SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017

McMaster
University %ﬁ



13 Module Decomposition (Ghezzi Ch. 4, H&S Ch.
7) DRAFT

@ Administrative details

Module decomposition

Software architecture

Design for change

Relationship between modules
The USES relation

Module decomposition by secrets
The IS.COMPONENT _OF relation

Techniques for design for change

Module guide

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT

2/20



Administrative Details
TBD
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Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care
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QueueADT Module Syntax (Abstract Object)

What is missing from this interface?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
size integer | NOT_INIT

isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

If MAX_SIZE is exported, what could you replace isempty and
isfull by? (This new interface will move some work to the

programmer.)
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Quality Criteria

o Consistent
» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features (only one way to
access each service)

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related
@ Low coupling - not strongly dependent on other modules

(]

Opaque - information hiding
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QueueADT Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop T NOT_INIT, EMPTY
size integer | NOT_INIT

isinit boolean

@ front has been merged with pop
@ size replaces isempty and isfull

@ isinit is added
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Modular Decomposition

@ Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

@ We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

@ We need to produce a software architecture

@ The architecture (modular decomposition) is summarized
in a Software Design Document
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Software Architecture

@ Shows gross structure and organization of the system to

be defined
@ lts description includes the description of

» Main components of the system

Relationship among those components
Rationale for decomposition into its components
Constraints that must be respected by any design of the
components

v

v

v

@ Guides the development of the design
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Specific Techniques for Design for Change

What software tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?
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Specific Techniques for Design for Change

@ Anticipate definition of all family members
@ Identify what is common to all family members, delay
decisions that differentiate among different members
e Configuration constants
» Factor constant values into symbolic constants
» Compile time binding
» MAXSPEED = 5600
e Conditional compilation
» Compile time binding
» Works well when there is a preprocessor, like for C
» If performance is not a concern, can often “fake it” at
run time
e Make
@ Software generation
» Compiler generator, like yacc
» Domain Specific Language
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Questions

@ What relationships have we discussed between modules?

@ Are there desirable properties for these relations?
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Relationships Between Modules

@ Let S be a set of modules
5 — {Ml, Mz, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If M; and M; are in S, < M;, M; >€ r can be written as
M,-rMJ-
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Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rt M; A M;rtM;
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Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (directed acyclic graph)

m, M,
a graph ‘/ \M\ ‘/J’\a
/IZ f a DAG /\ /
P S

\./ \./

a) b)

Why do we prefer the uses relation to be a DAG?
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