SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

34 Black Box Testing (Ch. 6)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

April 4, 2018

McMaster
University ‘1*?:1

34 Black Box Testing (Ch. 6)

@ Administrative details
@ Black Box Testing

» Formal using PointT
» Function tables

@ Testing boundary conditions
@ The oracle problem
e Module testing

@ Integration testing

@ Testing OO and generic programs

@ Testing concurrent and real-time systems

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

2/39

Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng
@ A4: Due April 9 at 11:59 pm

e Final tutorials on Friday, Apr 6

@ Course evaluations

v

https://evals.mcmaster.ca

Start: Tues, Mar 27, 10:00 am
Close: Tues, Apr 10, 11:59 pm
Your participation is highly valued
Grade bonus for class participation

v

\{

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 3/39

https://evals.mcmaster.ca

Unix Command of the Day: grep

@ Search for the lines in a collection of data that match a

specified pattern

@ From se2aa4_cs2me3/Lectures

» grep -r Parnas . > parnas.txt

» grep —-c LO4 parnas.txt

» grep —c ’LO.’ parnas.txt

4/39

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

Path-Coverage Criterion

@ Select a test set T that traverses all paths from the initial
to the final node of Ps control flow
@ It is finer than the previous kinds of coverage

@ However, number of paths may be too large, or even
infinite (see while loops)
@ Loops
» Zero times (or minimum number of times)
» Maximum times
» Average number of times

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 5/39

The Infeasibility Problem

@ Unreachable code, infeasible edges, paths, etc.
@ Adequacy criteria may be impossible to satisfy
» Manual justification for omitting each impossible test

case
» Adequacy “scores” based on coverage - example 95 %

statement coverage

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 6/39

Further Problem

@ What if the code omits the implementation of some part
of the specification?

@ White box test cases derived from the code will ignore
that part of the specification!

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

7/39

Black Box Testing Example

The program receives as input a record describing an invoice.
(A detailed description of the format of the record is given.)
The invoice must be inserted into a file of invoices that is
sorted by date. The invoice must be inserted in the
appropriate position: If other invoices exist in the file with the
same date, then the invoice should be inserted after the last
one. Also, some consistency checks must be performed: The
program should verify whether the customer is already in a
corresponding file of customers, whether the customer's data
in the two files match, etc.

What test cases would satisfy the complete-coverage principle?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 8/39

Invoice Example Test Cases

1. An invoice whose date is the current date

2. An invoice whose date is before the current date (This
might be even forbidden by law) This case, in turn, can
be split into the two following subcases:

2.1 An invoice whose date is the same as that of some
existing invoice

2.2 An invoice whose date does not exist in any previously
recorded invoice

3. Several incorrect invoices, checking different types of
inconsistencies

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

9/39

Systematic Black-Box Techniques

@ Testing driven by logic specifications

@ Function table based testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 10/39

Test Cases from MIS for PointT

Routine name | In Out Exceptions

PointT real, real | PointT | InvalidPointException
xcoord real

ycoord real

dist PointT real

exc = ((—=(0 < x < Contants. MAX X) V =(0 < y <
Constants.MAX_Y)) = InvalidPointException)

dist(p):
e output: out := +/(self.xc — p.xc)? + (self.yc — p.yc)?

@ exception: none

What test cases do you recommend?

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

11/39

TestPointT .java |

import org.junit .x;
import static org.junit.Assert.x;
public class TestPointT

{

private static double
ADMISS_ERR_CONSTRUCTOR = 0;
private static double ADMISS ERR.DIST =
le—20;
Q@Test
public void testConstructorForx()
{
assertEquals (23, new PointT (23,
38).xcoord (),
ADMISS_ERR_CONSTRUCTOR) ;

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 12/39

TestPointT .java Il

}
OTest

public void testConstructorFory ()
{
assertEquals (38, new PointT (23,
38).ycoord (),
ADMISS_ERR_CONSTRUCTOR) ;
}
@Test
(expected=InvalidPointException.class)
public void testForExceptionNegx ()

{
}

PointT p = new PointT(—10, 0);

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

13/39

TestPointT .java IlI

@Test
(expected=InvalidPointException.class)
public void testForExceptionNegy ()
{
PointT p = new PointT (0, —10);
}
Q@Test
(expected=InvalidPointException.class)
public void testForExceptionMaxx ()
{
PointT p = new
PointT (Constants . MAXX+1, 0);
}

QTest
(expected=InvalidPointException.class)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 14/39

TestPointT .java IV

public void testForExceptionMaxy ()

{
PointT p = new PointT (0,
Constants .MAX.Y+1);
}
Q@Test
public void testDistNormal()
{
double x = Constants .MAXX/2.0;
double y = Constants .MAXY /2.0;
PointT p = new PointT(x, y);
assertEquals(Math.sqrt(xxx + yxy),
p.dist (new PointT (0, 0)),
ADMISS_ERR_DIST) ;
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 15/39

TestPointT .java V

Q@Test
public void testDistlLargestDiagonal ()
{
double x = Constants.MAXX;
double y = Constants.MAXLY;
PointT p = new PointT(x, y);
assertEquals(Math.sqrt(xxx + yxy),
p.dist (new PointT (0, 0)),
ADMISS_ERR_DIST) ;
}
Q@Test
public void testDistAlongEdge()
{
double x = Constants.MAXX;
double y = Constants.MAXLY;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 16/39

TestPointT .java VI

PointT p = new PointT(x, y);

assertEquals(Constants.MAXX,
p.dist (new PointT (0,
Constants .MAXY)),
ADMISS_ERR_DIST) ;

}

@Test

public void testDistZero ()

{
double x = Constants .MAXX/2.0;
double y = Constants .MAXY/2.0;
PointT p = new PointT(x, y);
assertEquals (0, p.dist(p),

ADMISS_ERR_DIST) ;
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 17/39

TestPointT .java VII

//etc.
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 18/39

Function Table-Based Testing

@ Boundaries are obvious in table predicates
@ Make test cases that exercise between and on boundaries

@ Coverage already aided by function table “rules”

Result

) f name
Conadition —
ys35 res 1
x=<0
y=5 res 2
x=0 res 3
x>0 res 4

What test cases do you recommend?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

19/39

Function Table-Based Testing

@ Boundaries are obvious in table predicates
@ Make test cases that exercise between and on boundaries
@ Coverage already aided by function table “rules”

Result

Londition f_llame
=5 res 1
x=0 Y
y=>5 res 2
x=0 res 3
x>0 res 4

What test cases do you recommend?

What if you use the heuristic [-Large, -Normal, Boundary-1,
Boundary, Boundary+1, Normal, Large]?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

19/39

Function Table-Based Testing

@ Boundaries are obvious in table predicates
@ Make test cases that exercise between and on boundaries

@ Coverage already aided by function table “rules”

Result

) f name
Conadition —
ys5 res 1
x=<0
y=5 res 2
x=0 res 3
x>0 res 4

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 20/39

Testing Boundary Conditions

@ Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

@ Some typical programming errors, however, just happen
to be at the boundary between different classes

» Off by one errors
» < instead of <
» equals zero

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

21/39

Criterion

@ After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

@ This applies to both white-box and black-box techniques

@ In practice, use the different testing criteria in
combinations

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 22/39

The Oracle Problem

When might it be difficult to know the “expected”
output/behaviour?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 23/39

The Oracle Problem

@ Given input test cases that cover the domain, what are
the expected outputs?

@ Oracles are required at each stage of testing to tell us
what the right answer is

@ Black-box criteria are better than white-box for building
test oracles

@ Automated test oracles are required for running large
amounts of tests

@ Oracles are difficult to design - no universal recipe

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

24/39

The Oracle Problem Continued

@ Determining what the right answer should be is not
always easy

Air traffic control system

Scientific computing

Machine learning

Artifical intelligence

v

v

v

\{

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 25/39

The Oracle Problem Continued

What are some strategies we can use when we do not have a
test oracle?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 26/39

Strategies Without An Oracle

@ Using an independent program to approximate the oracle
(pseudo oracle)
@ Method of manufactured solutions

@ Properties of the expected values can be easier than
stating the expected output

» Examples?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 27/39

Strategies Without An Oracle

@ Using an independent program to approximate the oracle
(pseudo oracle)

@ Method of manufactured solutions

@ Properties of the expected values can be easier than
stating the expected output

» List is sorted

» Number of entries in file matches number of inputs

» Conservation of energy or mass

» Expected trends in output are observed (metamorphic
testing)

> etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 27/39

Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 28/39

Module Testing

@ Scaffolding needed to create the environment in which
the module should be tested

@ Stubs - a module used by the module under test

@ Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 29/39

Testing a Functional Module

PROCEDURE)
STUB - UNDER TEST - DRIVER
CALL CALL

ACCESS TO NONLOCAL VARIABLES

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 30/39

Integration Testing

@ Big-bang approach
» First test individual modules in isolation
» Then test integrated system

@ Incremental approach

» Modules are progressively integrated and tested
» Can proceed both top-down and bottom-up according to
the USES relation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 31/39

Integration Testing and USES relation

@ If integration and test proceed bottom-up only need
drivers

@ Otherwise if we proceed top-down only stubs are needed

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 32/39

Example

My Mo

Mo Mao

- - [

("] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M2’2}

@ In what order would you test these modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 33/39

Example

1 Mp

Maq1 Mo

- - 00

(*] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M272}
o Casel
» Test M; providing a stub for My and a driver for M;
» Then provide an implementation for M> 1 and a stub for
Mo »
o Case 2
» Implement M5 and test it by using a driver
» Implement M5 1 and test the combination of M, 1 and
M, (i.e. Mp) by using a driver
» Finally implement M; and test it with M, using a driver
for My

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

34/39

Testing OO and Generic Programs

@ New issues
> Inheritance
» Genericity
» Polymorphism
» Dynamic binding

@ Open problems still exist

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 35/39

Inheritance

Personnel

AN

Consultant

Employee

Manager

Administrative_Staff

Technical _Staff

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

36/39

How to Test Classes of the Hierarchy

I\
\/\

o “Flattening” the whole hierarchy and considering every
class as totally independent component

@ This does not exploit incrementality
e Finding an ad-hoc way to take advantage of the hierarchy

@ Think about testing PointT.py and PointMassT .py

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 37/39

A Sample Strategy

@ A test that does not have to be repeated for any heir

@ A test that must be performed for heir class X and all of
its further heirs

@ A test that must be redone by applying the same input
data, but verifying that the output is not (or is) changed

@ A test that must be modified by adding other input
parameters and verifying that the the output changes
accordingly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) 38/39

Testing Concurrent and Real-time Systems

@ Nondeterminism inherent in concurrency affects
repeatability

@ For real-time systems, a test case consists not only of
input data, but also of the times when such data are
supplied

e Considerable care and detail when testing real-time
systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6)

39/39

