysis.
Nuclear Engineering and Technology, 48(2):404–418, April
2016.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 50/50

References VI

Gregory V. Wilson.
Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in
the software industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741, CES 741 Fall 2020: Artifact Generation 51/50

