SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

February 1, 2017

McMaster
University @

Module Decomposition

@ Administrative details
@ Module decomposition

@ Software architecture

@ Design for change

@ Relationship between modules

@ The USES relation

@ Module decomposition by secrets
@ The IS.COMPONENT _OF relation
@ Techniques for design for change

°

Module guide

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

2/37

Administrative Details

@ Assignment 1
» E-mail the instructor if you haven't received your
partner's code
» Lab report due by 11:59 pm February 2
@ Assignment 2
» Files due by 11:59 pm Feb 15
» E-mail partner files by 11:59 pm Feb 16
» Lab report due by 11:59 pm Feb 27
@ Midterm exam
» March 1, 7:00 pm, TSH/120
» 90 minute duration
» Multiple choice - 30-40 questions?
» Open book (any paper)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

3/37

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

4/37

QueueADT Module Syntax (Abstract Object)

What is missing from this interface?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

If MAX_SIZE is exported, what could you replace isempty and
isfull by? (This new interface will move some work to the

programmer.)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

5/37

Quality Criteria

o Consistent
» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features (only one way to
access each service)

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related
@ Low coupling - not strongly dependent on other modules

(]

Opaque - information hiding

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 6/37

QueueADT Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop T NOT_INIT, EMPTY
size integer | NOT_INIT

isinit boolean

@ front has been merged with pop
@ size replaces isempty and isfull

@ isinit is added

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

7/37

Modular Decomposition

@ Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

@ We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

@ We need to produce a software architecture

@ The architecture (modular decomposition) is summarized
in a Software Design Document

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

8/37

Software Architecture

@ Shows gross structure and organization of the system to

be defined
@ lts description includes the description of

» Main components of the system

Relationship among those components
Rationale for decomposition into its components
Constraints that must be respected by any design of the
components

v

v

v

@ Guides the development of the design

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 9/37

Specific Techniques for Design for Change

What software tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

10/37

Specific Techniques for Design for Change

@ Anticipate definition of all family members
@ Identify what is common to all family members, delay
decisions that differentiate among different members
e Configuration constants
» Factor constant values into symbolic constants
» Compile time binding
» MAXSPEED = 5600
e Conditional compilation
» Compile time binding
» Works well when there is a preprocessor, like for C
» If performance is not a concern, can often “fake it” at
run time
e Make
@ Software generation
» Compiler generator, like yacc
» Domain Specific Language

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 11/37

Questions

@ How to define the structure of a modular system?

@ What are the desirable properties of that structure?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 12/37

Relationships Between Modules

@ Let S be a set of modules
5 — {Ml, Mz, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If M; and M; are in S, < M;, M; >€ r can be written as
M,-rMJ-

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 13/37

Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rt M; A M;rtM;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 14/37

Relations Continued

@ Relations can be represented as graphs

@ A hierarchy is a DAG (directed acyclic graph)

/l ‘/l a DAG g u/l

./lv\?“

2 TN

a) b)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 15/37

DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 16/37

DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 17/37

The USES Relation

@ A uses B

» A requires the correct operation of B

» A can access the services exported by B through its
interface

This relation is “statically” defined

A depends on B to provide its services

For instance, A calls a routine exported by B

v

\{

v

@ A is a client of B; B is a server

@ Inheritance, Association and Aggregation imply Uses

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 18/37

Desirable Properties

@ USES should be a hierarchy
» Hierarchy makes software easier to understand
» We can proceed from the leaf nodes (nodes that do not
use other nodes) upwards
» They make software easier to build
» They make software easier to test

@ Low coupling
@ Fan-in is considered better than Fan-out: WHY?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 19/37

Hierarchy

@ Organizes the modular structure through levels of
abstraction

@ Each level defines an abstract (virtual) machine for the
next level
@ Level can be defined precisely

» M; has level 0 if no M; exists such that M;rM;
> Let k be the maximum level of all nodes M; such that
MirM;, then M; has level k + 1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 20/37

Module Decomposition (Parnas)

Conceptual | APP

modules
| |
H/W A S/w Behav.
hiding ecision hiding

—— | .

Leaf modules

./ contair\l |
7

codef !

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 21/37

Module Decomposition (Parnas)

Does the module decomposition on the previous slide show a
Uses relation? Is it a DAG? Is it a tree?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 22/37

IS COMPONENT _OF

@ The Parnas decomposition by secrets gives an
IS_.COMPONENT _OF relationship

@ Used to describe a higher level module as constituted by a
number of lower level modules

e A IS_.COMPONENT_OF B means B consists of several
modules of which one is A

e B COMPRISES A

o Ms; = {M]My € S A My 1S.COMPONENT_OF M;} we
say that Ms; IMPLEMENTS M;

@ How is IS.COMPONENT _OF represented in UML?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 23/37

A Graphical View
M_ M 5 My

W i s N,
\ l/ in\%

My
(IS_COMPONENT_OF) (COMPRISES)

They are a hierarchy

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 24/37

Product Families

o Careful recording of (hierarchical) USES relation and
IS_.COMPONENT _OF supports design of program families

@ Attempt to recognize modules that will differ in
implementation between family members

@ New program family member should start at the
documentation of the design, not with the code

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 25/37

Remember - Information Hiding

@ Basis for design (i.e. module decomposition)
@ Implementation secrets are hidden to clients

@ They can be changed freely if the change does not affect
the interface

@ Try to encapsulate changeable requirements and design
decisions as implementation secrets within module
implementations

@ Decomposition by secrets, not by sequence of steps

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

26/37

Prototyping

@ Once an interface is defined, implementation can be done
» First quickly but inefficiently
» Then progressively turned into the final version

@ Initial version acts as a prototype that evolves into the
final product

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 27/37

Module Guide

@ Part of Parnas’ Rational Design Process (RDP)

@ When decomposing the system into modules, we need to
document the module decomposition so that developers
and other readers can understand and verify the
decomposition

@ Parnas proposed a Module Guide (MG) based on the
decomposition module tree shown earlier

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

28/37

RDP - MG

@ The MG consists of a table that documents each
module’s service and secret

@ Conceptual modules will have broader responsibilities and
secrets

@ Following a particular branch, the secrets at lower levels
“sum up” to the secret at higher levels

@ The leaf modules that represent code will contain much
more precise services and secrets

@ Only the leaf modules are actually implemented

@ The MG should list the likely and unlikely changes on
which the design is based

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 29/37

Example

3. Module Hicrarchy

Tevel T Tevel 2 Tevel 3 Tevel 4
Mouse Motion module
Keyboard Input module
File Reading module
‘Output Device Screen Display module
module File Writing module
Master Control module
Frame Display module
Tser Command Detect module

Input Device
Hardware-Hiding ‘module
module

Boundary
Specification
Geometry Specification module SRV
Specification
odule
Function Drivers Material Property
module Specification
module

Behavior-Hiding
module

Boundary
Condition
Specification

Physical Attributes
module

Save_Load Tnput
le module

Save_Load module Ve OttputFie-|

Frame Geometry module

Shared Services Error Handle module
module Mesh Drawing module

Drawing Tools module

Combimatorial Grid module |

Mesh Data module [Geometric Grid module |
Physical Attributes module

Grid Function Vector module

Generic Tools Edge lterator module

module Boundary Tterator module

Cell Neighbor Search module

Geometric Mesh Generation module

Physical Attrbutes Assignment
module

Tnput Data module

Software Decision
module

Mesh Generating
Algorithm module

179

Link

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 30/37

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Lectures/L13_ModuleDecomposition/DecompBySecretHierarchyExample.png

Module Details

@ For each module

@ Module name

@ Secret (informal description)

@ Service or responsibility (informal description)

@ For “leaf” modules add

» Associated requirement
» Anticipated change
» Module prefix

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

31/37

RDP - MIS

@ For each leaf module we need to document its interface
and its implementation

@ In RDP, the interfaces are documented in the Module
Interface Specification (MIS)

@ We have already seen MIS examples specified as Module
State Machines

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

32/37

References

@ Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. WEeiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

@ Parnas, D. L., “On a 'Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336-339

@ Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053-1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 33/37

References Continued

@ Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128-138,

@ Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 34/37

References Continued

@ Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it", IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

@ Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

@ Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu /428727 .html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 35/37

References Continued

@ Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

@ EISheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh

generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

@ Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 36/37

References Continued

@ Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

@ Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

e Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 37/37

