SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

12 Object Oriented Design (Ghezzi
Ch. 4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 31, 2018

McMaster
University @

12 Object Oriented Design (Ghezzi Ch. 4)

Administrative details
00D

Inheritance
Polymorphism
Dynamic binding
Introduction to UML

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

2/24

Administrative Details

@ Assignment 1
» Part 2: January 31, 2018

@ Questions?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 3/24

Reviewing Changes

@ Use GitLab to review changes between commits
@ Review before committing: git difftool

@ To better deal with changes, use a “hard wrap” at an 80
column width, even for LaTeX documents (why?)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 4/24

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/commit/1d1465c864cc29117ed5fd2c31af50e426537a91

Set Idiom (H&S)

Routine name | In | Out Exceptions
set_add T Member, Full
set_del T NotMember
set_member T | boolean

set_size integer

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

5/24

Sequence Idiom (H&S)

Routine name | In Out Exceptions
seq_init
seq_add integer, T PosOutOfRange, Full
seq_del integer PosOutOfRange
seq_setval integer, T PosOutOfRange
seq_getval integer T PosOutOfRange
seq_size integer
seq_start
seq_next T AtEnd
seq_end boolean
seq_append T Full

When would you use seq_next in the interface, and exclude

seq_getval?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 6/24

Tuple Idiom Version 1 (H&S)

Routine name | In | Out | Exceptions
tp.init

tp_set_f; T

tp_get_f; T

tp_set_fy Twn

tp_get_fy Ty

What is a potential problem with this idiom, especially if there

are many fields to the tuple?

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

7/24

Tuple Idiom Version 2 (H&S)

Routine name | In Out | Exceptions
tp.init

tp_set Ty, To, .., Ty

tp_get T

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

8/24

Object Oriented Design

@ One kind of module, ADT, called class

@ A class exports operations (procedures) to manipulate
instance objects (often called methods)

@ Instance objects accessible via references

@ Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a

type)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 9/24

Inheritance

@ Another relation between modules (in addition to USES
and IS.COMPONENT_OF)

@ ADTs may be organized in a hierarchy
@ Class B may specialize class A

» B inherits from A
» Conversely, A generalizes B

@ A is a superclass of B

@ B is a subclass of A

In Python, what class do all classes inherit?

What method inherited from object did we recently override?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 10/24

Inheritance

@ Another relation between modules (in addition to USES
and IS.COMPONENT_OF)

@ ADTs may be organized in a hierarchy
@ Class B may specialize class A

» B inherits from A
» Conversely, A generalizes B

@ A is a superclass of B

@ B is a subclass of A

In Python, what class do all classes inherit?

What method inherited from object did we recently override?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 10/24

Template Module Employee

Dr. Smith

Routine name | In Out Except
New Employee | string, string, moneyT | Employee
first_Name string
last_Name string
where siteT
salary money T
fire
assign siteT
SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 11/24

Inheritance Examples

Template Module Administrative_Staff inherits Employee

Routine name

In

Out

Exception

do_this

folderT

Template Module Technical_Staff inherits Employee

Routine name | In Out | Exception
get_skill skill T
def_skill skill T

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

12/24

Inheritance Continued

A way of building software incrementally
Useful for long lived applications because new features
can be added without breaking the old applications

@ A subclass defines a subtype
@ A subtype is substitutable for the parent type
@ Polymorphism - a variable referring to type A can refer to

an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative_Staff and Technical_Staff
are instances of Employee

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 13/24

Inheritance Continued

empl, emp2: Employee
emp3: Technical _Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

empl = Administrative_Staff()
emp2 = Technical _Staff()

emp3 = empl

emp3 = (Technical _Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24

Inheritance Continued

empl, emp2: Employee
emp3: Technical _Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

empl = Administrative Staff() /
emp2 = Technical _Staff()

emp3 = empl

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24

Inheritance Continued

empl, emp2: Employee
emp3: Technical _Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

empl = Administrative Staff() /
emp2 = Technical Staff() /
emp3 = empl

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24

Inheritance Continued

empl, emp2: Employee
emp3: Technical _Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

empl = Administrative Staff() /
emp2 = Technical Staff() /
emp3 = empl x

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24

Inheritance Continued

empl, emp2: Employee
emp3: Technical _Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

empl = Administrative Staff() /
emp2 = Technical Staff() /

emp3 = empl x

emp3 = (Technical_Staff) empl /

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24

Inheritance Continued

empl, emp2: Employee
emp3: Technical _Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

empl = Administrative Staff() /
emp2 = Technical Staff() /

emp3 = empl x

emp3 = (Technical_Staff) empl /

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24

Dynamic Binding

e Many languages, like C, use static type checking
@ OO languages use dynamic type checking as the default

@ There is a difference between a type and a class once we
know this
» Types are known at compile time
» The class of an object may be known only at run time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 15/24

How can Inheritance be Represented?

@ We start introducing the UML notation

e UML (Unified Modelling Language) is a widely adopted
standard notation for representing OO designs

@ We introduce the UML class diagram

@ Classes are described by boxes

Any guesses on what Parnas said UML stood for?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

16/24

UML Representation of Inheritance

EMPLOYEE

A

ADMINISTRATIVE_STAFF

TECHNICAL STAFF

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

17/24

Bank Account Example

BarkAccount

owner | String
balance ! Dollars

deposit { amount ; Dollars)
witharawa! (smowit | Dodses)

CheckingAccount

insufficientFundsFee : Dollars

SavingsAccount

processCheck { checkToProcess ¢

withdrawal (amount © Dollars)

annualinterestRate | Parcentage

Check) depositMonthlyInterest {)

withdrawal {amount : Dollars)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

18/24

Class Diagram Versus MIS

@ What information do the MIS and Class Diagram have in
common?

@ What information does the MIS add?
@ What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 19/24

Class Diagram Versus MIS

@ What information do the MIS and Class Diagram have in
common?

@ What information does the MIS add?
@ What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 19/24

Class Diagram Versus MIS

@ What information do the MIS and Class Diagram have in
common?

@ What information does the MIS add?
@ What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 19/24

Showing Exceptions in UML Class Diagrams

@ Usually exceptions are not shown
o If they are, it is in brackets after the method name

e -+ findAlllnstances(): Vector
{exceptions=NetworkFailure, DatabaseError}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

20/24

http://www.agilemodeling.com/style/classDiagram.htm
http://www.agilemodeling.com/style/classDiagram.htm

UML Associations

@ Associations are relations that the implementation is
required to support

@ Can have multiplicity constraints

TECHNICAL | | | PROJECT
STAFF

project member

managcs

MANAGER

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 21/24

Flight Example

Plane

Flight
flighthumber : Integar 0.* P
departureTime : Date
flightDuration | Minutes assignedFlights 6.1

departingAlrpart : String
arrivinghirpart : String

delayFlight { numberOfvinutes : Minutes)
getirrivalTime () : Date

From IBM

arPlaneType : String
maximumSpead : MPH
maximumDistance : Miles
tallld : String

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 22/24

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

UML Aggregation

@ Defines a PART_OF relation
o Differs from IS_.COMPONENT_OF
@ TRIANGLE has its own methods

@ TRIANGLE implicitly uses POINT to define its data
attributes

TRIANGLE
1

3

POINT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 23/24

UML Packages

IS.COMPONENT _OF is represented via the package notation

package name

Class 1

Class 3

Class 2

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4)

24/24

