
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

14 Mod Decomp Contd (Ghezzi Ch.
4, H&S Ch. 7) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017

14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch.

7) DRAFT

Administrative details

Relationship between modules

The USES relation

Module decomposition by secrets

The IS COMPONENT OF relation

Module guide

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 2/36

Administrative Details

TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 3/36

Assignment 2

TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 4/36

Syntax Circle ADT Module Continued
Routine name In Out Exceptions
new CircleT PointT, real CircleT
cen PointT
rad real
area real
intersect CircleT boolean
connection CircleT LineT
force real → real CircleT → real

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 5/36

Access Routine Semantics Continued

intersect(ci):

output:
∃(p : PointT|insideCircle(p, ci) : insideCircle(p, self))

exception: none

connection(ci):

output: out := new LineT(c , ci .cen())

exception: none

force(f):

output: out := λc →
self .area() · c .area() · f (self .connection(c).len())

exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 6/36

Syntax Deque Of Circles Module
Routine name In Out Exceptions
Deq init
Deq pushBack CircleT FULL
Deq pushFront CircleT FULL
Deq popBack EMPTY
Deq popFront EMPTY
Deq back CircleT EMPTY
Deq front CircleT EMPTY
Deq size integer
Deq disjoint boolean EMPTY
Deq sumFx real → real real EMPTY, POS
Deq totalArea real EMPTY
Deq averageRadius real EMPTY

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 7/36

Semantics Deque Of Circles Module

State Variables

s: sequence of circleT

State Invariant

|s| ≤ MAX SIZE

Assumptions

init() is called before any other access program.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 8/36

Access Routine Semantics

Deq disjoint():

output out := ∀(i , j : N|i ∈ [0..|s| − 1] ∧ j ∈
[0..|s| − 1] ∧ i 6= j : ¬s[i].intersect(s[j]))

exception: exc := (|s| = 0⇒ EMPTY)

What happens if s only holds one circle? Does this make
sense?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 9/36

Access Routine Semantics

Deq sumFx(f):

output

out := +(i : N|i ∈ ([1..|s| − 1]) : Fx(f , s[i], s[0]))

exception: exc := (|s| = 0⇒ EMPTY)

Local Functions
Fx: (real → real) × CircleT × CircleT → real
Fx(f , ci , cj) ≡ xcomp(ci .force(f)(cj), ci , cj)

xcomp: real × CircleT × CircleT → real

xcomp(F , ci , cj) ≡ F

[
ci .cen().xcrd()− cj .cen().xcrd()

ci .connection(cj).len()

]
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 10/36

Access Routine Semantics Continued

Deq totalArea():

output
out :=?

exception: exc := (|s| = 0⇒ EMPTY)

Deq averageRadius():

output
out :=?

exception: exc := (|s| = 0⇒ EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 11/36

Details and Notes

Doxygen, make, LaTeX, Python (2.7) and PyUnit

Do NOT change the interface

Can add methodName

Makefile includes rule for doc

Makefile includes rule for test

Tag repo as A2Part1 and A2Part2

Trading of code will be done automatically
Python specifics:

I FULL, EMPTY implemented via inheriting from
Exception class

I Exceptions should only be used with one argument, a
string explaining what problem has occurred.

I Dec.accessProg, not Dec accessProg, as shown in the
specification.

Monitor all changes pushed to our repo
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 12/36

File and Folder Structure

A2
I doxConfig
I Makefile
I report

I report.tex
I report.pdf

I src
I pointADT.py
I lineADT.py
I circleADT.py
I deque.py
I testCircleDeque.py

I srcPartner
I circleADT.py

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 13/36

Questions

What relationships have we discussed between modules?

Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 14/36

The USES Relation

A uses B
I A requires the correct operation of B
I A can access the services exported by B through its

interface
I This relation is “statically” defined
I A depends on B to provide its services
I For instance, A calls a routine exported by B

A is a client of B; B is a server

Inheritance, Association and Aggregation imply Uses

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 15/36

Relationships Between Modules

Let S be a set of modules

S = {M1,M2, ...,Mn}

A binary relation r on S is a subset of S × S

If Mi and Mj are in S , < Mi ,Mj >∈ r can be written as
Mi rMj

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 16/36

Relations

Transitive closure r+ of r

Mi r
+Mj iff Mi rMj or ∃Mk in S such that Mi rMk and Mkr

+Mj

r is a hierarchy iff there are no two elements Mi , Mj such
that Mi r

+Mj ∧Mj r
+Mi

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 17/36

Relations Continued

Relations can be represented as graphs

A hierarchy is a DAG (directed acyclic graph)

Why do we prefer the uses relation to be a DAG?
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 18/36

Desirable Properties

USES should be a hierarchy
I Hierarchy makes software easier to understand
I We can proceed from the leaf nodes (nodes that do not

use other nodes) upwards
I They make software easier to build
I They make software easier to test

Low coupling

Fan-in is considered better than Fan-out: WHY?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 19/36

DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 20/36

DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 21/36

Hierarchy

Organizes the modular structure through levels of
abstraction

Each level defines an abstract (virtual) machine for the
next level

Level can be defined precisely
I Mi has level 0 if no Mj exists such that Mi rMj

I Let k be the maximum level of all nodes Mj such that
Mi rMj , then Mi has level k + 1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 22/36

Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromMod1 else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 23/36

Question about Association and DAG

Is the uses relation here a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 24/36

Module Decomposition (Parnas)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 25/36

Module Decomposition (Parnas)

For the module decomposition on the previous slide:

Does it show a Uses relation?

Is it a DAG?

Is it a tree?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 26/36

IS COMPONENT OF

The Parnas decomposition by secrets gives an
IS COMPONENT OF relationship

Used to describe a higher level module as constituted by a
number of lower level modules

A IS COMPONENT OF B means B consists of several
modules of which one is A

B COMPRISES A

MS,i = {Mk |Mk ∈ S ∧Mk IS COMPONENT OF Mi} we
say that MS ,i IMPLEMENTS Mi

How is IS COMPONENT OF represented in UML?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 27/36

A Graphical View

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 28/36

Product Families

Careful recording of (hierarchical) USES relation and
IS COMPONENT OF supports design of program families

Attempt to recognize modules that will differ in
implementation between family members

New program family member should start at the
documentation of the design, not with the code

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 29/36

Remember - Information Hiding

Basis for design (i.e. module decomposition)

Implementation secrets are hidden to clients

They can be changed freely if the change does not affect
the interface

Try to encapsulate changeable requirements and design
decisions as implementation secrets within module
implementations

Decomposition by secrets, not by sequence of steps

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 30/36

Prototyping

Once an interface is defined, implementation can be done
I First quickly but inefficiently
I Then progressively turned into the final version

Initial version acts as a prototype that evolves into the
final product

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 31/36

References

Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. Weiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

Parnas, D. L., “On a ’Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336–339

Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053–1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 32/36

References Continued

Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128–138,

Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 33/36

References Continued

Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it”, IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu/428727.html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 34/36

References Continued

Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

ElSheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh
generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 35/36

References Continued

Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 36/36

