
Unit Testing - pytest 1 / 27

Unit Testing - pytest
CS 2ME3/SE 2AA4

Zichen Jiang
Owen Huyn

Department of Computing and Software
McMaster University

February 8, 2018

Unit Testing - pytest 2 / 27

Outline

Outline

1 Introduction

2 pytest

3 Demo

4 Code Coverage

Unit Testing - pytest 3 / 27

Introduction

What is Unit Testing

Unit testing verifies that individual units of code (usually
functions) work as intended
Designed to be simple, easy to write and run
You can test both from a blackbox perspective and a whitebox
perspective

Unit Testing - pytest 4 / 27

Introduction

Who writes unit tests

Developers should test their own code!
The person who wrote the code usually has the best
understanding of what their code does

Unit Testing - pytest 5 / 27

Introduction

Why Unit Test?

You can catch bugs much earlier
Provides documentation on a specific function
Helps developer improve the implementation design of a
function
Every good developer should be a good tester too!
No one likes to work with someone who doesn’t verify/test if
their code works.

Unit Testing - pytest 6 / 27

pytest

What is pytest

pytest is a framework that makes it easy to write small tests
Similar to JUnit (Java), CppUnit (C++)
Knowledge is transferable to another xUnit framework
regardless of language

Unit Testing - pytest 7 / 27

pytest

Getting Started

Installing pytest is very simple, simply run the following
command in your command line
pip install -U pytest

For more information, visit pytest Installation and Getting
Started

https://docs.pytest.org/en/latest/getting-started.html
https://docs.pytest.org/en/latest/getting-started.html

Unit Testing - pytest 8 / 27

Demo

Demo

Let’s get started, I encourage everyone to pull out their
laptops and follow along.
We will test A1 from last year, which was introduced in the
past tutorials
Don’t be afraid to ask any questions!

Unit Testing - pytest 9 / 27

Demo

Create our first unit test file

To start, create a new Python file called test_circles.py in the
same directory of our file that we want to test
You can do this from the command line or any text editor of
your choice. Don’t be afraid to ask any questions!

Unit Testing - pytest 10 / 27

Demo

Create our first test template

To start with our unit test, follow this template:

import pytest

class TestCircles:

1 Import the pytest library
2 Write a unit testing class starting with the word Test

Unit Testing - pytest 11 / 27

Demo

What is Assert?

Wikipedia: “... an assertion is a statement that a predicate
(Boolean-valued function, i.e. a true-false expression) is
expected to always be true at that point in the code. If an
assertion evaluates to false at run time, an assertion failure
results, which typically causes the program to crash, or to
throw an assertion exception.”
Basically, if whatever follows assert is true, it will continue.
Otherwise the test will fail and stop running.

Unit Testing - pytest 12 / 27

Demo

Example of Assert?

To assert something to be true, you can write

assert <true statement >

To assert something to be false, you can write

assert not <false statement >

Unit Testing - pytest 13 / 27

Demo

Writing our first test

import pytest
from CircleADT import *

class TestCircles:

def test_xcoord_are_equal(self):
circle = CircleT (1,2,3)
assert circle.xcoord () == 1

def test_xcoord_are_not_equal(self):
circle = CircleT (1,2,3)
assert not (circle.xcoord () == 2)
or ‘assert circle.xcoord () != 2’

Unit Testing - pytest 14 / 27

Demo

Running our first test

Run this command in your command prompt inside the folder
of your test file: pytest test_circles.py

To run all tests within the directory, just run pytest. It will
search for all files starting with "test_" and run all methods
starting with "test_"

Unit Testing - pytest 15 / 27

Demo

What if a test failed?

Say we have the following code:

import pytest
from CircleADT import *

class TestCircles:

def test_xcoord_are_equal(self):
circle = CircleT (1,2,3)
assert circle.xcoord () == 1

def test_xcoord_are_not_equal(self):
circle = CircleT (1,2,3)
assert circle.xcoord () != 1

Unit Testing - pytest 16 / 27

Demo

What if a test failed?

Unit Testing - pytest 17 / 27

Demo

Floating Point assertions

approx(expected, rel=None, abs=None, nan_ok=False)

rel: relative tolerance
abs: absolute tolerance
nan_ok: facilitates comparing arrays that use NaN to mean
"no data"

By default, approx considers numbers within a relative
tolerance of 1e-6 of its expected value to be equal.

>>> 1.0001 == approx (1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True

Unit Testing - pytest 18 / 27

Demo

Redundant code in tests

import pytest
from CircleADT import *

class TestCircles:

def test_xcoord_are_equal(self):
circle = CircleT(1,2,3)
assert circle.xcoord () == 1

def test_xcoord_are_not_equal(self):
circle = CircleT(1,2,3)
assert circle.xcoord () = 1

Unit Testing - pytest 19 / 27

Demo

Cleaned up code

import pytest
from CircleADT import *

class TestCircles:

def setup_method(self , method):
self.circle = CircleT (1,2,3)

def teardown_method(self , method):
self.circle = None

def test_xcoord_are_equal(self):
assert self.circle.xcoord () == 1

def test_xcoord_are_not_equal(self):
assert self.circle.xcoord () = 2

Unit Testing - pytest 20 / 27

Demo

Setup and Teardown

setup_class(cls)
setup any state specific to the execution of the given class

teardown_class(cls)
teardown any state that was previously setup with a call to
setup_class.

setup_method(self, method)
setup any state tied to the execution of the given method in a
class. setup_method is invoked for every test method of a
class.

teardown_method(self, method)
teardown any state that was previously setup with a
setup_method call.

Unit Testing - pytest 21 / 27

Code Coverage

How much should I test?

Test all requirements in each function
Cover edge cases that may cause unintended consequences
Have an acceptable amount of code coverage
Code coverage will be covered in more detail in future lectures

https://en.wikipedia.org/wiki/Code_coverage

Unit Testing - pytest 22 / 27

Code Coverage

Code Coverage

Function coverage: has each function (or subroutine) in the
program been called?
Statement coverage: has each statement in the program been
executed?

Unit Testing - pytest 23 / 27

Code Coverage

Code Coverage

Branch coverage: has each branch of each control structure
(such as in if and case statements) been executed?

For example, given an if statement, have both the true and
false branches been executed?
Another way of saying this is, has every edge in the program
been executed?

Condition coverage (or predicate coverage): has each Boolean
sub-expression evaluated both to true and false?

Unit Testing - pytest 24 / 27

Code Coverage

Pytest plugin for measuring coverage

https://pypi.python.org/pypi/pytest-cov

https://pypi.python.org/pypi/pytest-cov

Unit Testing - pytest 25 / 27

Code Coverage

Running the coverage plugin

In the source code directory, run pytest --cov

We can see that CircleADT.py has onlyl 51% coverage. This
is because only the methods xcoord and ycoord were tested

Unit Testing - pytest 26 / 27

Code Coverage

Exercise

The rest of the methods are left for you as practices
You can Refer to testStatistics.py for a more complete
breakdown on how to test complicated functions

Unit Testing - pytest 27 / 27

Code Coverage

References

https://docs.pytest.org/en/latest/xunit_setup.html

https://en.wikipedia.org/wiki/Code_coverage

https://docs.pytest.org/en/latest/xunit_setup.html
https://en.wikipedia.org/wiki/Code_coverage

	Introduction
	pytest
	Demo
	Code Coverage

