Using Git 1/34

Using Git

CS 2ME3/SE 2AA4

Owen Huyn
Steven Palmer

Department of Computing and Software
McMaster University

January 8 - 12

Using Git
Loutline

Outline

What is Version Control?
Prerequisite Software

Using Git
m Git Workflow
m Cloning a Repository
m A Small Example
m Modifying Files
m Pushing Changes
m Syncing Local with Remote
m .gitignore
m Issue Tracking

Additional Resources

Using Git
LWhat is Version Control?

What is Version Control?

m Tracks and provides control over changes to files (source code,
documents, etc.)
m Used to keep a history of code (versions) over a period of time

m Similar to system restore under Windows

m Analogy: saving your progress in a video game

m If a bug is introduced, easy to narrow down to a specific
version and roll back

m Allows developers to work simultaneously (you won't see this
in the course)

Using Git
LWhat is Version Control?

Motivation for Learning to Use Git

m It is a popular version control tool

m Most software development companies use a version control
tool

m Once you have learned one, switching between other version
control tools is easy (same ideas with different syntax)

m Widely used in the open-source community (GitHub, GitLab)
m Many large scale development projects use git

Companies & Projects Using Git

\>ogl m Microsoft Linked [ij) ﬂ]ﬂﬁjﬂ@ﬂg “@g;o F’O(n

" A O Eaon: P X

Using Git

L Prerequisite Software

Installing Git

Linux (Ubuntu):
Run the command:

sudo apt-get install git

OSX:

Two options:

If you have Homebrew
installed, then run:

brew install git

Else you can use the installer

http://brew.sh
http://sourceforge.net/projects/git-osx-installer/

Using Git

L Prerequisite Software

Installing Git

Windows:

Download the installer
Run the installer when download is complete

Follow steps on the next slides for selecting options

https://git-scm.com/download/win

Using Git

L Prerequisite Software

Installing Git

Windows:

Git 2.10.0 Setup - X

Select Components m Make sure these
Which components should be installed? .
settings are on

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

m Association of .sh files
[JAdditional icons . .
oS is optional

indows Explorer integration

ssociate .git* configuration files with the default text editor
ssociate .sh files to be run with Bash
[Use a TrueType font in all console windows

Current selection requires at least 192.7 MB of disk space.

<Bok Conel

Using Git

L Prerequisite Software

Installing Git

Windows:

Git 2100 Setup -

Adjusting your PATH environment
How would you like to use Git from the command line?

(®) Use Git from Git Bash only
This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

O Use Git from the Windows Command Prompt.
This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid dluttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

O Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.
Warning: This will override Windows tools like "find” and "sort". Only
use this option if you understand the implications.

< Back Next > Cancel

Git Bash is a command line
interface in Windows that
knows Bash commands

If you want to use Git Bash
exclusively for git, select the
first option

The second option will allow
you to run git commands
from the command prompt
as well as Git Bash

The third option is not
recommended

Using Git

L Prerequisite Software

Installing Git

Windows:

Git 2.10.0 Setup - X

m Select the first option

Configuring the line ending conversions

How should Git treat line endings in text files? h e re
(®) Checkout Windows-style, commit Unix-style line endings] T h e ot h er o pt | ons W| | I
Git will convert LF to CRLF when checking out text files. When committing . .
text files, CRLF will be converted to LF. For cross-platform projects,
bl ot L S -3 S result in conflicts
Checkout as-is, commit Unix-style line endings
o = z when other people are

Git will not perform any conversion when checking out text files. When .
e e Focommenad s o U Cenreautacet & soto making changes to
O Checkout as-is, commit as-is .
Git will not perform any conversions when checking out or committing yO ur rep O usin g
text files. Choosing this option is not recommended for cross-platform

prejece (oo muocl & set o b, different operating

systems
< Back Cancel y

Using Git

L Prerequisite Software

Installing Git

Windows:

Git 2.10.0 Setup - X

m Select the first option
here

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

(®) Use MinTTY (the default terminal of MSYS2)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty" to work in MinTTY.

O Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe"), which works well
with Win32 console programs such as interactive Python or nodejs, but has a
very limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

< Back Cancel

Using Git

L Prerequisite Software

Installing Git

Windows:

Git 2.10.0 Setup - X

m Check both options

Configuring extra options
Which features would you like to enable?

Enable file system caching
File system data will be read in bulk and cached in memory for certain
operations ("core.fscache" is set to "true"). This provides a significant
performance boost.

Enable Git Credential Manager
The Git Credential Manager for Windows provides secure Git credential storage

for Windows, most notably multi-factor authentication support for Visual Studio
Team Services and Gittub. (requires .NET framework v4.5.1 o or later)

. <o s

Using Git
L using Git
L Git Workflow

Simplified Overview of Git

m The repository for your project is stored on a remote server
m In this course, we will use the CAS GitLab as the remote server
m You should be able to create an account by signing in with
your MACID and password
m If your password isn't working, there is a link to reset your CAS
password to your MACID password on the left
m You will use a local version of the repository to work in and
make changes

m As changes are made, you can stage them and create a
commit that contains the staged changes

m Commits are then pushed to the remote server

https://gitlab.cas.mcmaster.ca/

Using Git
L using Git
LCloning a Repository

Creating a Local Version of a Git Repository

m You can create a local version of a remote repository to work
in by cloning it
m This is done using the command:
git clone <link to repo>
m This will create a new folder in whatever directory you were in
on your terminal/command prompt

m The new folder will have the same name as your project and
contain copies of all of the files on the remote repository

Using Git
L using Git
LCloning a Repository

Creating a Local Version of a Git Repository

B git clone <link to repo>

m To get the <link to repo> using GitLab, go to the main

page of the GitLab project you want to clone and copy/paste
the following:

S

se2aa4_cs2me3 o
Course material for SFWR ENG 2AA4 and COMP SCI 2ME3: Introduction to Software Development

vr Star 65 Y Fork 6 HTTPS v https://gitlab.cas.mcmaster.ca/ Iy E 34 + - A Global ~ Leave project

Using Git
L using Git
LCloning a Repository

Creating a Local Version of a Git Repository

Exercise 1: Clone the course repository

The course repository is located at:
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3
Find the git link to the repository and clone it.

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3

Using Git
L using Git
LA Small Example

A Small Example

Exercise 2: A small example

We will use a small example to learn some git commands. We will
start by creating a new GitLab project:

Log in to GitLab in your web browser.

Create a new project using the green “New Project” button at
the top right of the page.

Give your project a name and click “Create project” (you can
leave all the other options as their defaults).

You are now on the main page for your new empty project.

Clone your empty repository using the repository link near the
top of the page.

@A Follow the instructions on the slides that follow.

Using Git
L using Git
LA Small Example

Tracking a File

m Create a new file in your empty repository called
“helloCountries.py”

m Now run the git status command:

huyno@DESKTOP-75I1186 MINGW64 (master)
$ git status

on branch master

Initial commit

untracked files:
(use "git add <file>..." to include in what will be committed)

helloCountries.py

nothing added to commit but untracked files present (use "git add" to track)

Using Git
L using Git
LA Small Example

git status

m git status displays paths that have differences between the
current state of the repo and the last commit

m Use this command often: it will help you determine
what state your files are in.

Using Git
L using Git
LA Small Example

Making a Commit

m Commits are essentially different versions of your repository.

m Making a new commit means bringing your repository to a
new version, with changes made on top of the last commit.

m To make a new commit, you first need to stage your changed
files.

m To stage a file, use the following command:
git add <relative path to file>

m To stage all modified files, use:
git add *

Using Git
L using Git
LA Small Example

Making a Commit

m You can stage your new file “helloCountries.py” using the
command:
git add helloCountries.py

m Running the git status will show you the new state of your
repository after staging:
huyno@DESKTOP-75I1186 MINGW64 (master)
$ git status
on branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

new file: helloCountries.py

Using Git
L using Git
LA Small Example

Making a Commit

m Now that we have staged the file, we can create a commit
using the command:
git commit -m ‘‘commit message’’

m Make sure to use a meaningful message that explains your
changes so you and other developers can easily tell what
changes you've made.

huyno@DESKTOP- 7511386 MINGW64 (master)
$ git commit -m "Created my hello countries file!"

[master (root-commit) ca72202] created my hello countries file!
Committer: Owen Huyn <Owen Huyn>

Using Git
L using Git
L Modifying Files

Modifying Files

m Now let's make some changes to our file. Add the following

lines to “helloCountries.py” and save it:
print ‘‘Hello Canada!”’
print ‘“‘Hello USA”
m Now run the git status command and notice that git is
aware that the file has been modified:

huyno@DESKTOP-75I1186 MINGW64 (master)
$ git status
lon branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: helloCountries.py

no changes added to commit (use "git add" and/or "git commit -a")

Using Git
Using Git
LModifying Files

Modifying Files

m Now let's do the same thing as before and stage our changes:

huymo@D[SKTOP 7511186 MINGW64 (master)
$ git add helloCountries.p

warn1n? LF will be rep1aced b{ CRLF 1in he]10countries.p¥.

The file will have its original line endings in your working directory.

huyno@DESKTOP-75II186 MINGW64 (master)
$ git status
on branch master
changes to be committed:
(use "git reset HEAD <file>...

to unstage)

modified: helloCountries.py

Using Git
L using Git
L Modi ing Files

Modifying Files

m What if we want to modify a file that has been staged?

m Add the following line to the end of “helloCountries.py” and
save it:
print ‘‘Hello Britain!”

m Now run the git status command:

huyno@DESKTOP-75I1186 MINGW64 (master)
$ git status
on branch master
Changes to be committed:
(use "git reset HEAD <file>...

"

to unstage)
modified: helloCountries.py
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: helloCountries.py

Using Git
L using Git

L Modifying Files

Modifying Files

m Notice that “helloCountries.py” is both staged and unstaged

m This is not a problem:
m Our original 2 lines are currently staged.
m The additional line print ‘‘Hello Britain!’’ is not staged.

m If we commit now, only the first 2 lines that we initially staged

will be part of the commit.

Using Git
Using Git
L Modi ing Files

Modifying Files

m Let's assume that we want both parts to be included in our
next commit.

m All we have to do is stage the file again:

huyno@ESKTOP-75II186 MINGW64 (master)

$ git add helloCountries.py
warning: LF_will be replaced by CRLF in helloCountries.py.

The file will have its original line endings in your working directory.

m Now let's commit the changes:

huyno@DESKTOP- 7511186 MINGW64 (mdsner)
$ git commit -m_"Added some print statements for some countries.

[master 79649c7] Added some print statements for some countries.
committer: Owen Huyn <Owen Huyn>

Using Git
L using Git
LPushing Changes

Pushing Changes to Remote

m When you've made a commit(s) locally, only you can see them

m For others to see your changes, you must push them to the
remote repository on GitLab using the following command:

git push

m If you don’t push your changes, the TAs will not be able
to see your changes. It is very important to remember
to push your changes if you want to receive a grade for
your work!

Using Git
L using Git
LPushing Changes

Pushing Changes to Remote

Exercise 3: Push your changes

Try pushing the changes you've made to your new repository using
git push. After you push, you will be able to see the updates on

GitLab in your web browser.

Using Git
L using Git
LSyncing Local with Remote

Syncing Your Local Repository with the Remote

m When other people push changes to a remote repository on
GitLab, these changes will not automatically show up in your
local version

m In order to get these changes, you must sync your local version
with the remote using the following command:
git pull
m You should frequently execute the git pull command on the
course repo so that you have up-to-date lecture slides,
assignment instructions, etc. (Dr. Smith makes frequent
changes to the repo!)

Using Git
L using Git
LSyncing Local with Remote

Syncing Your Local Repository with the Remote

huyno@DESKTOP-75I1186 MINGW64 (master

)

$ git pull

remote Counting objects: 68, done.

remote: Compressing objects: 100% (48/48), done.

remote: Total 68 (delta 24), reused 41 (de ta 17)

unpacking objects: 100% (68/68), done.

From https://gitlab.cas.mcmaster.ca/smiths/se2aad4_cs2me3
8e50381..9413827 master -> origin/master

Updating 8e50381..94f3827

Fast-forward

.gitignore | 1+
Assignments/Assigl/Assigl.pdf | Bin 96456 -> 96670 byt
es

Assignments/Assigl/Assigl.tex | 16 +-

Assignments/Assig2/Assig2.pdf | Bin 0 -> 87226 bytes

Assignments/Assig2/Assig2.tex | 577 4ttt
../IntroductionToModules.pdf | Bin 0 -> 405617 bytes
../IntroductionToModules.tex | 607 +++++++++HHrHh

../L7_ModuleIntroduction/SequentialCompletion.png | Bin 0 -> 105999 bytes

../L8_MathematicsForMIS/MathematicsForMIS.pdf | Bin 0 -> 376366 bytes
./L8_MathematicsForMIS/MathematicsForMIS. tex | 645 +dddtttbtbbb bbbt
+++
Tutor1a1s/T1/s11des/T1 tex | 2 +-

1 files changed, 1840 1insertions(+), 8 deletions(-)

Using Git
L using Git
[

.gitignore

Using .gitignore

m When we are keeping a code base under version control, it is
often the case that we end up with generated files that should
not be stored in the repository

m Compilation in particular generates many files, for example:

m C/C++ .o files

m Python .pyc files

m LaTeX compilation files (.aux, .log, etc.)
m executables

m By adding a file called .gitignore to your repository, you can
tell git about file patterns that should be ignored

m Take a look at the .gitignore file in the course repository as
an example (depending on your OS, you might need to unhide
this file)

Using Git
L using Git
L ssue Tracking

Issue Tracking

m GitLab provides an issue tracker for each individual project

m Note that this is a feature of GitLab and not part of git itself
m Access via web browser on GitLab project page

m Issues are used to keep track of tasks, enhancements and bugs

m They provide a forum where your team can contribute
discussion

m Issues can be assigned to a specific person and categorized
with specific labels

m You might find it useful to use the issue tracker to assign issues
to yourself as you are working on assignments in this course

Using Git
L using Git
L ssue Tracking

Issue Tracking

m Some examples of using the issue tracker:

Example in GitLab

Example of a popular issue tracking system on an open source
project

Example of a bug issue in the same repository as (2) with
discussion

https://gitlab.cas.mcmaster.ca/smiths/se3xa3/blob/master/Labs/L03/instructions_issue_tracking.pdf
https://github.com/facebook/react/issues
https://github.com/facebook/react/issues
https://github.com/facebook/react/issues/6895
https://github.com/facebook/react/issues/6895

Using Git

L Additional Resources

Additional Resources

m The basics covered in this presentation are sufficient for the
needs of this course

m Should you run into problems or have any questions, here are
some additional resources:

Your peers (an invaluable resource)
StackOverflow

Your TAs and Avenue discussions
YouTube tutorials, such as this one
Atlassian git tutorials

@ The git reference manual

https://stackoverflow.com/
https://www.youtube.com/watch?v=Y9XZQO1n_7c
https://www.atlassian.com/git
https://git-scm.com/doc

	What is Version Control?
	Prerequisite Software
	Using Git
	Git Workflow
	Cloning a Repository
	A Small Example
	Modifying Files
	Pushing Changes
	Syncing Local with Remote
	.gitignore
	Issue Tracking

	Additional Resources

