
CS 2ME3 Assignment 4, Specification

Emily Horsman

April 9, 2018

This document contains a Module Interface Specification for the Model component
of the game ‘FreeCell’. It assumes that a hypothetical View and Controller component
exists but contains no specification for these components. Due to this assumption, there
are some access programs in the modules below which are not strictly necessary for the
Model MIS, but would be necessary to implement a View and Controller, and happen to
be useful for unit testing. These access programs are commented below.

Instead of having a unique data structure (e.g., a Maybe/Optional type) for the free
cells, all placements in the game are represented with the same data structure. This
is accomplished by having a bounded capacity on this data structure, which is effective
because no placement has an infinite bound anyway. Checking this bound is useless on
the foundation and cascade placements because the rules for their valid moves would pre-
vent the capacity from ever being exceeded. However, I feel that this bound increases
the self-documentation of the instances and is useful for having placements represented
homogeneously.

Different sources of the rules use different terminology for each placement in the game.
Below is the nomenclature of this document (diagram made with draw.io).

1

Game Types Module

Module

GameTypes

Syntax

Exported Constants

Ace : RankT = 1
Jack : RankT = 11
Queen : RankT = 12
King : RankT = 13

Exported Types

PlacementT = { Cell, Foundation, Cascade }
SuitT = { Spades, Clubs, Hearts, Diamonds }
RankT = {n : N |n ∈ [1, 13] : n }

Semantics

State Variables

None

State Invariant

None

2

Generic Stack Module

Generic Template Module

StackADT(T)

Uses

N/A

Syntax

Exported Constants

None

Exported Types

Stack(T) = ?

Exported Access Programs

Routine name In Out Exceptions
Stack N Stack invalid capacity
isEmpty B
isFull B
capacity N
push T full
peek T empty
pop T empty
seq seq(T)

[seq() would be required for a hypothetical view. isEmpty() and isFull() violate essen-
tiality given that capacity() and seq() exist, however I believe this violation gives a more
understandable design which is an acceptable tradeoff. — EH]

Semantics

State Variables

s: seq of T
capacity: N

3

State Invariant

None

Assumptions

• The Stack(T) constructor is called for each object instance before any other access
routine is called for that object.

Access Routine Semantics

Stack(c):

• transition: s, capacity := 〈〉 , c

• output: out := self

• exception: exc := (c = 0⇒ invalid capacity)

isEmpty():

• output: out := |s| = 0

• exception: None

isFull():

• output: out := |s| = capacity

• exception: None

capacity():

• output: out := capacity

• exception: None

push(v):

• transition: s := s || 〈v〉

• exception: exc := (|s| = capacity⇒ full)

peek():

• output: out := s[|s| − 1]

4

• exception: exc := (|s| = 0⇒ empty)

pop():

• transition: s := s[0..|s| − 2]

• exception: exc := (|s| = 0⇒ empty)

seq():

• output: out := s

• exception: None

5

Card Module

Template Module

CardADT

Uses

GameTypes for SuitT, RankT

Syntax

Exported Constants

None

Exported Types

CardT = ?

Exported Access Programs

Routine name In Out Exceptions
CardT SuitT, RankT CardT
suit SuitT
rank RankT
isRed B

Semantics

State Variables

s: SuitT
r: RankT

State Invariant

None

6

Assumptions

• The CardT constructor is called for each object instance before any other access
routine is called for that object.

Access Routine Semantics

CardT(S,R):

• transition: s, r := S,R

• output: out := self

• exception: None

suit():

• output: out := s

• exception: None

rank():

• output: out := r

• exception: None

isRed():

• output: out := s ∈ {Diamonds,Hearts }

• exception: None

7

Game Module

Template Module

GameADT

Uses

CardADT for CardT, StackADT for Stack, GameTypes for PlacementT, Ace, King

Syntax

Exported Constants

None

Exported Types

GameT = ?

Exported Access Programs

Routine name In Out Exceptions
GameT GameT
GameT seq(Stack(CardT)) GameT
hasWon B
isValidMove PlacementT, N,

PlacementT, N
B invalid placement,

empty source
noValidMoves B
performMove PlacementT, N,

PlacementT, N
invalid placement,
invalid move

getCol PlacementT, N Stack(CardT) invalid placement

Semantics

State Variables

cols: seq of Stack(CardT)

State Invariant

None

8

Assumptions

• The GameT() constructor is called for each object instance before any other access
routine is called for that object.

• Any seq(Stack(CardT)) value passed to the GameT(c) constructor will have been
constructed from a previous GameT instance and is thus a valid board.

• Programs using this model specification are aware of the number of cascades, cells,
and foundations. invalid placement will be thrown for an invalid configuration but
there is no method to check whether a placement is valid or not because this is
considered an axiom of the game and moves can only occur from interactions with
the Controller/View.

Access Routine Semantics

GameT():

• transition: cols := rng(possibleCascades) || cells || foundations
where cells, foundations :=
||(i : N | i ∈ [0..3] : 〈Stack(1)〉), ||(i : N | i ∈ [0..3] : 〈Stack(13)〉) [Since the

order of the sequence of same-Stack instances does not matter, || can be used as the
binary operator of a reduce/fold. — EH]

• output: out := self

• exception: None

GameT(c):

• transition: cols := c

• output: out := self

• exception: None

hasWon():

• output: out := ∀ (i : N | i ∈ [12..15] :
¬cols[i].isEmpty() ∧ cols[i].peek().rank() = King)

• exception: None

isValidMove(p, i, q, j):

9

• output:

out :=
q = Cell dst.isEmpty()
q = Foundation p = Foundation false

p 6= Foundation isValidBuild(src.peek(), j)
q = Cascade isValidStack(src.peek(), j)

where src, dst := getCol(p, i), getCol(q, j)

• exception: exc := (
¬isValidPlacement(p, i) ∨ ¬isValidPlacement(q, j)⇒ invalid placement |
getCol(p, i).isEmpty()⇒ empty source

)

noValidMoves():

• output: out := ¬∃(p, q : PlacementT, i, j : N |
isValidPlacement(p, i) ∧ isValidPlacement(q, j) : isValidMove(p, i, q, j))

• exception: None

performMove(p, i, q, j):

• transition: dst.push(src.peek()), src.pop()
where src, dst := getCol(p, i), getCol(q, j) [This is an operational specification to

keep the spec readable and to avoid violating an interface. — EH]

• exception: exc := (
¬isValidPlacement(p, i) ∨ ¬isValidPlacement(q, j)⇒ invalid placement |
¬isValidMove(p, i, q, j)⇒ invalid move

)

getCol(p, i):

• output:
out :=

p = Cascade cols[i]
p = Cell cols[i + 8]
p = Foundation cols[i + 12]

• exception: exc := (¬isValidPlacement(p, i)⇒ invalid placement)

10

Local Functions

isValidPlacement: PlacementT→ N→ B
isValidPlacement(p, i) ≡

(p = Cell ∨ p = Foundation⇒ 0 ≤ i ≤ 3 | p = Cascade⇒ 0 ≤ i ≤ 7)

isValidBuild: CardT→ N→ B
isValidBuild(c, j) ≡ (

s.isEmpty()⇒ c.rank() = Ace |
¬s.isEmpty()⇒ (s.peek().suit() = c.suit() ∧ s.peek().rank() = c.rank()− 1)

)
where s := getCol(Foundation, j)

isValidStack: CardT→ N→ B
isValidStack(c, j) ≡ (

s.isEmpty() |
¬s.isEmpty()⇒ (s.peek().isRed() 6= c.isRed() ∧ s.peek().rank()− 1 = c.rank())

)
where s := getCol(Cascade, j)

isDistinct: Stack(CardT)→ Stack(CardT)→ B
isDistinct(a, b) ≡ ¬∃(i, j : N, c, c′ : CardT |

i ∈ [0..|a.seq()| − 1] ∧ j ∈ [0..|b.seq()| − 1] ∧ c = a.seq()[i] ∧ c′ = b.seq()[j]
: c.suit() = c′.suit() ∧ c.rank() = c′.rank()

)

possibleCascades: seq(Stack(CardT))
possibleCascades ≡ {s : seq(Stack(CardT)) |
|s| = 8 ∧
∀(i : N | i ∈ [0..7] : s[i].capacity() = 19) ∧
∀(i : N | i ∈ [0..3] : |s[i].seq()| = 7) ∧
∀(i : N | i ∈ [4..7] : |s[i].seq()| = 6) ∧
∀(i, j : N | i, j ∈ [0..7] ∧ i 6= j : isDistinct(s[i], s[j]))

: s} [This produces a set of all possible board configurations so that one can be chosen
at randomly. The range expression of this set comprehension denotes what a valid initial
sequence of cascade stacks looks like. — EH]

rng: set(T)→ T
rng(s) ≡ a random member of the set s with each member having a 1/|s| probability of

11

being chosen

12

