Assignment 3, Part 1, Specification

SFWR ENG 2AA4
March 22, 2018

The purpose of this software design exercise is to design and implement a portion of
the specification for a Geographic Information System (GIS). This document shows the
complete specification, which will be the basis for your implementation and testing. In
this specification natural numbers (N) include zero (0).

[The parts that you need to fill in are marked by comments, like this one. In several of
the modules local functions are specified. You can use these local functions to complete

the missing specifications. —SS]

Map Types Module

Module
MapTypes

Uses
N/A

Syntax
Exported Constants

None

Exported Types

CompassT = {N, S, E, W}

LanduseT = {Recreational, Transport, Agricultural, Residential, Commercial}
RotateT = {CW, CCW}

Exported Access Programs

None

Semantics
State Variables

None

State Invariant

None

Point ADT Module

Template Module
PointT

Uses
N/A

Syntax
Exported Types
[What should be written here? —SS|PointT = ?

Exported Access Programs

Routine name | In Out Exceptions
PointT Z, 7. | PointT

X Z

y 7

translate Z, 7 | PointT

Semantics

State Variables
xe: [What is the type of the state variables? —SS|Z
yc: [What is the type of the state variables? —SS|Z
State Invariant

None

Assumptions

The constructor PointT is called for each object instance before any other access routine
is called for that object. The constructor cannot be called on an existing object.

Access Routine Semantics
PointT(x, y):

e transition: [What should the state transition be for the constructor? —SS|ze, yc :=
T,y

e output: out := self

e exception: None

e output: out := zc

e cxception: None

e [What should go here? —SSloutput: out := yc
e exception: None
translate(Ax, Ay):
e [What should go here? —SSloutput: out := PointT(zc + Az, yc + Ay)

e cxception: [What should go here? —SS|None

Line ADT Module

Template Module
LineT

Uses
[What should go here? —SS|PointT, MapTypes

Syntax
Exported Types
LineT =7

Exported Access Programs

Routine name | In Out Exceptions
LineT PointT, CompassT, N | LineT invalid_argument
strt PointT

end PointT

orient CompassT

len N

flip LineT

rotate RotateT LineT

translate L, 7 LineT

Semantics

State Variables

s: PointT
o: CompassT
L: N

State Invariant

None

Assumptions

The constructor LineT is called for each object instance before any other access routine
is called for that object. The constructor cannot be called on an existing object.

Access Routine Semantics
LineT(st, ornt,[):
e transition: s, o0, L := st,ornt,l
e output: out := self

e exception: [Write the spec for an exception when the length of the line is 0 —
SSlexc := (L = 0 = invalid_argument)

strt():
e output: out := PointT(s.z(), s.y())
e exception: None

end():

e output: [Write the spec for returning the end point of the line. —SS|out :=
PointT((o = W = s.o — (L — 1)[o = E = s.x + (L — 1)|True = s.z),(o = N =
sy+(L—1)jo=8S= sy—(L—1)True = s.y))

e exception: None
orient():

e output: out := o

e exception: None
len():

e output: out := L

e exception: None

flip():

e output: [Write the spec for returning a new line that is the mirror image of the
current line. That is, the start point and length of the new line will remain the
same, but the orientation will be changed by 180 degrees —SS]out := LineT(s, (o =
N=Slo=S=No=W=Elo=E=W), L)

e exception: None

rotate(r):
out :=

r=CW o=N [? —SS|LineT (s, E, L)

0=3S [? —SS]LineT (s, W, L)

o=W [? —SS]LineT(s, N, L)

e output: o=E [? —SS]LineT(s, S, L)
r=CCW |o=N [? —SS]LineT (s, W L)

0=3S [? —SS|LineT (s, E, L)

o=W [? —SS]LineT(s, S, L)

o=E [7 —SS]LineT(s, N, L)

e exception: None

translate(Ax, Ay):

e output: [Add the missing spec —SS]out

e exception: None

:= LineT(s.translate(Ax, Ay), o0, L)

Path ADT Module

Template Module

PathT

Uses

PointT, LineT, MapTypes

Syntax
Exported Types
PathT =7

Exported Access Programs

Routine name | In Out Exceptions
PathT PointT, CompassT, N | PathT

append CompassT, N invalid_argument
strt PointT

end PointT

line N LineT | outside_bounds
size N

len N

translate L, 7 PathT
Semantics

State Variables

s: sequence of LineT

State Invariant

None

Assumptions

e The constructor PathT is called for each object instance before any other access
routine is called for that object. The constructor cannot be called on an existing
object.

Access Routine Semantics
PathT(st, ornt,1):

e transition: [What is the spec to add the first element to the sequence of LineT?
—SS]s[0] := LineT(st, ornt,)

e output: out := self
e exception: None
append(ornt,[):

e transition: [What is the missing specification? The appended line starts at a point
adjacent to the end point of the previous line in the direction ornt. The lines are
not allowed to overlap. —SS]|s := s||(LineT(adjPt(ornt), ornt, ()

e exception: [What is the specification for the exception? An exception should be
generated if the introduced line overlaps with any of the previous points in the
existing path. —SS]

exc =
(pointsInLine(LineT(st, ornt,))N(U(I : LineT|l € s : pointsInLine(l))) # () = invalid_argument)

strt():

e output: [What is the missing spec? —SS]out := s[0].strt

e exception: None
end():

e output: [What is the missing spec? —SS]Jout := s[|s| — 1].end

e exception: None

line(4):

e output: [Returns the ith line in the sequence. What is the missing spec? —SS|out :=
LineT (s[i].strt(), s[¢].orient(), s[i].len())

e exception: [Generate the exception if the index is not in the sequence. —SSlexc :=
(i > |s| = outside_bounds)

size:
e output: [Output the number of lines in the path. —SS|out := |s|
e exception: None

len:

e output: [Output the total number of points (grid cells) on the path, including the
beginning and end points (cells). —SS|out := +(I : LineT|l € s : [.len)

e exception: None
translate(Ax, Ay):

e output: Create a new PathT object with state variable s’ such that:
V(i : NJi € [0..]s] — 1] : §'[i] = s[i].translate(Az, Ay))
e exception: None
Local Functions
pointsInLine: LineT — (set of PointT)
pointsInLine (I)

= {i: N|i € [0..(l.len — 1)] : l.strt.translate([Completethespec. — — — S5]
(l.orient = W = —i|l.orient = E = i|True = 0), ({.orient = N = i|l.orient = S = —i|True = 0))}

adjPt: CompassT — PointT

adjPt(ornt) =
ornt =N | s||s| — 1].end.translate[? — — — SS](0, 1)
ornt =S | s||s| — 1].end.translate[? — — — S5](0, —1)
ornt = W | s[|s| — 1].end.translate[? — — — SS](—1,0)
ornt = E | s[|s| — 1].end.translate[? — — — S5](1,0)

10

Generic Seq2D Module

Generic Template Module

Seq2D(T)

Uses

MapTypes, PointT, LineT, PathT

Syntax
Exported Types
Seq2D(T) =7

Exported Constants

None

Exported Access Programs

Routine name | In Out Exceptions

Seq2D seq of (seq of T), R | Seq2D | invalid_argument

set PointT, T outside_bounds

get PointT T outside_bounds

getNumRow N

getNumCol N

getScale R

count T N

count LineT, T N invalid_argument

count PathT, T N invalid_argument

length PathT R invalid_argument

connected PointT, PointT B invalid_argument
Semantics

State Variables

s: seq of (seq of T)

scale: R

11

nRow: N
nCol: N
State Invariant

None

Assumptions

e The Seq2D(T) constructor is called for each object instance before any other access
routine is called for that object. The constructor can only be called once.

e Assume that the input to the constructor is a sequence of rows, where each row is
a sequence of elements of type T. The number of columns (number of elements) in
each row is assumed to be equal. That is each row of the grid has the same number
of entries. s[i][j] means the ith row and the jth column. The Oth row is at the
bottom of the map and the Oth column is at the leftmost side of the map.

Access Routine Semantics

Seq2D(S, scl):
e transition: [Fill in the transition. —SS]|s, scale, nCol, nRow := S, scl, |S[0]], | S|
e output: out := self

e exception: [Fill in the exception. One should be generated if the scale is less than
zero, or the input sequence is empty, or the number of columns is zero in the first
row, or the number of columns in any row is different from the number of columns
in the first row. —SS|exc := (scale < 0V |S| =0V |S[0]| = 0 = invalid_argument|
=V(l :seq of T|l € S : || = |S[0]|) = invalid_argument)

set(p, v):
e transition: [? —SS]s[p.y][p.x] :=v

e exception: [Generate an exception if the point lies outside of the map. —SSlexc :=
(—validPoint(p) = outside_bounds)

get(p):

e output: [? —SS|out := s[p.y|[p.x]

12

e exception: [Generate an exception if the point lies outside of the map. —SSlexc :=
(—validPoint(p) = outside_bounds)

getNumRow/():
e output: out := nRow
e exception: None
getNumCol():
e output: out := nCol
e exception: None
getScale():
e output: out := scale
e exception: None
count(t: T):

e output: [Count the number of times the value ¢ occurs in the 2D sequence. —
SSJout := +(i, j : N|validRow(i) A validCol(j) A s[i][j] =t : 1)

e exception: None
count(l: LineT, ¢: T):

e output: [Count the number of times the value ¢ occurs in the line I. —SS|out :=
+(p : PointT|p € pointsInLine(l) A s[p.y|[p.x] =1t : 1)

e cxception: [Exception if any point on the line lies off of the 2D sequence (map)
—SS|exc := (—wvalidLine(!) = invalid_argument)

count(pth: PathT, ¢: T):

e output: [Count the number of times the value ¢ occurs in the path pth. —SS|out :=
+(p : PointT|p € pointsInPath(pth) A s[p.y|[p.x] =t : 1)

e exception: [Exception if any point on the path lies off of the 2D sequence (map)
—SS|exc := (—wvalidPath(pth) = invalid_argument)

length(pth: PathT):

13

e output: [Use the scale to find the length of the path. —SS]out := pth.len - scale

e exception: [Exception if any point on the path lies off of the 2D sequence (map)
—SS|exc := (—wvalidPath(pth) = invalid_argument)

connected(p;: PointT, py: PointT):

e output: [Return true if a path exists between p; and p, with all of the points
on the path being of the same value. p; and py are considered to be part of the
path. —SS| out := I(pth : PathT|validPath(pth) A pth.strt = p; A pth.end = py :
count(pth, s[p1.y][p1.z]) = pth.len)

e exception: [Return an exception if either of the input points is not valid. —SS]exc :=
(—validPoint(p,) V —validPoint(p;) = invalid_argument)

Local Functions
validRow: N — B

[returns true if the given natural number is a valid row number. —SS]validRow (i) = 0 <
i < (nRow — 1)

validCol: N — B
[returns true if the given natural number is a valid column number. —SS]validCol(j) =
0<j<(@nCol—1)

validPoint: PointT — B
[Returns true if the given point lies within the boundaries of the map. —SS]validPoint(p) =
validRow(p.y) A validCol(p.x)

validLine: LineT — B

[Returns true if all of the points for the given line lie within the boundaries of the map.
—SS|validLine(l) = V(p : PointT|p € pointsInLine(!) : validPoint(p))

validPath: PathT — B

[Returns true if all of the points for the given path lie within the boundaries of the map.
—SS]validPath(pth) = ¥(p : PointT|p € pointsInPath(pth) : validPoint(p))

pointsInLine: LineT — (set of PointT)

14

pointsInLine (I) [The same local function as given in the Path module. —SS]

= {i: NJi € [0..([.len — 1)] : [.strt.translate(
(l.orient = W = —i|l.orient = E = i|True = 0), ({.orient = N = i|l.orient = S = —i|True = 0))}

pointsInPath: PathT — (set of PointT)
[Return the set of points that make up the input path. —SS] pointsInPath(p) = U(i :
N|i € [0..p.size| : pointsInLine(p.line(7)))

15

LanduseMap Module

Template Module
LanduseMapT is Seq2D(LanduseT)

DEM Module

Template Module
DEMT is Seq2D(Z)

16

1 Critique of Design

Write a critique of the interface for the modules in this project. Is there anything missing?
Is there anything you would consider changing? Why?

17

