Assignment 2

COMP SCI 2ME3 and SFWR ENG 2AA4
February 7, 2018

1 Dates and Deadlines

Assigned: February 1, 2018

Part 1: February 12, 2018

Receive Partner Files: February 18, 2018
Part 2: March 2, 2018

Last Revised: February 7, 2018

All submissions are made through git, using your own repo located at:
https://gitlab.cas.mcmaster.ca/se2aa4 _cs2me3_assignments 2018/ [macid] .git

where [macid] should be replaced with your actual macid. The time for all deadlines
is 11:59 pm. If you notice problems in your Part 1 *.py files after the deadline, you
should fix the problems and discuss them in your Part 2 report. However, the code files
submitted for the Part 1 deadline will be the ones graded.

2 Introduction

The purpose of this software design exercise is to write a Python program that creates,
uses, and tests an ADT, an Abstract Object and libraries related to processing and
plotting curves and sequences of curves. As for the previous assignment, you will use
doxygen, make, LaTeX and Python (version 3). In addition, this assignment will use
PyTest for unit testing. This assignment also takes advantage of functional programming
in Python.

An example of a sequence of curves is given in Figure[I] This set of curves is used for
predicting whether a given plate of glass will break under a specified blast load.

ASTM F2248-09

10.00

— Y = 4.50 kg
=emsW=910kg
= = 14.0 kg
= W=18.0kg
= W=230kg
‘ W=27.0kg
‘ W = 32.0 kg
m— Y = 36.0 kg
——W=41.0kg
W=45.0kg
=== W=91.0kg
= = W=140kg
W =180 kg
W =230 kg
W =270
— -W=320kg
100 —— W =360 kg
6 60 -===W=410kg

3-Second duration equivalent design pressure (kPa)

Standoff distance (m)

Figure 1: 3 second equivalent pressure (g) versus Stand off distance (SD) versus charge
weight (w)

All of your code, except for the testing files, which are optional, should be documented
using doxygen. Your report should be written using IXTEX. Your code should follow the
given specification exactly. In particular, you should not add public methods or procedures
that are not specified and you should not change the number or order of parameters for
methods or procedures. If you need private methods or procedures, please use the Python
convention of naming the files with the double underscore (__methodName__) (dunders).
Please follow specified naming EXACTLY. You do not want to lose marks for
a simple mistake.

For the purpose of understandability, the specification provided at the end of the
assignment uses notation that is slightly different from the Hoffman and Strooper nota-
tion. Specifically the types for real and natural numbers are represented by R and N,
respectively. (In this specification, the natural numbers are assumed to include 0.) Also,
subscripts are used for indexing a sequence. For instance, x; means the same thing as

Part 1

Step 1

Write a module that creates a Curve ADT. It should consist of a Python code file named
CurveADT.py. The specification for this module is given at the end of the assignment. The
exceptions for CurveADT. py (and all other modules) should be in the file Exceptions.py.
Hint: The implementation will be easier if you use the scipy function interpid.

Step 2

Write a module that implements an abstract object called Data. It should consist of a
Python file named Data.py. The new module should follow the specification given at
the end of the assignment. Although efficient use of computing resources is always a
good goal, your implementation will be judged on correctness and not on performance.
Remember, the exceptions should be defined in the file Exceptions.py.

Step 3

Write a library module that provides services for processing sequences. It should consist
of a Python code file named SeqServices.py. The specification for this module is given
at the end of the assignment.

Step 4

Write a library module for plotting curves. It should consist of a Python code file named
Plot.py. The specification for this module is given at the end of the assignment. You
should use matplotlib for your implementation. Remember, the exceptions should be
defined in the file Exceptions.py.

Step 5

Write a library module for loading curves into the abstract object Data. It should consist
of a Python code file named Load.py. The specification for this module is given at the
end of the assignment.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

Step 6

Write a module (named test_All.py), using PyUnit, that tests the following modules:
CurveADT.py, Data.py and SeqServices.py. The given makefile Makefile will have
the rule test for running your tests. Each procedure should have at least one test case.
Record your rationale for test case selection and the results of using this module to test
the procedures in your modules. (You will submit your rationale with your report in
Step) Please make an effort to test normal cases, boundary cases, and exception
cases. Your test program should compare the calculated output to the expected output
and provide a summary of the number of test case that have passed or failed.

For testing CurveADT . py, do not worry about test cases close to edges of the domain.
The formulas for interpolation and differentiation will break down if they are looking for
data outside of the bounds. We don’t need to worry about this complication for this
assignment.

Step 7

Test the supplied Makefile rule for doc. This rule should compile your documentation
into an html and BETEX version. Your documentation will be generated to the A1l folder.
Along with the supplied Makefile, a doxygen configuration file is also given in your initial
repo. You should change these files.

Step 8

Submit (add, commit and push) the files CurveADT. py, Data.py, SeqServices.py, Plot.py,
Load.py, Exceptions.py and test_All.py using git. Please do not change the names
and locations for the files already given in your git project repo. You should also push
any input data files you created for testing purposes. For Part 1, the only files that you
should modify are the Python files and the only “new” files you should create are the
input data files. Changing other files could result in a serious grading penalty, since the
TAs might not be able to run your code and documentation generation. You should NOT
submit your generated documentation (html and latex folders). In general, files that can
be regenerated are not put under version control.

You should tag your final submission of Part 1 of the assignment with the label
A2Part1.

Part 2

Your CurveADT.py, Data.py, SeqServices.py files will automatically be pushed to your
partner’s repo and vice versa. Including your name in your partner code files is
optional.

Step 9

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not initially make any modifications to any of the code. Run your test
module and record the results. Your evaluation for this step does not depend on the
quality of your partner’s code, but only on your discussion of the testing results. If the
tests fail, for the purposes of understanding what happened, you are allowed to modify
your partner’s code.

Step 10

Write a report using KTEX (report.tex) following the template given in your repo. The
final submission should have the tag A2Part2. The report should include the following:

1. Your name and macid.

2. Your CurveADT.py, Data.py, SeqServices.py, Plot.py, Load.py and test_All.py
files.

3. Your partner’s CurveADT.py, Data.py, SeqServices.py files.

4. The results of testing your files (along with the rational for test case selection). The
summary of the results should consist of the following: the number of passed and
failed test cases, and brief details on any failed test cases.

5. The results of testing your files combined with your partner’s files.

6. A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules.

7. Answers to the following questions

e What is the mathematical specification of the SeqServices access program
islnBounds(X, x) if the assumption that X is ascending is removed?

5

e How would you modify CurveADT.py to support cubic interpolation?

e What is your critique of the CurveADT module’s interface. In particular,
comment on whether the exported access programs provide an interface that
is consistent, essential, general, minimal and opaque.

e What is your critique of the Data abstract object’s interface. In particular,
comment on whether the exported access programs provide an interface that
is consistent, essential, general, minimal and opaque.

Commit and push report.tex and report.pdf. Although the pdf file is a generated
file, for the purpose of helping the TAs, we’ll make an exception to the general rule of
avoiding version control for generated files. If you have made any changes to your Python
files, you should also push those changes.

Notes

1.

Your git repo will be organizes with the following directories at the top level: A1,
A2, A3, and A4.

Inside the A2 folder you will start with initial stubs of the files and folders that you
need to use. Please do not change the names or locations of any of these files or
folders.

Please put your name and macid at the top of each of your source files, except for
those that you share with a partner. Including your name and macid is optional for
those files.

. Your program must work in the I'TB labs on mills when compiled with its versions

of Python (version 3), LaTeX, doxygen and make.
Python specifics:

e The exceptions in the specification should be implemented via Python excep-
tions. Your exceptions should have exactly the same name, including case, as
given in the specification. Your exceptions should inherit from the Exception
class and they should only be used with one argument, a string explaining what
problem has occurred.

e For the Python implementation of the abstract module, your access programs
should be called via, Data.accessProg, not Data_accessProg, as shown in the
specification. The call Data.Data_accessProg is also incorrect. Some sample
calls include the following: Data.init(), Data.add(s, z), etc.

e Since the specification is silent on this point, for methods that return an object,
or use objects in their state, you can decide to either use references or construct
new objects. The implementation will be easier if you just work in terms of
references to objects.

6. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

7. Any changes to the assignment specification will be announced in class.
It is your responsibility to be aware of these changes. Please monitor all
pushes to the course git repo.

Curve ADT Module

Template Module
CurveADT

Uses

SeqServices

Syntax

Exported Constants
MAX_ORDER = 2
DX =1x1073
Exported Types

Curvel =7

Exported Access Programs

Routine name | In Out Exceptions

new CurveT X :R" Y :R" i:N | CurveT | IndepVarNotAscending,
SeqSizeMismatch,
InvalidInterpOrder

minD R

maxD R

order N

eval r:R R OutOfDomain

dfdx r: R R OutOfDomain

d2fdx2 r: R R OutOfDomain

Semantics

State Variables

minx: R
maxx: R

it R=-R

State Invariant

None

Assumptions

The user will not request function evaluations that would cause the interpolation to select
index values outside of where the function is defined.

Access Routine Semantics

new CurveT(X,Y,1):
e transition: minx, maxx, o, f := Xo, X|x|-1,1, (Av : interp(X, Y, 0,v))
e output: out := self

e cxception: (—isAscending(X') = IndepVarNotAscending|| X | # |Y| = SeqSizeMismatch|i ¢
[1..MAX_ORDER]| = InvalidInterpOrder)

minD():

e output: out := minx

e exception: None
maxD():

e output: out := maxx

e exception: None
order():

e output: out := o0

e cxception: None
eval(x):

e output: out := f(z)

e cxception: (—(minx < z < maxx) = OutOfDomain))

dfdx(x): # approzimate first derivative using forward divided difference

fz+DX)—f(x)

e output: out := X

e exception: (—(minx < z < maxx) = OutOfDomain))

d2fdx2(x): # approximate second derivative using forward divided difference

f(z+2DX)—2f(z+DX)+f(x)
DX?

e output: out :=

e exception: (—(minx < 2 < maxx) = OutOfDomain))

Local Functions

interp: R” x R" x Nx R — R

interp(X, Y, o, v)

= (0o =1 = interpLin(X;, Y}, Xs11, Yiy1,v)|o = 2 = interpQuad(X;_1, Y; 1, X, Vi, Xiy1, Yig1,0))

where ¢ = index(X, v)

10

Data Module

Module
Data

Uses

CurveADT for CurveT, SeqServices for interpLin and index

Syntax

Exported Constants

MAX_SIZE = 10

Exported Access Programs

Routine name | In Out Exceptions
Data_init
Data_add s: CurveT, z: R Full, IndepVarNotAscending
Data_getC 1N InvalidIndex
Data_eval r:R,z:R OutOfDomain
Data_slice r:R,7:N CurveT
Semantics

State Variables

S: sequence of CurveT

Z: sequence of R

State Invariant

S| < MAX_SIZE
1Z| < MAX_SIZE

Assumptions

Data_init() is called before any other access program.

11

Access Routine Semantics
Data_init():
e transition: S, 7 :=<>, <>
e exception: none
Data_add(s, z):
e transition: S, 7 =S| <s>7Z|| <z >
o exception: exc:= (|S| = MAXSIZE = Full|z < Z|z_1 = IndepVarNotAscending)
Data_getC(i):
e output: out := S|i]
e cxception: exc:= (—(0 <i < [S|) = InvalidIndex)
Data_eval(z, z):
e output: out := interpLin(Z;, S;.eval(x), Z;1, Sj+1.eval(x), z), where j = index(Z, z)
e exception: exc := (misInBounds(Z, z) = OutOfDomain)
Data_slice(z,):

e output: out := CurveT(Z,Y,i), where Y = ||(i : N|i € [0..|Z] — 1] : (S;.eval(z))) or
Y = map eval(x) S # in both cases there is an abuse of notation. The idea is simply
to convey that the independent variable is the sequence Z and the dependent variable

1s the sequence where the ith entry is found by evaluating the curve corresponding
to Z; at x.

e exception: None

12

Sequence Services Module

Module

SeqServices

Uses

None

Syntax

Exported Constants

None

Exported Access Programs

Routine name | In Out | Exceptions
isAscending X R B

islnBounds X:R"z:R B

interpLin xRy Rzt Riys Rzt R R

interpQuad o Riyo: Rz Ry Rz :Royo : Rz :R | R

index X:R"x:R N
Semantics

State Variables

None

State Invariant

None

Assumptions

None, unless noted with a particular access program

13

Access Routine Semantics

isAscending(X)
e output: out := —3(ii € [0..|X| — 2] : X;11 < Xj)
e exception: none
isinBounds(X,) # assuming isAscending is True
e output: out := Xo <o < Xx—1
e exception: none
interpLin(z1, Y1, T2, Yo,) # assuming isAscending is True
e output: out := %(m —21)+
e exception: none
interpQuad(xg, Yo, 1, Y1, T2, Y2, T) # assuming isAscending is True
e output: out :=y; + L= (x —21) + %%(m —1p)?
e exception: none
index(X, z) # assuming isAscending is True and isInBounds is True

e output: out := 1 such that X; <z < X,

e cxception: none

14

Plot Module

Module
Plot

Uses
CurveT

Syntax
Exported Constants

None

Exported Access Programs

Routine name | In Out | Exceptions
PlotSeq X:RVY :R" SeqSizeMismatch
PlotCurve c:CurveT,n: N

Semantics

Environment Variables

win: two dimensional sequence of coloured pixels

State Variables

None

State Invariant

None

Assumptions

For plotting the user will select the number of subdivisions to be small enough that there
will not be an interpolation problem with the end points.

15

Access Routine Semantics

PlotSeq(X,Y)

e transition: modify win so that it displays an x-y graph of the data points showing
X and the corresponding Y values. X is the independent variable and Y as the
dependent variable.

e exception: (| X| # |Y| = SeqSizeMismatch)
PlotCurve(c, n)

e transition: modify win so that it displays an x-y graph of the curve ¢ between c.minD
to c.maxD for evaluating ¢ at n equally spaced points in between. For quadratic
interpolation the points c.minD and c.maxD do not have to be plotted, since c.eval()
is problematic for these points. For linear interpolation c.maxD does not have to
be plotted.

e exception: none

16

Load Module

Module
Load

Uses
CurveADT, Data

Syntax
Exported Constants

None

Exported Access Programs

Routine name | In Out | Exceptions
Load s : string
Semantics

Environment Variables

infile: two dimensional sequence of text characters

State Variables

None

State Invariant

None

Assumptions

The input file will match the given specification.

17

Access Routine Semantics
Load(s)

e transition: read data from the file infile associated with the string s. Use this data
to update the state of the Data module. The text file consists of a text file with
the following format, where z; is the value for the ith curve, o; is the order of the
ith curve, 2% is the = value for the jth point of the ith curve, y} is the y value for
the jth point of the ith curve, m is the number of curves and n; is the number of
data points in the ith curve. All data values in a row are separated by commas.
Rows are separated by a new line. Please note, there is no requirement that there
is an equal number of data points for each of the curves. If there is no data past a
certain row, the data entry should be empty, but there will still need to be a comma
to mark the empty spot.

21, 29, 23, vy Zm

01, 09, 03, ceey Om

Ty, YL e 2,y

Ty Yy e T, YR

LE%, y%a) fl?gla ygn (1)

R ey R ,
717,1737 y71L1737 o To—1s Y1
ny—2 yrlzl—2’ ° xglma yglm

1 1
:Unla ynla))

e exception: none

18

	Dates and Deadlines
	Introduction

