SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017

McMaster
University %ﬁ

13 Module Decomposition (Ghezzi Ch. 4, H&S Ch.
7) DRAFT

@ Administrative details

Module decomposition

Software architecture

Design for change

Relationship between modules
The USES relation

Module decomposition by secrets
The IS.COMPONENT _OF relation

Techniques for design for change

Module guide

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

2/20

Administrative Details
TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 3/20

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

4/20

QueueADT Module Syntax (Abstract Object)

What is missing from this interface?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
size integer | NOT_INIT

isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

If MAX_SIZE is exported, what could you replace isempty and
isfull by? (This new interface will move some work to the

programmer.)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

5/20

Quality Criteria

o Consistent
» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features (only one way to
access each service)

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related
@ Low coupling - not strongly dependent on other modules

(]

Opaque - information hiding

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 6/20

QueueADT Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop T NOT_INIT, EMPTY
size integer | NOT_INIT

isinit boolean

@ front has been merged with pop
@ size replaces isempty and isfull

@ isinit is added

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

7/20

Modular Decomposition

@ Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

@ We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

@ We need to produce a software architecture

@ The architecture (modular decomposition) is summarized
in a Software Design Document

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

8/20

Software Architecture

@ Shows gross structure and organization of the system to

be defined
@ lts description includes the description of

» Main components of the system

Relationship among those components
Rationale for decomposition into its components
Constraints that must be respected by any design of the
components

v

v

v

@ Guides the development of the design

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 9/20

Specific Techniques for Design for Change

What software tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

10/20

Specific Techniques for Design for Change

@ Anticipate definition of all family members
@ Identify what is common to all family members, delay
decisions that differentiate among different members
e Configuration constants
» Factor constant values into symbolic constants
» Compile time binding
» MAXSPEED = 5600
e Conditional compilation
» Compile time binding
» Works well when there is a preprocessor, like for C
» If performance is not a concern, can often “fake it” at
run time
e Make
@ Software generation
» Compiler generator, like yacc
» Domain Specific Language

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 11/20

Questions

@ What relationships have we discussed between modules?

@ Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 12/20

Relationships Between Modules

@ Let S be a set of modules
5 — {Ml, Mz, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If M; and M; are in S, < M;, M; >€ r can be written as
M,-rMJ-

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 13/20

Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rt M; A M;rtM;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 14/20

Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (directed acyclic graph)

m, M,
a graph ‘/ \M\ ‘/J’\a
/IZ f a DAG /\ /
P S

\./ \./

a) b)

Why do we prefer the uses relation to be a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 15/20

References

@ Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. WEeiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

@ Parnas, D. L., “On a 'Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336-339

@ Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053-1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 16/20

References Continued

@ Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128-138,

@ Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 17/20

References Continued

@ Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it", IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

@ Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

@ Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu /428727 .html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 18/20

References Continued

@ Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

@ EISheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh

generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

@ Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

19/20

References Continued

@ Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

@ Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

e Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 20/20

