
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2020

MIS Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

November 20, 2020

MIS Continued

Start recording
Administrative details
Questions?
Nonfunctional requirements
Review: Records, Libraries, ADTs, Abstract Objects,
Generic ADTs
Example - Student data
Exceptions
Quality criteria
Modules with external interaction, enviro variables
GUI modules
ADTs
Generic modules
OO design spec
Examples

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 2/54

Administrative Details

When developing your code, remember that your goal is
for someone else to be able to compile and run it

Upcoming classes
I L16 - MIS Continued
I L17 - POC + MG Presentations
I L18 - MIS Presentations

Mathematical review ([3] and separate slides)

Potential software for drawing figures
I draw.io
I Tkiz

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 3/54

https://app.diagrams.net/
https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf

Administrative Details: Report Deadlines

MG + MIS (Traditional) Nov 19
Drasil Code and Report (Drasil) Nov 19
Final Documentation Dec 9

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written deliverable, please
ask

You should inform your primary and secondary reviewers
of the extension

Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 4/54

Admin Details: Presentation Schedule

Proof of Concept Demonstrations (15 min)
I Thurs, Nov 12: Salah, John

MG Present (10 minutes)
I Thurs, Nov 12: John, Tiago, Leila, Xuanming,

Andrea

MIS Present
I Mon, Nov 16: Shayan, Parsa, Gaby, Sid, Xingzhi

Drasil Project Present (20 min each)
I Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 5/54

Presentation Schedule Continued

Test or Impl. Present (15 min each)
I Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
I Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
I Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago

4 presentations each

If you will miss a presentation, please trade with someone
else

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 6/54

Questions?

Questions on administrative details?

Questions about Module Guide?

Questions about upcoming presentation?

Questions about MIS?

Other questions?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 7/54

Nonfunctional Requirements

Aim to be unambiguous

Say the quality you want to achieve, not how you are
going to achieve it

Point to the Verification and Validation plan

Added to the blank SRS template

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 8/54

Examples of Modules: Record [2]

Consists of only data

Has state but no behaviour

Example
I Specification Parameters Module in SWHS

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 9/54

Examples of Modules: Library [2]

Collection of related procedures (library)

Has behaviour but no state

Procedural abstractions

Example
I Library of trigonometric functions
I ODE Solver Module in SWHS
I Sequence Services Module

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 10/54

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2/A2.pdf

Examples of Modules: Abstract Object [2]

Consists of data (fields) and procedures (methods)

Consists of a collection of constructors, selectors, and
mutators

Has state and behaviour

There is only ONE

Singleton design pattern

Example
I Input Parameters Module for SWHS
I Logger

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 11/54

Examples of Modules: Abstract Data Type [2]

What you are used to for OO programming

Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

Encapsulates the details of the implementation of the type

Multiple instances of the object

Keyword Template in MIS

Example
I Curve ADT Module

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 12/54

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2/A2.pdf

Examples of Modules: Generic [2]

A single abstract description for a family of abstract
objects or ADTs

Parameterized by type

Eliminates the need for writing similar specifications for
modules that only differ in their type information

A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.

Example
I Generic Sequence ADT Module

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 13/54

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A2/A2.pdf

Chemistry Example - Highlight Mathematics

Problem Description

Source Code

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 14/54

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Assignments/A2/A2Soln/src

Exception Signalling

Useful to think about exceptions in the design process

Will need to decide how exception signalling will be done
I A special return value, a special status parameter, a

global variable
I Invoking an exception procedure
I Using built-in language constructs

Caused by errors made by programmers, not by users

Write code so that it avoid exceptions

Exceptions will be particularly useful during testing

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 15/54

Assumptions versus Exceptions

The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

Assumptions are expressed in prose

Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

Interface design should provide the programmer with a
means to check so that they can avoid exceptions

When an exceptions occurs no state transitions should
take place, any output is don’t care

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 16/54

Quality Criteria [3, p. 83]

Consistent
I Name conventions
I Ordering of parameters in argument lists
I Exception handling, etc.

Essential - omit unnecessary features

General - cannot always predict how the module will be
used

As implementation independent as possible

Minimal - avoid access routines with two potentially
independent services

High cohesion - components are closely related

Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 17/54

Modules with External Interaction

In general, some modules may interact with the
environment or other modules

Environment might include the keyboard, the screen, the
file system, motors, sensors, etc.

Sometimes the interaction is informally specified using
prose (natural language)

Can introduce an environment variable
I Name, type
I Interpretation

Environment variables include the screen, the state of a
motor (on, direction of rotation, power level, etc.), the
position of a robot

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 18/54

External Interaction Continued

Some external interactions are hidden
I Present in the implementation, but not in the MIS
I An example might be OS memory allocation calls

External interaction described in the MIS
I Naming access programs of the other modules
I Specifying how the other module’s state variables are

changed
I The MIS should identify what external modules are used

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 19/54

MIS for GUI Modules

Could introduce an environment variable

window: sequence [RES H][RES V] of pixelT
I Where window[r][c] is the pixel located at row r and

column c, with numbering zero-relative and beginning at
the upper left corner

I Would still need to define pixelT

Could formally specify the environment variable
transitions

More often it is reasonable to specify the transition in
prose

In some cases the proposed GUI might be shown by rough
sketches

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 20/54

Display Point Masses Module Syntax

Exported Access Programs

Routine name In Out Exc
DisplayPointMassesApplet DisplayPointMassesApplet
paint

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 21/54

Display Point Masses Module Semantics

Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

transition: The state of the abstract object
ListPointMasses is modified as follows:
ListPointMasses.init()
ListPointMasses.add(0, PointMassT(20, 20, 10))
ListPointMasses.add(1, PointMassT(120, 200, 20))
...

paint():

transition win := Modify window so that the point
masses in ListPointMasses are plotted as circles. The
centre of each circles should be the corresponding x and y
coordinates and the radius should be the mass of the
point mass.

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 22/54

Specification of ADTs

Similar template to abstract objects

“Template Module” as opposed to “Module”

“Exported Types” that are abstract use a ?
I pointT = ?
I pointMassT = ?

Access routines know which abstract object called them

Use “self” to refer to the current abstract object

Use a dot “.” to reference methods of an abstract object
I p.xcoord()
I self .pt.dist(p.point())

Similar notation to Java

The syntax of the interface in C is different

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 23/54

Syntax Line ADT Module

Template Module

lineADT

Uses

pointADT

Exported Types

lineT = ?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 24/54

Syntax Line ADT Module Continued
Routine name In Out Exceptions
new lineT pointT, pointT lineT
start pointT
end pointT
length real
midpoint pointT
rotate real

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 25/54

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant

None

Assumptions

None

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 26/54

Access Routine Semantics Line ADT Module

new lineT (p1, p2):

transition: s, e := p1, p2

output: out := self

exception: none

start:

output: out := s

exception: none

end:

output: out := e

exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 27/54

Access Routine Semantics Continued

length:

output: out := s.dist(e)

exception: none

midpoint:

output: out :=

new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

exception: none

rotate (ϕ):
ϕ is in radians

transition: s.rotate(ϕ), e.rotate(ϕ)

exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 28/54

Line ADT Local Functions

Local Functions

avg: real × real → real
avg(x1, x2) ≡ x1+x2

2

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 29/54

Generic Modules

What if we have a sequence of integers, instead of a
sequence of point masses?

What if we want a stack of integers, or characters, or
pointT, or pointMassT?

Do we need a new specification for each new abstract
object?

No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities

Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)

Advantages
I Eliminate chance of inconsistencies between modules
I Localize effects of possible modifications
I Reuse

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 30/54

Generic Stack Module Syntax

Generic Module

Stack(T)

Exported Constants

MAX SIZE = 100

Exported Access Programs

Routine name In Out Exceptions
...

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 31/54

Stack Module Syntax

Exported Access Programs

Routine name In Out Exceptions
s init
s push T FULL
s pop EMPTY
s top T EMPTY
s depth integer

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 32/54

Semantics

State Variables

s: sequence of T

State Invariant

|s| ≤ MAX SIZE

Assumptions

s init() is called before any other access routine

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 33/54

Access Routine Semantics

s init():

transition: s :=<>

exception: none

s push(x):

transition: s := s|| < x >

exception: exc := (|s| = MAX SIZE⇒ FULL)

s pop():

transition: s := s[0..|s| − 2]

exception: exc := (|s| = 0⇒ EMPTY)

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 34/54

Access Routine Semantics Continued

s top():

output: out := s[|s| − 1]

exception: exc := (|s| = 0⇒ EMPTY)

s depth():

output: out := |s|
exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 35/54

Stack Module Properties

{true}
s init()

{|s ′| = 0}

{|s| < MAX SIZE}
s push(x)

{|s ′| = |s|+ 1 ∧ s ′[|s ′| − 1] = x ∧ s ′[0..|s| − 1] = s[0..|s| − 1]}

{|s| < MAX SIZE}
s push(x)
s pop()

s ′ = s

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 36/54

Object Oriented Design

One kind of module, ADT, called class

A class exports operations (procedures) to manipulate
instance objects (often called methods)

Instance objects accessible via references

Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a
type)

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 37/54

Inheritance

Another relation between modules (in addition to USES
and IS COMPONENT OF)

ADTs may be organized in a hierarchy

Class B may specialize class A
I B inherits from A
I Conversely, A generalizes B

A is a superclass of B

B is a subclass of A

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 38/54

Template Module Employee
Routine name In Out Except
Employee string, string, moneyT Employee
first Name string
last Name string
where siteT
salary moneyT
fire
assign siteT

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 39/54

Inheritance Examples

Template Module Administrative Staff inherits Employee

Routine name In Out Exception
do this folderT

Template Module Technical Staff inherits Employee

Routine name In Out Exception
get skill skillT
def skill skillT

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 40/54

Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

A subclass defines a subtype

A subtype is substitutable for the parent type

Polymorphism - a variable referring to type A can refer to
an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative Staff and Technical Staff
are instances of Employee

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 41/54

Dynamic Binding

Many languages, like C, use static type checking

OO languages use dynamic type checking as the default

There is a difference between a type and a class once we
know this
I Types are known at compile time
I The class of an object may be known only at run time

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 42/54

Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

PointT = ?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 43/54

Point ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcoord real
ycoord real
dist PointT real

Semantics

State Variables

xc : real
yc : real

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 44/54

Point Mass ADT Module

Template Module

PointMassT inherits PointT

Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 45/54

Point Mass ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointMassT real, real, real PointMassT NegMassExcep
mval real
force PointMassT real
fx PointMassT real

Semantics

State Variables

ms: real

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 46/54

Point Mass ADT Module Semantics

new PointMassT(x , y ,m):

transition: xc , yc ,ms := x , y ,m

output: out := self

exception: exc := (m < 0⇒ NegativeMassException)

force(p):

output:

out := UNIVERAL G
self .ms × p.ms

self .dist(p)2

exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 47/54

Classification of Specification Styles

Informal, semi-formal, formal

Operational
I Behaviour specification in terms of some abstract

machine
I Not specifying how to implement, even though it looks

this way

Descriptive
I Behaviour described in terms of properties
I Prefer this because if its inherent abstraction

The module state machine specification that we use is a
mix of operational and descriptive specification - Why?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 48/54

Example Operational Specification

Specification of a geometric figure E
E can be drawn as follows

1. Select two points P1 and P2 on a plane
2. Get a string of a certain length and fix its ends to P1

and P2

3. Position a pencil as shown in the next figure
4. Move the pen clockwise, keeping the string tightly

stretched, until you reach the point where you started
drawing

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 49/54

Example Descriptive Specification

Geometric figure E is described by the following equation

ax2 + by 2 + c = 0

where a, b and c are suitable constants

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 50/54

Judging Appropriate Abstraction

If an MIS is too abstract, it won’t capture enough
information for someone to do the implementation

In some cases an MIS is not abstract enough
I This can happen when someone is reverse engineering

their spec from exisiting code
I Can happen with an operational specification, as

opposed to a descriptive specification

Judge the abstraction level by
I If a change in how your code works requires a change in

your specification, look for a better abstraction
I If writing and maintaining the spec is exceedingly

frustrating, the spec could be too concrete

The goal is to provide a descriptive, formal mathematical
spec of eveything, but at times we sacrifice this goal in
the name of practicality

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 51/54

Examples

Solar Water Heating System

Example Point Line and Circle

Example Robot Path

Example Vector Space

Example Othello Program

Example Maze Formal Specification (Dr. v.
Mohrenschildt)

Mustafa ElSheikh Mesh Generator [1]

Wen Yu Mesh Generator [4]

Sven Barendt Filtered Backprojection

Sanchez sDFT

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 52/54

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf

References I

Jacques Carette, Mustafa ElSheikh, and W. Spencer
Smith.
A generative geometric kernel.
In ACM SIGPLAN 2011 Workshop on Partial Evaluation
and Program Manipulation (PEPM’11), pages 53–62,
January 2011.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 53/54

References II

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.
International Thomson Computer Press, New York, NY,
USA, 1995.

W. Spencer Smith and Wen Yu.
A document driven methodology for improving the quality
of a parallel mesh generation toolbox.
Advances in Engineering Software, 40(11):1155–1167,
November 2009.

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 54/54

