SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

11 Generic MIS (Ghezzi Ch. 4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 28, 2018

McMaster
University ‘1*?:1

11 Generic MIS (Ghezzi Ch. 4)

Administrative details
ssh with X11 forwarding
Homework exercise on specification
Uses for abstract objects
Implementing objects with other objects as state variables
Generic modules
Generic stack abstract object
Properties exhibited by a stack module
Generic queue ADT
Access routine idioms

» Set idioms

» Sequence idioms

» Tuple idioms
Exceptions
Quality Criteria

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

2/32

Administrative Details

@ Assignment 1

» Partner files now in your repo
» Part 2: January 31, 2018
» If you know how, tag your assignment submissions

@ Questions?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 3/32

X Windows

@ If you want to use a gui on mills, you can use X11
forwarding

@ On a Mac or with Linux, you use ssh -X or ssh -Y
@ ssh -X mills.cas.mcmaster.ca (or -Y)
@ On a Mac you need XQuartz installed

@ If you know the details for Windows, please post to
Avenue

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 4/32

Homework Answer: Access Routine Semantics

totalArea():
@ output

out:=7 (i:N|i€]0.|s| —1] : s[i].area())

averageRadius():

@ output

out =

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 5/32

Homework Answer: Access Routine Semantics

totalArea():
@ output

out :== + (i :N|i €0..|s| = 1] : s[i].area())

averageRadius():

@ output

out =

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 5/32

Homework Answer: Access Routine Semantics

totalArea():
@ output

out :== + (i :N|i €0..|s| = 1] : s[i].area())

or?

averageRadius():

@ output

out =

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 5/32

Homework Answer: Access Routine Semantics

totalArea():
@ output

out :== + (i :N|i €0..|s| = 1] : s[i].area())
or?

out := + (c: CircleT|c € s : c.area())

averageRadius():

@ output

out ;=7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 5/32

Homework Answer: Access Routine Semantics

totalArea():
@ output

out :== + (i :N|i €0..|s| = 1] : s[i].area())
or?

out := + (c: CircleT|c € s : c.area())

averageRadius():

@ output

out .= + (c: CircleT|c € s : c.radius())/|s|

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

5/32

Uses for Abstract Objects

@ Creating a single abstract object corresponds to the
singleton design pattern

@ Provides “global” variables

@ Uses

» Shared resource

» Hoffman and Strooper example (assembler)
» Look up table for global state (read only)

» Logger (write only)

@ Problematic for testing if high coupling and frequent state
changes, since many test cases will depend on the state
of the abstract object

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 6/32

Objects with Other Objects as State Variables

Potential prob with the naive implement of deque of CircleT?

@staticmethod
def pushBack(c):
Deq.s = Deq.s + [c]

Consider

pl = PointT(1.5, 2)

cl = CircleT(pl, 5)

Deq.init ()

Deq.pushBack (cl)

cl.r = 6 #circumventing information hiding
print (cl.rad())

print (Deq.back () .rad ())

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 7/32

Solutions to Potential Problem

@ Interface prevents potential abuse
» Provide no mutators in the interface, just a constructor
and selectors
» Assume information hiding will be respected
@ A more robust implementation

» The state variable stores copies of objects, not references
» Use copy library in Python

import copy

@staticmethod

def pushBack(c):
cnew = copy.deepcopy(c)
Deq.s = Deq.s + [cnew]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

8/32

New Problem for Robust Implementation

pi PointT (1.5, 2)

cl CircleT(pl, 5)
Deq.init ()
Deq.pushBack (cl)

print (cl1 == Deq.back())

Why is the behaviour not what we would naively expect?

What can we do about it?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 9/32

New Problem for Robust Implementation

pi PointT (1.5, 2)

cl CircleT(pl, 5)
Deq.init ()
Deq.pushBack (cl)

print (cl1 == Deq.back())

Why is the behaviour not what we would naively expect?

What can we do about it?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 9/32

Redefine Equality for CircleT

class CircleT:

def __init__(self, cin, rin):
self.c = cin
self .r = rin

def __eq__(self, cin):
return self.c == cin.cen() and
self.r == cin.rad ()

What other classes will need __eq__ redefined?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 10/32

Examples of A2 from 2017

@ Solution assuming information hiding in repo of previous
assignment solutions (here)

@ Robust solution in the same folder as these lecture slides
(here)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

11/32

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Assignments/PreviousYears/2017/A2
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Lectures/L11_Generic_MIS

Generic Modules

e What if we have a sequence of integers, instead of a

sequence of point masses?
What if we want a stack of integers, or characters, or
pointT, or pointMassT?
Do we need a new specification for each new abstract
object?
No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities
Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)
Advantages

» Eliminate chance of inconsistencies between modules

» Localize effects of possible modifications
» Reuse

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 12/32

Generic Stack Module Syntax

Generic Module
Stack(T)
Exported Constants

MAX_SIZE = 100

Exported Access Programs

Routine name | In

Out

Exceptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

13/32

Stack Module Syntax

Exported Access Programs

Routine name | In | Out Exceptions
s_init

s_push T FULL

s_pop EMPTY
s_top T EMPTY
s_depth integer

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

14/32

Semantics

State Variables

State Invariant

Assumptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 15/32

Semantics

State Variables
s: sequence of T

State Invariant

Assumptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 15/32

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE

Assumptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 15/32

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE
Assumptions

s_init() is called before any other access routine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 15/32

Access Routine Semantics

s_init():
@ transition:
@ exception:
s_push(x):
@ transition:
@ exception:
s-pop():
@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 16/32

Access Routine Semantics

s_init():
@ transition: s :=<>
@ exception:
s_push(x):
@ transition:
@ exception:
s-pop():
@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 16/32

Access Routine Semantics

s_init():
@ transition: s :=<>
@ exception: none
s_push(x):
@ transition:
@ exception:
s-pop():
@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 16/32

Access Routine Semantics

s_init():
@ transition: s :=<>
@ exception: none
s_push(x):
@ transition: s :=s|| < x >
@ exception:
s-pop():
@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

16/32

Access Routine Semantics

s_init():

@ transition: s :=<>

@ exception: none
s_push(x):

@ transition: s :=s|| < x >

@ exception: exc := (|s| = MAX_SIZE = FULL)
s-pop():

@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 16/32

Access Routine Semantics

s_init():

@ transition: s :=<>

@ exception: none
s_push(x):

@ transition: s :=s|| < x >

@ exception: exc := (|s| = MAX_SIZE = FULL)
s-pop():

@ transition: s := s[0..|s| — 2]

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 16/32

Access Routine Semantics

s_init():

@ transition: s :=<>

@ exception: none
s_push(x):

@ transition: s :=s|| < x >

@ exception: exc := (|s| = MAX_SIZE = FULL)
s-pop():

@ transition: s := s[0..|s| — 2]

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 16/32

Access Routine Semantics Continued

s_top():
@ output:

@ exception:
s_depth():
@ output:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 17/32

Access Routine Semantics Continued

s_top():
@ output: out := s[|s| — 1]
@ exception:

s_depth():
@ output:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 17/32

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

17/32

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output: out := |s|

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

17/32

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output: out := |s]

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

17/32

Stack Module Properties

{true}
s_init()

{Is'1=0}

{|s| < MAX_SIZE}
s_push(x)
{Is'| = |s| + L AS[|s'| — 1] = x A §'[0..]s| — 1] = s[0..|s| — 1]}

{|s| < MAX_SIZE}
s_push(x)
s-pop()

{s'=s}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 18/32

Generic Queue Module ADT Syntax

Generic Template Module
QueueADT(T)
Exported Types

QueueT =7
Exported Constants

MAX_SIZE = 100

Exported Access Programs

Routine name | In | Out | Exceptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 19/32

QueueADT Module Syntax

Exported Access Programs

Routine name | In | Out Exceptions
new QueueT QueueT

add T queue_full
pop queue_empty
front T queue_empty
isempty boolean

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

20/32

Semantics

State Variables

State Invariant

Assumptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 21/32

Semantics

State Variables
s: sequence of T

State Invariant

Assumptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 21/32

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE

Assumptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 21/32

Access Routine Semantics
new QueueT():

@ transition:

@ output:

@ exception:
add(x):

@ transition:

@ exception:
pop():

@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 22/32

Access Routine Semantics

new QueueT():
@ transition: s :=<>
@ output: out := self
@ exception: none
add(x):
@ transition:
@ exception:
pop():
@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

22/32

Access Routine Semantics

new QueueT():

@ transition: s :=<>

@ output: out := self

@ exception: none
add(x):

@ transition: s :=s|| < x >

@ exception: exc := (|s| = MAX_SIZE = queue_full)
pop():

@ transition:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 22/32

Access Routine Semantics

new QueueT():

@ transition: s :=<>

@ output: out := self

@ exception: none
add(x):

@ transition: s :=s|| < x >

@ exception: exc := (|s| = MAX_SIZE = queue_full)
pop():

@ transition: s := s[1..|s| — 1]

@ exception: exc := (|s| = 0 = queue_empty)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 22/32

Access Routine Semantics Continued

front():

@ output:

@ exception:
isempty():

@ output:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 23/32

Access Routine Semantics Continued

front():

@ output: out := s[0]

@ exception: exc := (|s| = 0 = queue_empty)
isempty():

@ output:

@ exception:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

23/32

Access Routine Semantics Continued

front():

@ output: out := s[0]

@ exception: exc := (|s| = 0 = queue_empty)
isempty():

@ output: out == |s| =0

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

23/32

Queue Module Properties

{true}

g-init()
{|s'| = 0 A is_init}

{|s| < MAX_SIZE}
add(x)
{Is'| = |s| + 1 As'[0] = x A S'[1..|s'] — 1] = s[0..|s| — 1]}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 24/32

Set

|diom

Routine name | In | Out Exceptions
set_add T Member, Full
set_del T NotMember
set_member T | boolean

set_size integer

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

25/32

Sequence Idiom

Routine name | In Out Exceptions
seq_init

seq_add integer, T PosOutOfRange, Full
seq_del integer PosOutOfRange
seq_setval integer, T PosOutOfRange
seq_getval integer T PosOutOfRange
seq_size integer

seq_start

seq_next T AtEnd

seq_end boolean

seq_append T Full

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

26/32

Tuple Idiom Version 1

Routine name | In | Out | Exceptions
tp.init
tp_set_f; T
tp_get_f; T
tp_set_fy Twn
tp_get_fy Ty
Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

27/32

Tuple Idiom Version 2

Routine name | In Out | Exceptions
tp.init

tp_set Ty, To, .., Ty

tp_get T

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

28/32

Example Subclass Exception in Python

class Full (Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)

Example of raising the exception

if size == Seq.MAX_SIZE:
raise Full("Maximum size exceeded")

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

29/32

Exception Signaling

@ Useful to think about exceptions in the design process
@ Will need to decide how exception signalling will be done

» A special return value, a special status parameter, a
global variable

» Invoking an exception procedure

» Using built-in language constructs

@ Caused by errors made by programmers, not by users
@ Write code so that it avoid exceptions

@ Exceptions will be particularly useful during testing

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

30/32

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4)

31/32

Quality Criteria

@ Consistent

» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related

@ Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 11 Generic MIS (Ghezzi Ch. 4) 32/32

