
Assignment 2 DRAFT

SFWR ENG 2AA4

Files due Feb 15 (11:59 pm), E-mail partner due Feb 16 (11:59 pm), Lab

report due Feb 27 (11:59 pm)

The purpose of this software design exercise is to write a Python program that creates,

uses, and tests an ADT for points, lines and circles. A module that stores a deque of

circles is also to be implemented and tested. As for the previous assignment, you will use

doxygen, make, LaTeX and Python. In addition, this assignment will use PyUnit for unit

testing.

Step 1

Write a module that creates a point ADT. It should consist of a Python code file named

pointADT.py. The specification for this module (Point Module) is given at the end of the

assignment.

Step 2

Write a module that creates a line ADT. It should consist of a Python file named

lineADT.py. The new module should follow the specification (Line Module) given at

the end of the assignment.

Step 3

Write a module that creates a circle ADT. It should consist of a Python file named

circleADT.py. The new module should follow the specification (Circle Module) given at

the end of the assignment.

1

Step 4

Write a module that implements a deque (double ended queue) of circles. It should

consist of a Python file named deque.py. The new module should follow the specification

(Deque of Circles) given at the end of the assignment. Although e�cient use of computing

resources is always a good goal, your implementation will be judged on correctness and

not on performance.

Step 5

Write a module, using PyUnit, that tests all of the other modules together. It should

be an Python file named testCircleDeque.py that uses all of the other modules. Write

a makefile Makefile to run testCircleDeque via make test. Each procedure should

have at least one test case. Record your rationale for test case selection and the results of

using this module to test the procedures in your modules. (You will submit your rationale

with your lab report.) Please make an e↵ort to test normal cases, boundary cases, and

exception cases. Your test program should have the test cases “hard coded” into the

program, rather than expecting user input. If possible, your test program should also

automatically compare the calculated output to the expected output and automatically

state whether the test case has passed or not.

Step 6

Submit the files pointADT.py, lineADT.py, circleADT.py, deque.py, testCircleDeque.py

and Makefile using git. This must be completed no later than 11:59 pm of the deadline

for file submission. You should tag your repo with the name A2Sub.

E-mail the circleADT.py file to your assigned partner. (You should only send this one

file.) Partner assignments will be posted on Avenue. Please do not e-mail your file until

after the deadline for the initial submission has passed. Another student will likewise e-

mail you his or her files. These e-mails should be traded by midnight of the day following

the file submission.

Step 7

After you have received your partner’s files, replace your corresponding files with your

partner’s. Do not make any modifications to any of the code. Run your test module and

record the results. Your evaluation for this step does not depend on the quality of your

partner’s code, but only on your discussion of the testing results.

2

Step 8

Write a report that includes the following:

1. Your name and macid.

2. Your pointADT.py, lineADT.py, circleADT.py, deque.py, testCircleDeque.py

and Makefile files.

3. Your partner’s circleADT.py file.

4. The results of testing your files (along with the rational for test case selection).

5. The results of testing your files combined with your partner’s files.

6. A discussion of the test results and what you learned doing the exercise. List any

problems you found with (a) your program, (b) your partner’s module, and (c) the

specification of the modules.

7. A discussion of ?

8. The specification for the last two access programs (totalArea() and averageRadius())

is missing the definition for the output. Please complete the specification as part

of the assignment submission. You are not required to implement these two access

programs?

9. Discussion of principles.

A physical copy of the lab report is due at the beginning of the lecture on the assigned

due date. -tag gitLab submissions

Notes

1. Place all submitted files in your svn repository in the folder Assig2.

2. Please put your name and student number at the top of each of your source files.

(You should remove the student number before e-mailing any files to your partner.)

3. Your program must work in the ITB labs on moore when compiled by ocamlopt and

ocamlc.

4. If your partner fails to provide you with a copy of his or her files by the deadline,

please tell the instructor via e-mail as soon as possible.

3

5. If you do not send your files to your partner by the deadline, you will be assessed a

20% penalty to your assignment grade.

6. The exceptions in the specification should simply be generated; you do not need to

trap them.

7. For the Python implementation of the modules, you will need to “map” the MIS

syntax to Python syntax. In particular, when the input to an access program

consists of several parameters, you should provide each parameter separately, as

opposed to combining them in a tuple. That is, if function f has two arguments,

the type of f is A ! (B ! C), not A ⇥ B ! C. A concrete example, in Python

syntax, is the constructor for pointT. Please use

class pointT xc yc = ... as opposed to

class pointT (xc ,yc) =

8. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

9. Any changes to the assignment specification will be announced in class. It is your

responsibility to be aware of these changes.

4

Point ADT Module

Template Module

pointADT

Uses

N/A

Syntax

Exported Types

pointT = ?

Exported Access Programs

Routine name In Out Exceptions
new pointT real, real pointT

xcoord real

ycoord real

dist pointT real

rotate real

Semantics

State Variables

xc: real

yc: real

State Invariant

None

Assumptions

None

5

Access Routine Semantics

new pointT (x, y):

• transition: xc, yc := x, y

• output: out := self

• exception: none

xcoord:

• output: out := xc

• exception: none

ycoord:

• output: out := yc

• exception: none

dist(p):

• output: out :=

p
(xc� p.xcoord)

2
+ (yc� p.ycoord)

2

• exception: none

rotate(�):

• � is in radians

• transition:


xc

yc

�
:=


cos� � sin�

sin� cos�

� 
xc

yc

�

• exception: none

6

Line Module

Template Module

lineADT

Uses

pointADT

Syntax

Exported Types

lineT = ?

Exported Access Programs

Routine name In Out Exceptions
new lineT pointT, pointT lineT

startpt pointT

endpt pointT

length real

midpoint pointT

rotate real

Semantics

State Variables

s: pointT

e: pointT

State Invariant

None

Assumptions

None

7

Access Routine Semantics

new lineT (p1, p2):

• transition: s, e := p1, p2

• output: out := self

• exception: none

startpt:

• output: out := s

• exception: none

endpt:

• output: out := e

• exception: none

length:

• output: out := s.dist(e)

• exception: none

midpoint:

• output:

out := new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

• exception: none

rotate (�):

• � is in radians

• transition: s.rotate(�), e.rotate(�)

• exception: none

Local Functions

avg: real ⇥ real ! real

avg(x1, x2) ⌘ x1+x2
2

8

Circle Module

Template Module

circleADT

Uses

pointADT, lineADT

Syntax

Exported Types

circleT = ?

Exported Access Programs

Routine name In Out Exceptions
new circleT pointT, real circleT

centre pointT

radius real

area real

intersect circleT boolean

connection circleT lineT

force circleT, real ! real real

Semantics

State Variables

c: pointT

r: real

State Invariant

None

Assumptions

None

9

Access Routine Semantics

new circleT (cinput , rinput):

• transition: c, r := cinput , rinput

• output: out := self

• exception: none

centre:

• output: out := c

• exception: none

radius:

• output: out := r

• exception: none

area:

• output: out := ⇡r

2

• exception: none

intersect(ci):

• output: 9(p : pointT|insideCircle(p, ci) : insideCircle(p, self))

• exception: none

connection(ci):

• output: out := new lineT(c, ci.centre)

• exception: none

force(ci, f):

• output: out := f(r) · self .areaci .area)

• exception: none

Local Functions

insideCircle: pointT ⇥ circleT ! boolean

insideCircle(p, c) ⌘ p.dist(c.centre)  c.radius

10

Deque Of Circles Module

Module

DequeCircleModule

Uses

circleADT

Syntax

Exported Constants

max size = 20

Exported Access Programs

Routine name In Out Exceptions
init

pushBack circleT FULL

pushFront circleT FULL

popBack EMPTY

popFront EMPTY

back circleT EMPTY

front circleT EMPTY

size integer

disjoint boolean EMPTY

totalArea real EMPTY

averageRadius real EMPTY

Semantics

State Variables

s: sequence of circleT

State Invariant

|s|  max size

11

Assumptions

init() is called before any other access program.

Access Routine Semantics

init():

• transition: s :=<>

• exception: none

pushBack(c):

• transition: s := s|| < c >

• exception: exc := (|s| = max size) FULL)

pushFront(c):

• transition: s :=< c > ||s

• exception: exc := (|s| = max size) FULL)

popBack():

• transition: s := s[0..|s|� 2]

• exception: exc := (|s| = 0) EMPTY)

popFront():

• transition: s := s[1..|s|� 1]

• exception: exc := (|s| = 0) EMPTY)

back():

• output: out := s[|s|� 1]

• exception: exc := (|s| = 0) EMPTY)

front():

• output: out := s[0]

• exception: exc := (|s| = 0) EMPTY)

12

size():

• output: out := |s|

• exception: none

disjoint():

• output

out := 8(i, j : N|i 2 [0..|s|� 1] ^ j 2 [0..|s|� 1] ^ i 6= j : ¬s[i].intersect(s[j]))

• exception: exc := (|s| = 0) EMPTY)

totalArea():

• output

out :=?

• exception: exc := (|s| = 0) EMPTY)

averageRadius():

• output

out :=?

• exception: exc := (|s| = 0) EMPTY)

13

