
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

05 Software Engineering Principles
(Ch. 3)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 16, 2018

05 Software Engineering Principles (Ch. 3)

Administrative details

Unix command of the day

Software engineering knowledge units

Software engineering principles

Key principles
I Rigour
I Formality
I Separation of concerns
I Modularity
I Abstraction
I Anticipation of change
I Generality
I Incrementality

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 2/26

Administrative Details

Assignment 1
I Part 1: January 22, 2018
I Partner Files: January 28, 2018
I Part 2: January 31, 2018
I Document any assumptions or exceptions
I Specification for external interface (as seen by other

programs)

Questions on assignment?

This week’s tutorials
I LATEX
I A1 Sample

Consider installing VirtualBox (or equivalent) with a
Linux VM

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 3/26

Unix Command of the Day

which

Returns the pathname of the file which would be
executed in the current environment had its argument
been typed at the command prompt

which returns something like /usr/bin/which

test returns something like /bin/test

If you want to know your search path, type echo $PATH

which is useful if you have more than one version of
Python

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 4/26

MEASURE (for Measuring Learning Outcomes)

Web page for users

Issue Tracking for Development

Issue Tracking for Users

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 5/26

http://measure.mcmaster.ca/
https://github.com/smiths/MEASURE
https://docs.google.com/forms/d/e/1FAIpQLSfgR8cvlEjHoijuIBqmS8u2aCnXM7oxsca1GNGInC6Do1ncwg/viewform?c=0&w=1

Software Engineering Knowledge Units

A principle is a general concept that is widely applicable
in software engineering
Methods are:

I General guidelines to govern the execution of an activity
I Rigorous, systematic and disciplined approaches
I Example - following a template

Techniques
I Provide an approach to develop software, but they are

more technical and mechanical than methods
I Techniques have a more restricted applicability than

methods
I Example Hoar triple for correctness proof

A methodology is a coherent collection of methods and
techniques
A tool is a device that supports the application of a
method, technique, or methodology

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 6/26

Visual Representation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 7/26

Tools

What are some examples of tools for software
development?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 8/26

Software Engineering Principles

Used to reduce complexity

Form the basis for methods, techniques, methodologies
and tools

Can be used in all phases of software development

Can be applied to both process and product

The purpose of the principles is to improve quality, with a
special emphasis on reliability and evolvability

All of the key software engineering principles are also key
principles of mathematics and engineering as a whole!

Software engineering is often more explicit in identifying
and using principles than in other branches of engineering

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 9/26

Key Principles

1. Rigour

2. Formality

3. Separation of concerns

4. Modularity

5. Abstraction

6. Anticipation of change

7. Generality

8. Incrementality

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 10/26

Rigour

An argument is valid if the conclusion is a logical
consequence of the premise

Rigour is precise reasoning characterized by
I Only unambiguous language is used
I There are no hidden assumptions
I Care is taken to ensure that all arguments are valid

Rigour is achieved through the use of mathematics and
logic

Rigour should be systematically employed throughout the
whole software development process

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 11/26

Formality

Formality is reasoning in a formal system consisting of
I A language with a formal syntax and a precise semantics
I A set of syntactic rules

A formal system enables reasoning to be mechanized
I Reasoning is performed mechanically with computer

assistance
I Arguments are machine checked
I Parts of the reasoning are automated

The use of formality in software development has a high
cost

I The learning curve is very high
I Tool support and knowledge bases are inadequate
I The amount of detail involved is often overwhelming

Nevertheless, formality is the promise of the future!

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 12/26

Formality versus Rigour

What are the advantages of formality over rigour? What are
the disadvantages?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 13/26

Formality

Every software development project uses at least one formal
language. Is this statement True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 14/26

Formality

The A1 assignment specification is formal. Is this statement
True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 15/26

Formality

Your first year mathematics textbook is formal presentation of
Calculus. Is this statement True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 16/26

Formal Versus Rigorous

Formal Version of Calculus “Textbook”

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 17/26

https://shemesh.larc.nasa.gov/fm/papers/Butler-JFR-FV-Integ.pdf

Separation of Concerns

Separation of concerns is the principle that different
concerns should be isolated and considered separately

I The goal is to reduce a complex problem to a set of
simpler problems

I Enables parallelization of effort

Concerns can be separated various ways
I Different concerns are considered at different times
I Software qualities are considered separately
I A software system is considered from different views
I Parts of a software system are considered separately

Dangers
I Opportunities for global optimizations may be lost
I Some issues cannot be safely isolated (e.g. security)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 18/26

Separation of Concerns

What are examples of separation of concerns in traditional
engineering

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 19/26

Separation of Concerns

What are examples of separation of concerns in traditional
engineering?

What are examples of separation of concerns in software
engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 20/26

Separation of Concerns: SE Examples

Separation of requirements from design

Separation of design from implementation

Decomposition of a system into a set of modules

The distinction between a module’s interface and its
implementation

The distinction between syntax and semantics

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 21/26

Modularity

A modular system is a complex system that is divided into
smaller parts called modules
Modularity enables the principle of separation of concerns
to be applied in two ways:

1. Different parts of the system are considered separately
2. The parts of the system are considered separately from

their composition

Modular decomposition is the top-down process of
dividing a system into modules

Modular decomposition is a “divide and conquer”
approach

Modular composition is the bottom-up process of building
a system out of modules

Modular composition is an “interchangeable parts”
approach

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 22/26

Examples of Modularity

What are examples of modularity in traditional engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 23/26

Properties of Good Modules

To achieve the benefits of modularity, a software engineer
must design modules with two properties

1. High cohesion: The components of the module are
closely related

2. Low coupling: The module does not strongly depend on
other modules

This allows the modules to be treated in two ways:

1. As a set of interchangeable parts
2. As individuals

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 24/26

Zero Coupling?

Given that low coupling is desirable, the ideal modularization
has zero coupling. Is this statement True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 25/26

Proposed Modularization for a Car

Suppose you decide to modularize the description of a car by
considering the car as comprising small cubes 15 inches on a
side.

1. Is the cohesion high or low?

2. Is the coupling high or low?

3. Propose a better modularization

4. In general, how should you decompose a complex system
into modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 05 Software Engineering Principles (Ch. 3) 26/26

