Tutorial 10 — Design Specifications

Week of 20-24, March, 2017
Prepared by: Gurankash Singh

Othello Game

* 8 x 8 board
* 2 Players — Black & White

e B I L E

Objective

* To have the majority of your colour discs
on the board at the end of the game

» Each player takes 32 discs and chooses
one colour

e Pieces are double sided

Starting board

e Place 4 discs in the center of the board; 2
black 2 white so that the discs with
matching colors touch diagonally

e Black goes first

Scoring

e Outflank - to surround a row of your
opponent’s discs with two of your own
discs

e Row - one or more discs that form a line
horizontally, vertically or diagonally

Rules

I. Black always moves first.

2. If on your turn you cannot outflank and flip at
least one opposing disc, your turn is forfeited
and your opponent moves again. However, if a
move is available to you, you may not forfeit
your turn.

Rules Continued

3. A disc may outflank any number of discs in
one or more rows in any number of
directions at the same time - horizontally,
vertically or diagonally (A row is defined as
one or more discs in a continuous straight

line).
- O) o
[) RO [[Of4
$ & RO (O 4
Dlse '.".' Thaszsa * ':::'{:1-' "
placed 1 dlees D
hara filppod A

Rules Continued

4. You may not skip over your own colour disc
to outflank an opposing disc.

This dise
only
autflan ks

and flps L ﬁ:'.'-' D ‘.

White dise 1.

4§

Rules Continued

5. Discs may only be outflanked as a direct result
of a move and must fall in the direct line of
the disc placed down.

Olge

Thasa

laran
P ‘ + dlses

hara

ﬂwm*

L O
O
L
&
-

L dh b b 4
el
O
&

Thasa dlses

ara not flpped

{aven though
thay appear to

bae outlanked)

Rules Continued

6. All discs outflanked in any one move must be
flipped.

7. If a player runs out of discs, but still has an
opportunity to outflank an opposing disc on

his or her turn, the opponent must give the
player a disc to use.

Rules Continued

8. When it is no longer possible for either player
to move, the game is over. Discs are counted
and the player with the majority of his or her
colour discs on the board is the winner.
NOTE: It is possible for a game to end before
all 64 squares are filled.

Othello Module

e Let’s write a module that stores the state of the
game board and the status of the game.

* You do not need to worry about modules that
display graphics, or control the game play, or
determine the strategies of a computer
opponent, etc.

Things to consider

e The state of the game board could be modelled
as a two dimensional sequence of {free, black,
white}

* You will need a state variable that represents
whose turn it is

e The game state module likely makes more sense
as an abstract object than it does as an abstract
data type

e You will need a routine to initialize the board

Things to consider continued

e You will need to be able to determine whether
a move is valid or not

* You will need to be able to inspect the state of
any cell of the game board

* You should be able to determine who is winning
for any state of the game board

* You need to be able to tell when the game is
over

* You will need to be able to determine whether
there are any valid moves for a given player

Model, Uses, Syntax

Othello Module

Module
Othello

Uses
:'\]J;"A

Syntax
Exported Constants
SIZE = 8 //size of the board in each direction

Exported Types
cellT = { FREE, BLACK, WHITE }

Access Programs

Exported Access Programs

Routine name | In Out Exceptions

it

move integer, integer, cellT OutOfBoundsException, InvalidMove-
Exception, WrongPlayverException

switch_turn ValidMoveExistsException

geth integer, integer cellT OutOfBoundsException

get_turn cellT

count cell T integer

is_valid_mowve integer, integer, cellT | boolean | OutOfBoundsException

is_winning cell T boolean

is_any_valid_move | cellT boolean

is_game_over boolean

Semantics

Semantics
State Variables

b: boardT
blacksturn: boolean

State Invariant

count(BLACK) + count(WHITE) + count(FREE) = SIZE x SIZE

Assumptions

The init method is called for the abstract object before any other access routine is
called for that object. The init method can be used to return the state of the game
to the state of a new game.

Access Routine Semantics

init():

e LrAnsItIon:

blacksturn, b = true, <

s oXCeption none

< FREE, FREE, FREE, FREE,
< FREE, FREE, FREE, FREE,
< FREE, FREE, FREE, FREE,
< FREE, FREE, FREE, WHITE,
< FREE, FREE, FREE, BLACK,
< FREE, FREE, FREE, FREE,
< FREE, FREE, FREE, FREE,
< FREE, FREE, FREE, FREE,

FREE, FREE, FREE, FREE =
FREE, FREE, FREE, FREE =
FREE, FREE, FREE, FREE =
BLACK, FREE, FREE, FREE =

WHITE, FREE, FREE, FREE = ~

FREE, FREE, FREE, FREE =
FREE, FREE, FREE, FREE =
FREE, FREE, FREE, FREE =

Access Routine Semantics

movel(i, j, c):

o transition: blacksturn = —blackstuwrn and b such that
UpdateN5(i, j, c, b)a UpdateWE(i, j, c, b)A UpdateNESW(i, 4, ¢, i) UpdateNWSE(i, j, c. b)

e oxception exc (= (lovalidPosition(i, j) = OutOfBoundsException| -is_vahd_move(i, j. ¢) =
[nvalidMoveException|-is_correct Player(blacksturn, c) = WrongPlayerException)

switch_turn():
e transition: dlackstuwrn = —-blacksturn

e exception exc = (isany valid_move() = ValidMoveExistsException)

Access Routine Semantics

geth(1, 1)

e output: out = b[i, j

e exception exc = (InvalidPosition(i, 7) = OutOfBoundsException)
get_turni):

e output: out ;= [blacksturn = BLACK|-blacksturn = WHITE)

® CXCOPLION: MO

coant(c):

e output: +i{i,j N0 <i <SIZEAQN < j < SIZEEAY, j]l=¢c:1)

- {']{l.'."{'pt'i'l.:'[]: IO

Access Routine Semantics

15_valid_move(1, j, c):

e output: out = (Hi][j] = FREE) A (1s_vahdN{i, j, e, b) v 1sovaludS(i, j e, b) v
s validWii, 7, ¢, b)v isovalidE(i, 7, e, b)v isvalldN'W(i, j, ¢, b)v sovaldNE(i, 5, ¢, b)v
s validSW(i, j. e, b) v 1sovalidSE(d, 5, e, b))

e oxception erc -= (InvalidPosition(i, j) = OutOfBoundsException)
15_winning(c):

e output: out = (¢ = BLACK = count{BLACK) > count{WHITE)|c =
WHITE = counti WHITE) = count{ BLACK)|c = FREE = false)

» OXCOPLION: none

NN

Access Routine Semantics

15 any_valil move(): //Retwns true if a valid move erists for the current player

s OuLput:
out ;= (1,7 : N0 <i< SIZEA 0 < j < SIZE A bli]|j] = FREE :
{ blacksturn = is_valid_move(i, j, BLACK)|-Macksturn = is_validl_move(i, j, WHITE)))
s CXCOPLION: none
15 game_over(): [/ Retuwrns true if neither player has a valid move
e CULpuL:

out ;= —3(i, j: |0 <i < SIZE A D < j < SIZE A bi][j] = FREE : 1s_valid_move(i, 5, BLACK))A
—3(i,j: M0 < i < SIZE A 0 < j < SIZE A bi][7] = FREE : is_valid_move(i, j, WHITE))

L] 'I:':{l.'.‘?l:'ptj'l'.:l[]: TCRTRE:

Local Types

Local Types
boardT = sequence [SIZE, SIZE] of cellT

Local Functions

Local Functions

UpdateNS : mteger « integer » cellT » boardT — boolean
UpdateNS{i, j,c, b) = ¥k : H|(i — CountN({i, j,c, b)) < k < (i + Counts{i, j,c, b)) :
Wk, 7] = ¢

UpdateWE : integer « integer x cellT » board T — boolean

UpdateWE(i, j,e,b) = ¥(Ek - M|(7 — CountW (i, j,c,b)) < k < (7 4+ CoumE(i, 7, c. b)) :
bi, k] = c)

[
{5
A\

Local Functions

UpdateNESW : inteper »« integer = cellT = boardT — boolean

UpdateNESW(i, 7. c.b) =¥k, I : H|(i—CountNE(i, j, ¢, b)) < k < (i+CountSW{i. j, e, b))A
({7 — CountSW(i, j, e, b)) <[< (7 + CountNE(i, j, c, b)) : B[k, [] =)

UpdateNWSE : integer » integer » cellT = boardT — boolean

UpdateWWSE(L, 7, c.b) =Wk, [: B|{i —CountNW/{i, j, c, .L‘I:I]l 5 < (i+CountSE(i, j, ¢, b) A
(7 — ConmtNW(i, j, e, b)) < < (j+ CountSE(i, j.c.b)): b =)

Local Functions

CountIN : integer » integer » collT » boardT — integer

CountMN(i, j.c.b) =
+{k : MjisovalidNii, 5. c, b) A
Dock<iaVil:Hk<I<i:hostie(l,jcb)):1)

CountS : integer »« integer x cellT » boardT — integer

CountS({i, j,c,b) =
+(k : Mis_validS(i, §, c, b) A

i< k< (SIZE —1)AV{l:N|i <1 < k: hostile([,j,c. b)) :

oL,

1}

Local Functions

is_validN : imteger = imteger = cellT = boardT — boolean

s validN{i, j,c.b) =
(kN0 <k < i mendly(k,j,c,b) AVl : Nk <[< i: hostle(l, 7,c,b)))

L.

friendly: imteger » integer x cellT « boardT — boolean

fmendly(i, j,c.b) = b[i,j] = ¢

Local Functions

—

hostile: integer » mteger = cellT » boardT — boolean

j
hostile(i, j,c.b) = (Mi.j] = BLACK = ¢ = WHITE |bji,j] = WHITE = ¢ =
BLACK |c = FREE = false)

Invalid Position: mteger integer — boolean

InvahdPosition(i, j) = ({0 < i < S3IZE) A (0 < j < SIZE})

1s_correct Plaver: hoolean = cellT — boolean

1s_correctPlayer(bt, ¢) = (bt = ¢ = BLACK|-bt = ¢ = WHITE)

References

e http://www.wikihow.com/Play-Othello

e http://www.hannu.se/games/othello/rules.htm

Play Othello

e http://www.hannu.se/games/othello/othello.asp

http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/rules.htm
http://www.hannu.se/games/othello/othello.asp
http://www.hannu.se/games/othello/othello.asp

	Tutorial 10 – Design Specifications
	Othello Game
	Objective
	Starting board
	Scoring
	Rules
	Rules Continued
	Rules Continued
	Rules Continued
	Rules Continued
	Rules Continued
	Othello Module
	Things to consider
	Things to consider continued
	Model, Uses, Syntax
	Access Programs
	Semantics
	Access Routine Semantics
	Access Routine Semantics
	Access Routine Semantics
	Access Routine Semantics
	Access Routine Semantics
	Local Types
	Local Functions
	Local Functions
	Local Functions
	Local Functions
	Local Functions
	References

