SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

February 2, 2018

McMaster
University @

13 Module Decomposition (Ghezzi Ch. 4, H&S Ch.

7)

Administrative details

Finish OOD

Exceptions and assumptions
Quality criteria

Module decomposition

Software architecture

Design for change

Relationship between modules
The USES relation

Module decomposition by secrets
The IS.COMPONENT _OF relation
Techniques for design for change
Module guide

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

2/35

Administrative Details

@ Assignment 2 (Still in Draft Form)
» Part 1: February 12, 2018
» Partner Files: February 18, 2018
» Part 2: March 2, 2018

o Midterm exam
» Wednesday, February 28, 7:00 pm
» 90 minute duration
» Multiple choice - 30—40 questions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 3/35

Bank Account Example

BarkAccount

owner | String
balance ! Dollars

deposit { amount ; Dollars)
witharawa! (smowit | Dodses)

CheckingAccount

insufficientFundsFee : Dollars

SavingsAccount

processCheck { checkToProcess ¢

withdrawal (amount © Dollars)

annualinterestRate | Parcentage

Check) depositMonthlyInterest {)

withdrawal {amount : Dollars)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

4/35

Class Diagram Versus MIS

@ What information do the MIS and Class Diagram have in
common?

@ What information does the MIS add?
@ What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 5/35

Class Diagram Versus MIS

@ What information do the MIS and Class Diagram have in
common?

@ What information does the MIS add?
@ What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 5/35

Class Diagram Versus MIS

@ What information do the MIS and Class Diagram have in
common?

@ What information does the MIS add?
@ What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 5/35

Showing Exceptions in UML Class Diagrams

@ Usually exceptions are not shown
o If they are, it is in brackets after the method name

e -+ findAlllnstances(): Vector
{exceptions=NetworkFailure, DatabaseError}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 6/35

http://www.agilemodeling.com/style/classDiagram.htm
http://www.agilemodeling.com/style/classDiagram.htm

UML Associations

@ Associations are relations that the implementation is

required to support
@ Can have multiplicity constraints

TECHNICAL | _ 1 | PROJECT
_STAFF project member
1 “*
manages
MANAGER

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

7/35

Flight Example

Plane

Flight
flighthumber : Integar 0.* P
departureTime : Date
flightDuration | Minutes assignedFlights 6.1

departingAlrpart : String
arrivinghirpart : String

delayFlight { numberOfvinutes : Minutes)
getirrivalTime () : Date

From IBM

arPlaneType : String
maximumSpead : MPH
maximumDistance : Miles
tallld : String

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 8/35

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

UML Aggregation

@ Defines a PART_OF relation
o Differs from IS_.COMPONENT_OF
@ TRIANGLE has its own methods

@ TRIANGLE implicitly uses POINT to define its data
attributes

TRIANGLE
1

3

POINT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 9/35

UML Packages

IS.COMPONENT _OF is represented via the package notation

package name

Class 1

Class 3

Class 2

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

10/35

Point ADT Module

Template Module
PointT

Uses

N/A

Syntax

Exported Types

PointT =7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 11/35

Point ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointT real, real | PointT

xcoord real

ycoord real

dist PointT real
Semantics

State Variables

xc: real
yc: real

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

12/35

Point Mass ADT Module

Template Module
PointMassT inherits PointT
Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 13/35

Point Mass ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointMassT | real, real, real | PointMassT | NegMassExcept
mval real

force PointMassT real

fx PointMassT real
Semantics

State Variables

ms: real

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

14/35

Point Mass ADT Module Semantics

new PointMassT(x, y, m):
@ transition: xc,yc, ms == x,y, m
@ output: out := self

@ exception: exc := (m < 0 = NegMassExcept)

force(p):
@ output:

self.ms x p.ms

t :== UNIVERAL_G
ou self .dist(p)?

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

15/35

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

16/35

Exception Signaling

@ Useful to think about exceptions in the design process
@ Will need to decide how exception signalling will be done

» A special return value, a special status parameter, a
global variable

» Invoking an exception procedure

» Using built-in language constructs

@ Caused by errors made by programmers, not by users
@ Write code so that it avoids exceptions

@ Exceptions will be particularly useful during testing

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

17/35

Example Subclass Exception in Python

class Full (Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)

Example of raising the exception

if size == Seq.MAX_SIZE:
raise Full("Maximum size exceeded")

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 18/35

Quality Criteria (H&S Section 7.3.2)

Consistent
» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features

@ General - cannot always predict how the module will be

used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially

independent services

High cohesion - components are closely related

Low coupling - not strongly dependent on other modules
Opaque - information hiding

Checks available so programmer can avoid exceptions

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 19/35

Queue Module Syntax (Abstract Object)

What could we remove to make this essential?
MAX_SIZE = 100
Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
size integer | NOT_INIT

isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 20/35

Queue Module Syntax (Abstract Object)

What could we remove to make this essential?
MAX_SIZE = 100
Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
size integer | NOT_INIT

isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

Can replace isempty and isfull by by tests using size and
MAX_SIZE

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 20/35

Queue Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop T NOT_INIT, EMPTY
size integer | NOT_INIT

isinit boolean

@ front has been merged with pop
@ size replaces isempty and isfull
@ isinit is added (why?)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 21/35

Modular Decomposition

@ Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

@ We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

@ We need to produce a software architecture

@ The architecture (modular decomposition) is summarized
in a Software Design Document

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

22/35

Software Architecture

@ Shows gross structure and organization of the system to
be defined

@ lts description includes the description of

» Main components of the system

» Relationship among those components

» Rationale for decomposition into its components

» Constraints that must be respected by any design of the
components

@ Guides the development of the design

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 23/35

Specific Techniques for Design for Change

What technique/tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

24/35

Specific Techniques for Design for Change

@ Anticipate definition of all family members
@ Identify what is common to all family members, delay
decisions that differentiate among different members
e Configuration constants
» Factor constant values into symbolic constants
» Compile time binding
» MAXSPEED = 5600
e Conditional compilation
» Compile time binding
» Works well when there is a preprocessor, like for C
» If performance is not a concern, can often “fake it” at
run time
e Make
@ Software generation
» Compiler generator, like yacc
» Domain Specific Language

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 25/35

Questions

@ What relationships have we discussed between modules?

@ Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 26/35

Relations Between Modules

@ Uses
Inheritance

Association

IS.COMPONENT_OF

°
°

o Aggregation
°

@ etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 27/35

Relationships Between Modules

@ Let S be a set of modules
5 — {Ml, Mz, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If M; and M; are in S, < M;, M; >€ r can be written as
M,-rMJ-

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 28/35

Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rt M; A M;rtM;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 29/35

Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (directed acyclic graph)

m, M,
a graph ‘/ \M\ ‘/J’\a
/IZ f a DAG /\ /
P S

\./ \./

a) b)

Why do we prefer the uses relation to be a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 30/35

References

@ Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. WEeiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

@ Parnas, D. L., “On a 'Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336-339

@ Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053-1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 31/35

References Continued

@ Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128-138,

@ Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 32/35

References Continued

@ Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it", IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

@ Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

@ Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu /428727 .html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 33/35

References Continued

@ Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

@ EISheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh

generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

@ Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 34/35

References Continued

@ Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

@ Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

e Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 35/35

