SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

09 Module Interface Specification
(H&S Ch. 7, Ghezzi Ch. 4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 22, 2017

McMaster
University @

Module Interface Specification

@ Administrative details
@ Overview of MIS

e MIS Template

» Syntax
» Semantics

@ Sequence example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 2/26

Administrative Details

@ Assignment 1

> Files due by midnight January 28

» E-mail partner files by January 28

» Lab report due February 2

» Using Python 2.7, doxygen, make, LaTeX, git
» Make sure everything runs on mills

» Use the folder structure and filenames given!

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 3/26

Sequences

@ A sequence is an ordered collection of elements of the
same type

» Elements can occur more than once
» Sometimes referred to as a list
» Similar to an array

@ Declare a sequence of type T by sequence of T

@ < Xp,Xy,..., X, > for n > 0 for a sequence with elements
XQy X1y ++vy Xn

@ <> is the empty sequence

@ Position in a sequence is zero relative

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 4/26

Overview of MIS

@ The MIS precisely specifies the modules observable
behaviour - what the module does

@ The MIS does not specify the internal design

@ The idea of an MIS is inspired by the principles of
software engineering

@ Advantages

>

>

>

| 4

Improves many software qualities

Programmers can work in parallel

Assumptions about how the code will be used are
recorded

Test cases can be decided on early, and they benefit
from a clear specification of the behaviour

A well designed and documented MIS is easier to read
and understand than complex code

Can use the interface without understanding details

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

5/26

Overview of MIS

@ Options for specifying an MIS
» Trace specification
» Pre and post conditions specification
» Input/output specification
» Before/after specification - module state machine
» Algebraic specification

@ Best to follow a template

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

6/26

MIS Template

@ Uses

>

Imported constants, data types and access programs

@ Syntax

>

>

Exported constants and types
Exported functions (access routine interface syntax)

@ Semantics

>

>

v vV Vv VY

v

State variables

State invariants
Assumptions

Access routine semantics
Local functions

Local types

Local constants
Considerations

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

7/26

MIS Uses Section

Specify imported constants
Specify imported types
Specify imported access programs

The specification of one module will often depend on
using the interface specified by another module

When there are many modules the uses information is
very useful for navigation of the documentation

Documents the use relation between modules

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

8/26

MIS Syntax Section

@ Specify exported constants

@ Specify exported types

@ Specify access routine names, the input and output
parameter types and exceptions

@ Show access routines in tabular form

» Important design decisions are made at this point
» The goal is to have the syntax match many
implementation languages

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

9/26

Syntax of a Sequence Module

Exported Constants

MAX_SIZE = 100

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 10/26

Syntax of a Sequence Module Continued

Exported Access Programs

Routine name | In Out Exceptions
seq_init

seq_add integer, integer FULL, POS
seq_del integer POS
seq_setval integer, integer POS
seq_getval integer integer | POS
seq_size integer

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

11/26

MIS Semantics Section

@ State variables

» Give state variable(s) name and type
» State variables define the state space
» If a module has state then it will have “memory”

@ State invariant

» A predicate on the state space that restricts the “legal”
states of the module

» After every access routine call, the state should satisfy
the invariant

» Cannot have a state invariant without state variables

» Just stating the invariant does not “enforce” it, the
access routine semantics need to maintain it

» Useful for understandabilty, testing and for proof

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 12/26

Semantics Section Continued

@ Local functions, local types and local constants

» Declared for specification purposes only

» Not available at run time

» Helpful to make complex specifications easier to read
e Considerations

» For information that does not fit elsewhere

» Useful to tell the user if the module violates a quality

criteria

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 13/26

Sequence MIS Semantics

State Variables
What type should the state variable have?

State Invariant
What state invariant should we have?

Assumptions
seq_init() is called before any other access program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 14/26

Sequence MIS Semantics

State Variables
s: sequence of integer

State Invariant

What state invariant should we have?

Assumptions
seq_init() is called before any other access program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 15/26

Sequence MIS Semantics

State Variables
s: sequence of integer

State Invariant
|s| < MAX_SIZE

Assumptions
seq_init() is called before any other access program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 16/26

Sequence MIS Semantics Continued

Access Routine Semantics

seq_init():
@ transition: What should the state transition be?

@ exception: none

seq_add(i, p):
@ transition: s := s[0..;i — 1]|| < p > ||s[i..7]
@ exception: exc := (|s| =7) What exceptions? How
characterized?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

17/26

Sequence MIS Semantics Continued

Access Routine Semantics

seq_init():
@ transition: s :=<>

@ exception: none

seq_add(i, p):
e transition: s := s[0..;i — 1]|| < p > ||s[i..|s| — 1]
@ exception: exc := (|s| =7) What exceptions? How
characterized?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

18/26

Sequence MIS Semantics Continued

Access Routine Semantics

seq_init():
@ transition: s :=<>

@ exception: none

seq_add(i, p):
e transition: s :=s[0..i — 1]|| < p > ||s[i..|s| — 1]

@ exception:
exc := (|s| = MAXSIZE = FULL | i ¢ [0..|s|]] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

19/26

Access Routine Semantics Continued
seq_del(/):

@ transition: s :=7

@ exception: exc :=7

seq_setval(i, p):
@ transition: ?

@ exception: ?

seq_getval(i):
@ output: 7

@ exception: ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 20/26

Access Routine Semantics Continued

seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]

@ exception: exc :=7

seq_setval(i, p):
@ transition: ?

@ exception: ?

seq_getval(i):
@ output: 7

@ exception: ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 21/26

Access Routine Semantics Continued

seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|]s| — 1] = POS)

seq_setval(i, p):
@ transition: ?
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

seq_getval(i):
@ output: 7
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

22/26

Access Routine Semantics Continued

seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|]s| — 1] = POS)

seq_setval(i, p):
@ transition: s[i] :=p
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

seq_getval(i):
@ output: 7
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

23/26

Access Routine Semantics Continued

seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|]s| — 1] = POS)

seq_setval(i, p):
@ transition: s[i] :=p
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

seq_getval(i):
@ output: out := sJi]
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

24/26

Access Routine Semantics Continued

seq_size():
@ output: 7

@ exception: ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 25/26

Access Routine Semantics Continued
seq_size():
@ output: out := |s]

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 26/26

