
Intro to PyUnit and unit testing

Tutorial 5

Owen Huyn

February 6, 2017 



Unit testing quote

“If you don’t like unit testing your product, most likely 
your customers won’t like to test it either.”

- Anonymous



What is unit testing?

• Unit testing verifies that individual units of code (usually 
functions) work as intended

• Designed to be simple, easy to write and run

• You can test both from a blackbox perspective and a whitebox
perspective



Who should write unit tests?

• Developers should test their own code!
• The person who wrote the code usually has the best 

understanding of what their code does!



So why do we unit test?
• Catches bugs much earlier
• Provides documentation on a specific function
• Helps developer improve the implementation design of a 

function

Every good developer should be a good tester too!
No one likes to work with someone who doesn’t 

verify/test if their code works.



What is PyUnit

• PyUnit is a testing framework that belongs to the xUnit class of 
testing frameworks

• Similar to JUnit (Java), CppUnit (C++)
• Knowledge is transferrable to another xUnit framework 

regardless of language



Alright, I’m sold. How do I get started?

• The PyUnit library already comes preinstalled into Python!
• The library used to write tests is under the ‘unittest’ module



Demo

Let’s get started, I encourage everyone to pull out their 
laptops and follow along.

Don’t be afraid to ask any 
questions!



Demo

• For our demo, let’s test our first assignment!
• The functions that we need to test should be familiar with 

everyone



Let’s create our first unit testing file!
• To start, create a new Python file in the same directory of our file that we 

want to test
• You can do this from the command line or any text editor of your choice



Let’s create our first test template
• To start with our unit test, follow this template:

1. Import the unit test library

2. Write a unit testing class with ‘unittest.TestCase’ as your argument

3. Line 7 and Line 8 helps run the test file itself



OK, let’s write our first test

• Let us test something very simple
• Our first test will be testing the xcoord and ycoord getters of 

our Circle class



Import the 
module you 
are testing

Create some 
tests here;
Each 
function 
declaration 
is one test

In this case, 
we have two 
tests.



What on earth is an assertion????
From Wikipedia: 

“... a statement that a predicate (Boolean-valued function, a true–false expression) is 
expected to always be true at that point in the code. If an assertion evaluates to false 
at run time, an assertion failure results, which typically causes the program to crash, or 
to throw an assertion exception.”

ELI5:
Basically, if the test passes that Boolean expression, it will 
continue. Otherwise the test will fail and it will not 
continue with that test.



Example of an assertion

assertTrue(1 == 1)

This passes, and the test continues.

assertTrue(1 == 2)

This Boolean expression is false, and throws an 
AssertionException which causes the test to fail.

assertFalse (1 == 2)

This Boolean expression is false, but the assertion asserts that 
the expression is false thus it passes and the test continues.



Running the tests
• Run this command in your command prompt:
python -m unittest <name of your test module>

In our demo, it is:  python -m unittest test_circles

• If you have multiple test files, you can run this to run all of them at 
once

python -m unittest discover

Module name is not the same as the class name!!





Failed Tests

Let’s say we have an example like this:

This will fail!



When we run our test….

Reason for failure

3 total tests, 1 failed, 2 passed

Where it failed



Other assertions

• Documentation can be 
found here:

https://docs.python.org/2
/library/unittest.html
• Most of the time, you 

will use the first 4 
assertions, however the 
other assertions could 
come in handy

• There are more 
uncommon assertions 
(not listed here) that 
are in the docs

https://docs.python.org/2/library/unittest.html


Floating point assertions
def assertAlmostEqual(self, first, second, places=None, 

msg=None, delta=None)

Checks if the two numbers are equal up until the given number of decimal places 
(argument: places, default is 7); delta is used as an acceptable range for both numbers

def assertNotAlmostEqual(self, first, second, 

places=None, msg=None, delta=None)

Similarly here, except this is the logical negation of the first assertion

More into optional arguments here: 
http://www.diveintopython.net/power_of_introspection/optional_arguments.html

http://www.diveintopython.net/power_of_introspection/optional_arguments.html


Redundant code in tests

Let’s say we have some redundant code in all our tests:



This will 
run before
every test 
(setUp)

This will run 
after every 
test 
(tearDown)



Group Activity:
A more complicated function
• Come up with some tests with your peers for the intersect and 

insideBox function in the CircleT class
• Try to cover the requirements and edge cases along with any 

ambiguity



A complete test file

• Refer to testStatistics.py for a more complete breakdown on 
how to test complicated functions



How much should I test?

• Test all requirements in each function
• Cover edge cases that may cause unintended consequences
• Have an acceptable amount of code coverage

https://en.wikipedia.org/wiki/Code_coverage


Extra tutorials
PyUnit documentation website:

https://docs.python.org/2/library/unittest.html

If you want to really dive into how to be a unit testing pro:
https://pymotw.com/3/unittest/index.html (PyUnit tutorial)

Mocking: http://stackoverflow.com/questions/2665812/what-is-mocking

Mocking Tutorial: https://www.toptal.com/python/an-introduction-to-mocking-in-
python

https://docs.python.org/2/library/unittest.html
https://pymotw.com/3/unittest/index.html
http://stackoverflow.com/questions/2665812/what-is-mocking
https://www.toptal.com/python/an-introduction-to-mocking-in-python

