
Computing and Software Department, McMaster University

The Software Engineering
Profession (adapted from Dr.

Farmer’s notes)

Dr. Spencer Smith

January 6, 2009

Smith:

SE Profession (slide 1)



Software Engineering Profession

I Administrative details

I What is software engineering?

I The PEO

I Software engineering in system design

I Therac-25

I The great gulf

I Challenges and opportunities for engineering

I Attributes of a good software engineer

I Software development process

Smith:

SE Profession (slide 2)



Administrative Details

I Assignment 1 deadlines

• Files due by midnight January 19
• E-mail partner files by January 20
• Lab report due by the beginning of class on January 26

I Assignment 1 is posted to http://www.cas.mcmaster.ca/–
smiths/SFWRENG2AA4/Assig1.pdf

Smith:

SE Profession (slide 3)



What is Software Engineering?
I An area of engineering that deals with the development of

software systems that
• Are large or complex
• Exist in multiple versions
• Exist for large period of time
• Are continuously being modified
• Are built by teams

I Software engineering is “application of a systematic,
disciplined, quantifiable approach to the development,
operation and maintenance of software” (IEEE 1990)

I D. Parnas (1978) defines software engineering as
“multi-person construction of multi-version software”

I Like other areas of engineering, software engineering relies
heavily on mathematical techniques, especially logic and
discrete mathematics

Smith:

SE Profession (slide 4)



The PEO

I Degree from an accredited program

I Experience requirement

I Law and ethics exam

I Still debating what constitutes software engineering

Smith:

SE Profession (slide 5)



Software Engineering in System Design
I A physical system is often controlled by a software system

called an embedded system
I As a result, software engineering is often a crucial part of

system design
I Examples of embedded systems

• Cell phones
• Nuclear power plants
• Automobiles
• Aircraft
• Pacemakers
• mp3 players
• Programmable household devices

I Embedded systems are rapidly appearing everywhere
I The developers of software for an embedded system needs to

understand both the software and the physical device.

Smith:

SE Profession (slide 6)



Therac-25

I The Therac-25 was a radiation therapy machine for treating
cancer

• Produced by the Atomic Energy of Canada Limited (AECL)
• Controlled by software

I How it worked

• Provided both electron beam and X-ray treatment
• The machine produced low to high energy electron beams
• X-rays were produced by rotating a target into the path of a

high energy electron beam

I Used in several clinics across North America

Smith:

SE Profession (slide 7)



Therac-25 Continued

I In six separate incidents in the 1980s, Therac-25 machines
delivered overdoses of radiation causing severe physical
damage or even death to the patients being treated

• The second incident, which took place in Hamilton, resulted in
administration of 13 000 – 17 000 rads of radiation (200 rads
is regular treatment and 1000 rads can be fatal)

• Three patients ultimately died from radiation poisoning

I What went wrong

• Software failed to detect that the target was not in place
• Software failed to detect that the patient was receiving

radiation
• Software failed to prevent the patient from receiving an

overdose of radiation

Smith:

SE Profession (slide 8)



Therac-25 Continued

Causes of failure

I Inadequate software design
I Inadequate software development process

• Coding and testing done by only one person
• No independent review of the computer code
• Inadequate documentation of error codes
• Poor testing procedures
• Poor user interface design

I Software was ignored during reliability modelling

I No hardware interlocks to prevent the delivery of high-energy
electron beams when the target was not in place

Smith:

SE Profession (slide 9)



The Great Gulf
I Engineers do not sufficiently understand or care about

software
• Many of the basic principles of software design and

development are largely unknown to engineers
• Engineers often do not appreciate the challenges and dangers

inherent in software for embedded systems
I Software developers lack engineering training and

professionalism
• There is an entrenched culture of producing software without

any guarantee whatsoever
• There is no system for certifying either software or software

developers
• Most software developers lack the engineering background

needed to produce software for embedded systems
I There is a gulf between software engineering and scientific

computing as well

Smith:

SE Profession (slide 10)



Challenges and Opportunities for Engineering

I Challenges

• Engineers need to design systems that have safe, correct,
high-quality software

• Software engineers need to produce software that they can
guarantee

• No silver bullets
• Still an immature field

I Opportunities

• Software tools can greatly enhance the capabilities of engineers
• Software can greatly increase the effectiveness of the devices

engineers design

Smith:

SE Profession (slide 11)



Attributes of a Good Software Engineer

I Is a good engineer!

I Can program in the large as well as in the small

I Has a solid understanding of computing and software

I Is comfortable with working with models at different levels of
abstraction

I Can communicate and work effectively with other team
members

Smith:

SE Profession (slide 12)



Software Development Process

I A rational development process is needed to produce quality
software

I Any proposed rational process is necessarily an idealization

• Humans inevitably make errors
• Communication between humans is imperfect
• Many things are not understood at the start
• Supporting technology always has limitations
• Requirements change over time

Smith:

SE Profession (slide 13)


