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Administrative Details

TBD
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Assignment 2

TBD
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Syntax Circle ADT Module Continued
Routine name In Out Exceptions
new CircleT PointT, real CircleT
cen PointT
rad real
area real
intersect CircleT boolean
connection CircleT LineT
force real → real CircleT → real
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Access Routine Semantics Continued

intersect(ci):

output:
∃(p : PointT|insideCircle(p, ci) : insideCircle(p, self ))

exception: none

connection(ci):

output: out := new LineT(c , ci .cen())

exception: none

force(f ):

output: out := λc →
self .area() · c .area() · f (self .connection(c).len())

exception: none
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Syntax Deque Of Circles Module
Routine name In Out Exceptions
Deq init
Deq pushBack CircleT FULL
Deq pushFront CircleT FULL
Deq popBack EMPTY
Deq popFront EMPTY
Deq back CircleT EMPTY
Deq front CircleT EMPTY
Deq size integer
Deq disjoint boolean EMPTY
Deq sumFx real → real real EMPTY, POS
Deq totalArea real EMPTY
Deq averageRadius real EMPTY
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Semantics Deque Of Circles Module

State Variables

s: sequence of circleT

State Invariant

|s| ≤ MAX SIZE

Assumptions

init() is called before any other access program.
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Access Routine Semantics

Deq disjoint():

output out := ∀(i , j : N|i ∈ [0..|s| − 1] ∧ j ∈
[0..|s| − 1] ∧ i 6= j : ¬s[i ].intersect(s[j ]))

exception: exc := (|s| = 0⇒ EMPTY)

What happens if s only holds one circle? Does this make
sense?
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Access Routine Semantics

Deq sumFx(f):

output

out := +(i : N|i ∈ ([1..|s| − 1]) : Fx(f , s[i ], s[0]))

exception: exc := (|s| = 0⇒ EMPTY)

Local Functions
Fx: (real → real) × CircleT × CircleT → real
Fx(f , ci , cj) ≡ xcomp(ci .force(f )(cj), ci , cj)

xcomp: real × CircleT × CircleT → real

xcomp(F , ci , cj) ≡ F

[
ci .cen().xcrd()− cj .cen().xcrd()

ci .connection(cj).len()

]
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Access Routine Semantics Continued

Deq totalArea():

output
out :=?

exception: exc := (|s| = 0⇒ EMPTY)

Deq averageRadius():

output
out :=?

exception: exc := (|s| = 0⇒ EMPTY)
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Details and Notes

Doxygen, make, LaTeX, Python (2.7) and PyUnit

Do NOT change the interface

Can add methodName

Makefile includes rule for doc

Makefile includes rule for test

Tag repo as A2Part1 and A2Part2

Trading of code will be done automatically
Python specifics:

I FULL, EMPTY implemented via inheriting from
Exception class

I Exceptions should only be used with one argument, a
string explaining what problem has occurred.

I Dec.accessProg, not Dec accessProg, as shown in the
specification.

Monitor all changes pushed to our repo
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File and Folder Structure

A2
I doxConfig
I Makefile
I report

I report.tex
I report.pdf

I src
I pointADT.py
I lineADT.py
I circleADT.py
I deque.py
I testCircleDeque.py

I srcPartner
I circleADT.py
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Questions

What relationships have we discussed between modules?

Are there desirable properties for these relations?
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The USES Relation

A uses B
I A requires the correct operation of B
I A can access the services exported by B through its

interface
I This relation is “statically” defined
I A depends on B to provide its services
I For instance, A calls a routine exported by B

A is a client of B; B is a server

Inheritance, Association and Aggregation imply Uses
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Relationships Between Modules

Let S be a set of modules

S = {M1,M2, ...,Mn}

A binary relation r on S is a subset of S × S

If Mi and Mj are in S , < Mi ,Mj >∈ r can be written as
Mi rMj
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Relations

Transitive closure r+ of r

Mi r
+Mj iff Mi rMj or ∃Mk in S such that Mi rMk and Mkr

+Mj

r is a hierarchy iff there are no two elements Mi , Mj such
that Mi r

+Mj ∧Mj r
+Mi
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Relations Continued

Relations can be represented as graphs

A hierarchy is a DAG (directed acyclic graph)

Why do we prefer the uses relation to be a DAG?
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Desirable Properties

USES should be a hierarchy
I Hierarchy makes software easier to understand
I We can proceed from the leaf nodes (nodes that do not

use other nodes) upwards
I They make software easier to build
I They make software easier to test

Low coupling

Fan-in is considered better than Fan-out: WHY?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 19/36



DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?
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DAG Versus Tree

Would you prefer your uses relation is a tree?
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Hierarchy

Organizes the modular structure through levels of
abstraction

Each level defines an abstract (virtual) machine for the
next level

Level can be defined precisely
I Mi has level 0 if no Mj exists such that Mi rMj

I Let k be the maximum level of all nodes Mj such that
Mi rMj , then Mi has level k + 1
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Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromMod1 else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?
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Question about Association and DAG

Is the uses relation here a DAG?
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Module Decomposition (Parnas)
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Module Decomposition (Parnas)

For the module decomposition on the previous slide:

Does it show a Uses relation?

Is it a DAG?

Is it a tree?
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IS COMPONENT OF

The Parnas decomposition by secrets gives an
IS COMPONENT OF relationship

Used to describe a higher level module as constituted by a
number of lower level modules

A IS COMPONENT OF B means B consists of several
modules of which one is A

B COMPRISES A

MS,i = {Mk |Mk ∈ S ∧Mk IS COMPONENT OF Mi} we
say that MS ,i IMPLEMENTS Mi

How is IS COMPONENT OF represented in UML?
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A Graphical View
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Product Families

Careful recording of (hierarchical) USES relation and
IS COMPONENT OF supports design of program families

Attempt to recognize modules that will differ in
implementation between family members

New program family member should start at the
documentation of the design, not with the code
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Remember - Information Hiding

Basis for design (i.e. module decomposition)

Implementation secrets are hidden to clients

They can be changed freely if the change does not affect
the interface

Try to encapsulate changeable requirements and design
decisions as implementation secrets within module
implementations

Decomposition by secrets, not by sequence of steps
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Prototyping

Once an interface is defined, implementation can be done
I First quickly but inefficiently
I Then progressively turned into the final version

Initial version acts as a prototype that evolves into the
final product
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