SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

27 Design Patterns

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 15, 2018

McMaster
University %ﬁ

27 Design Patterns

@ Administrative details
@ Specification using UML

@ Design patterns

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

2/30

Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng
and on van Vliet (2000)
e A3
» Part 1 - Solution: Mar 18
» Part 2 - Code: due 11:59 pm Mar 26
o A4

» Your own design and specification
» Model module for game of Freecell
» Due April 9 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 3/30

UML Diagram for Generic Classes

—=——=n

RS

Set

template olass ++" insert(T)
remove(T}

«bind»

<T::Employee>
¥

. binding for parameter
R EmployeeSet

Lt
o
W

bound element.

UML Class Diagram Template

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 4/30

https://coderanch.com/t/626984/a/5041/UML_class_diagram_template.png

Use Cases

@ An overview of the usage requirements for a system
@ Made up of:

» Actors - person, organization, external system

» Use cases - action to be performed

@ Example of University Enterprise Resource Planning
(ERP) software (Mosaic)
» Actors?
» Use cases?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 5/30

Grade Admistrator
Print Teaching
Sehedule

Cbtain Student
Grant

Obtain Student
Loan
Reoimburse
Course Feos

Fi ial
Institution

Instructar

<<@xtend=; Post OHice

oy Distribute Fea
Schadulo

Registrar
o
Researches
UML 2 Use Case Diagrams: An Agile Introduction
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 6/30

http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Use Cases

@ Often used for capturing requirements
@ From user’s (actor’s) viewpoint
» Person
» Other system
» Hardware
» etc. (anything external
e Each circle is a use case
@ Lines represent possible interactions
@ An actor represents a role, individuals can take on

different roles

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 7/30

cul cul aProduct aCartitem
<<aciom>
B Product aspx login aspx. ‘ Product ‘ ‘ShoppingGart ‘ Caritern ‘ ‘ Ortler ‘ ‘ Shippinginfo

| I | | | | | |
I] 1 1 1 1 1 1
| select{productName) | 1 1 | | 1 1
getProduciDefaisiproductid) | :] ;]
i i i I
e [Produc] Details) : : : :
o= e | 1 | 1
Cart 1 1 1 1
addCariitemiproductid, carld] : 1 ; q
I 1 1
H 1 rew(productid) | | |
| i i I
1 i Ao i i
| | | |
| | | | |
! ! addCartitem(productd, carfld)]

! i
| 1 I 1 1
i 1 i i i i
i | i i i I
i 1 i i i i
} : : calcUnitPrice(quantity, unitCost) :

| |
] 1 1 1 i 1
] 1 1 I 1 1
i | 1 1 I 1 1
i 1 i i i i i
1 checkoutoartid) i 1] i]
+ + t | | |
I | | ; | | |

| ! If customer nof Idgged in

Place Login request ! ! ! !
Order J\] : : : :
loginuserid, password) | H H H H
i i i I
i i i i
| | | |
I | | | |
! o 1 1 1
¥ . shipping Typ I l I

t +

i i

[Shipping details updated]
,,,,,,,, i

1
I
|
+
I
4
I
1
1
I
I
I
I
+
I
1

Order Confirmatibn Notification
T

http://people.cs.ksu.edu/~reshma/buying_3.JPG

Sequence Diagram Question

@ Is a sequence diagram an operational or a descriptive
specification?

@ If objects exchange a message, should there be an
association between their classes?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

9/30

Sequence Diagrams

@ Represents a specific use case scenario
@ How objects interact by exchanging messages
@ Time progresses in the vertical direction

@ The vertically oriented boxes show the object'’s lifeline

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 10/30

Design Patterns

@ Christopher Alexander (1977, buildings/towns):

» “Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way.”

@ Design reuse (intended for OO)

@ Solution for recurring problems

@ Transferring knowledge from expert to novice

@ A design pattern is a recurring structure of
communicating components that solves a general design
problem within a particular context

@ Design patterns consist of multiple modules, but they do

not constitute an entire system architecture

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 11/30

Strategy Design Pattern

@ From Source Making web-page

@ Define a family of algorithms, encapsulate each one, and
make them interchangeable.

@ Strategy lets the algorithm vary independently from the
clients that use it.

o Capture the abstraction in an interface, bury
implementation details in derived classes.

@ Where have we used this pattern?

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

12/30

https://sourcemaking.com/design_patterns/strategy

UML Diagram of Measurable Interface

DataSet

>

<<interface>>
Measurable

BankAccount

PointT

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

13/30

UML Diagram of Measurer Interface

Rectangle
Measurer

v

DataSet

<<interface>>
Measurer

v

- =

Rectangle

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

14/30

Model View Controller (MVC)

@ Separate computational elements from /O elements

@ Three components
1. Model encapsulates the system's data as well as the
operations on the data
2. View displays the data from the model components,
possibly multiple view components
3. Controller handles input actions
@ The controller may or may not depend on the state of the
model
@ The controller depends on model state when menu items
are enabled or disabled depending on the state of the
model

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

15/30

MVC

User

Notifies Action

Updates Updates

Controller

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 16/30

MVC Web Applications

. H
Web Server Database Server

Web Browser

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 17/30

MVC Example

StudentView

update:

StudentController

model: Student
view: StudentView

+StudentController()
P +setStudentName() :void

+printStudentDetails() :void

+getStudentName() :String
+setStudentNumber() :void
+getStudentNumber () :int
+updateView() :void

uses

MVCPatterDemo

uses

Student

name :String
number:int

+setStudentName() :void
+getStudentName() :String
+setStudentNumber() :void
+getStudentNumber () :int

+retrieveStudentFromDatab-
ase() :Student
+main() :void

https://www.tutorialspoint.com /design_pattern/mvc_pattern.htm

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

18/30

https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

MVC Critique

@ Advantages

Simultaneous develoment
High cohesion

Low coupling

Ease of modification
Multiple views for a model

v

v

v

v

\{

@ Disadvantages

» Code navigability
» Multi-artifact consistency
» Pronounced learning curve

Wikipedia page

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 19/30

https://en.wikipedia.org/wiki/Model–view–controller

Design Pattern Properties

@ A pattern addresses a recurring design problem that arises

in specific design situations and presents a solution to it
A pattern must balance a set of opposing forces
Patterns document existing, well-proven design experience

Patterns identify and specify abstractions above the level
of single components (modules)

Patterns provide a common vocabulary and understanding
for design principles

Patterns are a means of documentation

Patterns support the construction of software with

defined properties, including non-functional requirements,
such as flexibility and maintainability

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 20/30

Classification of Patterns

@ Creational design patterns
» Abstract factory
» Object pool
» Prototype
» Singleton
@ Structural design patterns
» Adapter
» Bridge
» Facade
» Proxy
@ Behavioural design patterns
» Command
> lterator
» Observer
State
Strategy

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

21/30

Describing Patterns

@ Context: the situation giving rise to a design pattern
@ Problem: a recurring problem arising in that situation

@ Solution: a proven solution to that problem

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 22/30

The Proxy Pattern (from van Vliet (2000))

Context: A client needs services from another
component. Though direct access is possible, this may
not be the best approach

Problem: We do not want to hard-code access to a
component into a client. Sometimes, such direct access is
inefficient; in other cases it may be unsafe. This
inefficiency or insecurity is to be handled by additional
control mechanisms, which should be kept separate from
both the client and the component to which it needs
access.

Solution: The client communicates with a representative
rather than the component itself. This representative, the
proxy, also does and pre- and postprocessing that is
needed.

Code

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

23/30

https://en.wikipedia.org/wiki/Proxy_pattern

UML Diagram of Proxy

Client

> <<interface>>

Proxy

Subject

—D DoAction()

delegate

RealSubject

DoAction()

DoAction()

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns

24/30

Command Processor Pattern

@ Context: User interfaces which must be flexible or provide
functionality that goes beyond the direct handling of user
functions. Examples are undo facilities or logging
functions

@ Problem: We want a well-structured solution for mapping
an interface to the internal functionality of a system. All
‘extras’ which have to do with the way user commands
are input, additional commands such as undo and redo,
and any non-application-specific processing of user
commands, such as logging, should be kept separate from
the interface to the internal functionality.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 25/30

Command Processor Pattern Continued

@ Solution: A separate component, the command processor,
takes care of all commands. The command processor
component schedules the execution of commands, stores
them for later undo, logs them for later analysis, and so
on. The actual execution of the command is delegated to
a supplier component within the application.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 26/30

Adapter Design Pattern

When have we used the adapter (or wrapper) design pattern?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 27/30

Adapter Design Pattern

\
ooy . M

The Client is implemented
i the target intorace.
Adapter
o™t The Adaphir Implements the
target interface and holds an
irstanc of the Adagtes.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 28/30

Factory Pattern

FactoryPattern

Shape <<Interface>> Demo

+main(} : void

+draw() : void

F
implements implements anki
implements
Circle Square Rectangle
ShapeFactory
creates
+draw() : void +draw() : void +draw() : void +petshape():
Shape

Code

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 29/30

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

Singleton Pattern

Singleton

= Atkribukes

Singleton
- inskance : Singleton =

=l Operations 1

+ Instance) @ Singleton
- Singletoni)

Singleton | 1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 30/30

