SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

09 Module Interface Specification
(H&S Ch. 7, Ghezzi Ch. 4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 23, 2018

McMaster
University @

09 Module Interface Specification (H&S Ch. 7,
Ghezzi Ch. 4)

@ Administrative details
e pdfnup
@ Overview of MIS

e MIS Template

» Syntax
» Semantics

@ Sequence example (abstract object)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 2/28

Administrative Details

@ Assignment 1

» Partner Files: January 28, 2018
» Part 2: January 31, 2018

@ Questions on assignment?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 3/28

pdfnup

@ If you like to print the lecture and/or tutorial slides
consider printing 4 (or more) slides per page

@ Consider using pdfjam

@ pdfjam provides pdfnup for “n-upping” pages

@ alias pdfnup=’pdfnup --nup 2x2 --frame true
--paper letterpaper --scale 0.9’

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

4/28

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/software/pdfjam/

Sequences

@ A sequence is an ordered collection of elements of the
same type

» Elements can occur more than once
» Sometimes referred to as a list
» Similar to an array

@ Declare a sequence of type T by sequence of T

@ < Xp,Xy,...,X, > for n > 0 for a sequence with elements
X0y X1y eeey Xn

@ <> is the empty sequence

@ Position in a sequence is zero relative

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 5/28

Overview of MIS

@ The MIS precisely specifies the modules observable
behaviour - what the module does

@ The MIS does not specify the internal design

@ The idea of an MIS is inspired by the principles of
software engineering
@ Advantages
» Improves many software qualities
» Programmers can work in parallel
» Assumptions about how the code will be used are
recorded
» Test cases can be decided on early, and they benefit
from a clear specification of the behaviour
> A well designed and documented MIS is easier to read
and understand than complex code
» Can use the interface without understanding details

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 6/28

Overview of MIS

@ Options for specifying an MIS
» Trace specification
» Pre and post conditions specification
» Input/output specification
» Before/after specification - module state machine
» Algebraic specification

@ Best to follow a template

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

7/28

MIS Template

@ Uses
» Imported constants, data types and access programs
@ Syntax

» Exported constants and types
» Exported functions (access routine interface syntax)

@ Semantics

State variables

State invariants
Assumptions

Access routine semantics
Local functions

» Local types

» Local constants

» Considerations

v vV Vv VY

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 8/28

MIS Uses Section

Specify imported constants
Specify imported types

Specify imported access programs

The specification of one module will often depend on
using the interface specified by another module

@ When there are many modules the uses information is
very useful for navigation of the documentation

Documents the use relation between modules

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 9/28

MIS Syntax Section

@ Specify exported constants
@ Specify exported types

@ Specify access routine names, the input and output
parameter types and exceptions

@ Show access routines in tabular form

» Important design decisions are made at this point

» Later we will discuss qualities of a good interface, like
minimal, essential, etc.

» The goal is to have the syntax match many
implementation languages

» The mapping to a programming language will not always
be the same; it depends on the syntax of the
programming language

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

10/28

Syntax of a Sequence Module (Abstract Object)

Exported Constants

MAX_SIZE = 100

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 11/28

Syntax of a Sequence Module Continued

Exported Access Programs

Routine name | In Out Exceptions
Seq_init

Seq_add integer, integer FULL, POS
Seq_del integer POS
Seq_setval integer, integer POS
Seq_getval integer integer | POS
Seq_size integer

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

12/28

MIS Semantics Section

@ State variables

» Give state variable(s) name and type
» State variables define the state space
» If a module has state then it will have “memory”

@ State invariant

» A predicate on the state space that restricts the “legal”
states of the module

» After every access routine call, the state should satisfy
the invariant

» Cannot have a state invariant without state variables

» Just stating the invariant does not “enforce” it, the
access routine semantics need to maintain it

» Useful for understandabilty, testing and for proof

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 13/28

Semantics Section Continued

@ Local functions, local types and local constants

» Declared for specification purposes only

» Not available at run time

» Helpful to make complex specifications easier to read
@ Considerations

» For information that does not fit elsewhere

» Useful to tell the user if the module violates a quality

criteria

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

14/28

Sequence MIS Semantics

State Variables
What type should the state variable have?

State Invariant
What state invariant should we have?

Assumptions
Seq_init() is called before any other access program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 15/28

Sequence MIS Semantics

State Variables
s: sequence of integer

State Invariant

What state invariant should we have?

Assumptions
Seq_init() is called before any other access program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 16/28

Sequence MIS Semantics

State Variables
s: sequence of integer

State Invariant
|s| < MAX_SIZE

Assumptions
Seq_init() is called before any other access program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 17/28

Sequence MIS Semantics Continued

Access Routine Semantics

Seq_init():
@ transition: What should the state transition be?

@ exception: none

Seq_add(i, p):
e transition: s :=s[0..i — 1]|| < p > ||s[i..7]

@ exception: exc := (|s| =7) What exceptions? How
characterized?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

18/28

Sequence MIS Semantics Continued

Access Routine Semantics

Seq_init():
@ transition: s :=<>

@ exception: none

Seq_add(i, p):
e transition: s := s[0..;i — 1]|| < p > ||s[i..|s| — 1]
@ exception: exc := (|s| =7) What exceptions? How
characterized?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

19/28

Sequence MIS Semantics Continued

Access Routine Semantics

Seq_init():
@ transition: s :=<>

@ exception: none

Seq_add(i, p):
e transition: s := s[0..;i — 1]|| < p > ||s[i..|s| — 1]
@ exception:
exc := (|s| = MAXSIZE = FULL | i ¢ [0..|s|]] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

20/28

Access Routine Semantics Continued
Seq_del(/):

@ transition: s :=7

@ exception: exc :=7

Seq_setval(/, p):
@ transition: ?

@ exception: ?

Seq_getval(i):
@ output: 7

@ exception: ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 21/28

Access Routine Semantics Continued
Seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]

@ exception: exc :=7

Seq_setval(/, p):
@ transition: ?

@ exception: ?

Seq_getval(i):
@ output: 7

@ exception: ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 22/28

Access Routine Semantics Continued

Seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|]s| — 1] = POS)

Seq_setval(/, p):
@ transition: 7
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Seq_getval(i):
@ output: 7
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

23/28

Access Routine Semantics Continued

Seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|]s| — 1] = POS)

Seq_setval(/, p):
@ transition: s[i] :=p
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Seq_getval(i):
@ output: 7
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

24/28

Access Routine Semantics Continued

Seq_del(/):
e transition: s := s[0..;i — 1]||s[/ + 1..|s| — 1]
@ exception: exc := (i ¢ [0..|]s| — 1] = POS)

Seq_setval(/, p):
@ transition: s[i] :=p
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Seq_getval(i):
@ output: out := sJi]
@ exception: exc := (i ¢ [0..|s| — 1] = POS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4)

25/28

Access Routine Semantics Continued

Seq_size():
@ output: 7

@ exception: ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 26/28

Access Routine Semantics Continued
Seq_size():
@ output: out := |s]

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 27/28

Homework

How would you implement Seq in Python? Remember Seq is
an abstract object.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 09 Module Interface Specification (H&S Ch. 7, Ghezzi Ch. 4) 28/28

