
Assignment 3, Part 1, Specification

SFWR ENG 2AA4

March 26, 2018

The purpose of this software design exercise is to design and implement a portion of
the specification for a Geographic Information System (GIS). This document shows the
complete specification, which will be the basis for your implementation and testing. In
this specification natural numbers (N) include zero (0).

[The parts that you need to fill in are marked by comments, like this one. In several of
the modules local functions are specified. You can use these local functions to complete
the missing specifications. —SS]

1

Map Types Module

Module

MapTypes

Uses

N/A

Syntax

Exported Constants

None

Exported Types

CompassT = {N, S, E, W}
LanduseT = {Recreational, Transport, Agricultural, Residential, Commercial}
RotateT = {CW, CCW}

Exported Access Programs

None

Semantics

State Variables

None

State Invariant

None

2

Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

[What should be written here? —SS]PointT = ?

Exported Access Programs

Routine name In Out Exceptions
PointT Z, Z PointT
x Z
y Z
translate Z, Z PointT

Semantics

State Variables

xc: [What is the type of the state variables? —SS]Z
yc: [What is the type of the state variables? —SS]Z

State Invariant

None

Assumptions

The constructor PointT is called for each object instance before any other access routine
is called for that object. The constructor cannot be called on an existing object.

3

Access Routine Semantics

PointT(x, y):

• transition: [What should the state transition be for the constructor? —SS]xc, yc :=
x, y

• output: out := self

• exception: None

x():

• output: out := xc

• exception: None

y():

• [What should go here? —SS]output: out := yc

• exception: None

translate(∆x, ∆y):

• [What should go here? —SS]output: out := PointT(xc + ∆x, yc + ∆y)

• exception: [What should go here? —SS]None

4

Line ADT Module

Template Module

LineT

Uses

[What should go here? —SS]PointT, MapTypes

Syntax

Exported Types

LineT = ?

Exported Access Programs

Routine name In Out Exceptions
LineT PointT, CompassT, N LineT invalid argument
strt PointT
end PointT
orient CompassT
len N
flip LineT
rotate RotateT LineT
translate Z, Z LineT

Semantics

State Variables

s: PointT
o: CompassT
L: N

State Invariant

None

5

Assumptions

The constructor LineT is called for each object instance before any other access routine
is called for that object. The constructor cannot be called on an existing object.

Access Routine Semantics

LineT(st, ornt, l):

• transition: s, o, L := st, ornt, l

• output: out := self

• exception: [Write the spec for an exception when the length of the line is 0 —
SS]exc := (L = 0⇒ invalid argument)

strt():

• output: out := PointT(s.x(), s.y())

• exception: None

end():

• output: [Write the spec for returning the end point of the line. —SS]out :=
PointT((o = W ⇒ s.x − (L − 1)|o = E ⇒ s.x + (L − 1)|True ⇒ s.x), (o = N ⇒
s.y + (L− 1)|o = S⇒ s.y − (L− 1)|True⇒ s.y))

• exception: None

orient():

• output: out := o

• exception: None

len():

• output: out := L

• exception: None

flip():

6

• output: [Write the spec for returning a new line that is the mirror image of the
current line. That is, the start point and length of the new line will remain the
same, but the orientation will be changed by 180 degrees —SS]out := LineT(s, (o =
N⇒ S|o = S⇒ N|o = W⇒ E|o = E⇒W), L)

• exception: None

rotate(r):

• output:

out :=
r = CW o = N [? —SS]LineT(s, E, L)

o = S [? —SS]LineT(s,W,L)
o = W [? —SS]LineT(s,N, L)
o = E [? —SS]LineT(s, S, L)

r = CCW o = N [? —SS]LineT(s,W,L)
o = S [? —SS]LineT(s, E, L)
o = W [? —SS]LineT(s, S, L)
o = E [? —SS]LineT(s,N, L)

• exception: None

translate(∆x, ∆y):

• output: [Add the missing spec —SS]out := LineT(s.translate(∆x,∆y), o, L)

• exception: None

7

Path ADT Module

Template Module

PathT

Uses

PointT, LineT, MapTypes

Syntax

Exported Types

PathT = ?

Exported Access Programs

Routine name In Out Exceptions
PathT PointT, CompassT, N PathT
append CompassT, N invalid argument
strt PointT
end PointT
line N LineT outside bounds
size N
len N
translate Z, Z PathT

Semantics

State Variables

s: sequence of LineT

State Invariant

None

8

Assumptions

• The constructor PathT is called for each object instance before any other access
routine is called for that object. The constructor cannot be called on an existing
object.

Access Routine Semantics

PathT(st, ornt, l):

• transition: [What is the spec to add the first element to the sequence of LineT?
—SS]s[0] := LineT(st, ornt, l)

• output: out := self

• exception: None

append(ornt, l):

• transition: [What is the missing specification? The appended line starts at a point
adjacent to the end point of the previous line in the direction ornt. The lines are
not allowed to overlap. —SS]s := s||〈LineT(adjPt(ornt), ornt, l〉

• exception: [What is the specification for the exception? An exception should be
generated if the introduced line overlaps with any of the previous points in the
existing path. —SS]

exc :=

(pointsInLine(LineT(adjPt(ornt), ornt, l)) ∩
(∪(l : LineT|l ∈ s : pointsInLine(l))) 6= ∅ ⇒ invalid argument)

strt():

• output: [What is the missing spec? —SS]out := s[0].strt

• exception: None

end():

• output: [What is the missing spec? —SS]out := s[|s| − 1].end

• exception: None

line(i):

9

• output: [Returns the ith line in the sequence. What is the missing spec? —SS]out :=
LineT(s[i].strt(), s[i].orient(), s[i].len())

• exception: [Generate the exception if the index is not in the sequence. —SS]exc :=
(i ≥ |s| ⇒ outside bounds)

size:

• output: [Output the number of lines in the path. —SS]out := |s|

• exception: None

len:

• output: [Output the total number of points (grid cells) on the path, including the
beginning and end points (cells). —SS]out := +(l : LineT|l ∈ s : l.len)

• exception: None

translate(∆x, ∆y):

• output: Create a new PathT object with state variable s′ such that:

∀(i : N|i ∈ [0..|s| − 1] : s′[i] = s[i].translate(∆x,∆y))

• exception: None

Local Functions

pointsInLine: LineT→ (set of PointT)

pointsInLine (l)

≡ {i : N|i ∈ [0..(l.len− 1)] : l.strt.translate([Completethespec.−−− SS]

(l.orient = W⇒ −i|l.orient = E⇒ i|True⇒ 0), (l.orient = N⇒ i|l.orient = S⇒ −i|True⇒ 0))}

adjPt: CompassT→ PointT
adjPt(ornt) ≡

ornt = N s[|s| − 1].end.translate[?−−− SS](0, 1)
ornt = S s[|s| − 1].end.translate[?−−− SS](0,−1)
ornt = W s[|s| − 1].end.translate[?−−− SS](−1, 0)
ornt = E s[|s| − 1].end.translate[?−−− SS](1, 0)

10

Generic Seq2D Module

Generic Template Module

Seq2D(T)

Uses

MapTypes, PointT, LineT, PathT

Syntax

Exported Types

Seq2D(T) = ?

Exported Constants

None

Exported Access Programs

Routine name In Out Exceptions
Seq2D seq of (seq of T), R Seq2D invalid argument
set PointT, T outside bounds
get PointT T outside bounds
getNumRow N
getNumCol N
getScale R
count T N
count LineT, T N invalid argument
count PathT, T N invalid argument
length PathT R invalid argument
connected PointT, PointT B invalid argument

Semantics

State Variables

s: seq of (seq of T)
scale: R

11

nRow: N
nCol: N

State Invariant

None

Assumptions

• The Seq2D(T) constructor is called for each object instance before any other access
routine is called for that object. The constructor can only be called once.

• Assume that the input to the constructor is a sequence of rows, where each row is
a sequence of elements of type T. The number of columns (number of elements) in
each row is assumed to be equal. That is each row of the grid has the same number
of entries. s[i][j] means the ith row and the jth column. The 0th row is at the
bottom of the map and the 0th column is at the leftmost side of the map.

Access Routine Semantics

Seq2D(S, scl):

• transition: [Fill in the transition. —SS]s, scale, nCol, nRow := S, scl, |S[0]|, |S|

• output: out := self

• exception: [Fill in the exception. One should be generated if the scale is less than
zero, or the input sequence is empty, or the number of columns is zero in the first
row, or the number of columns in any row is different from the number of columns
in the first row. —SS]exc := (scale ≤ 0 ∨ |S| = 0 ∨ |S[0]| = 0⇒ invalid argument|
¬∀(l : seq of T|l ∈ S : |l| = |S[0]|)⇒ invalid argument)

set(p, v):

• transition: [? —SS]s[p.y][p.x] := v

• exception: [Generate an exception if the point lies outside of the map. —SS]exc :=
(¬validPoint(p)⇒ outside bounds)

get(p):

• output: [? —SS]out := s[p.y][p.x]

12

• exception: [Generate an exception if the point lies outside of the map. —SS]exc :=
(¬validPoint(p)⇒ outside bounds)

getNumRow():

• output: out := nRow

• exception: None

getNumCol():

• output: out := nCol

• exception: None

getScale():

• output: out := scale

• exception: None

count(t: T):

• output: [Count the number of times the value t occurs in the 2D sequence. —
SS]out := +(i, j : N|validRow(i) ∧ validCol(j) ∧ s[i][j] = t : 1)

• exception: None

count(l: LineT, t: T):

• output: [Count the number of times the value t occurs in the line l. —SS]out :=
+(p : PointT|p ∈ pointsInLine(l) ∧ s[p.y][p.x] = t : 1)

• exception: [Exception if any point on the line lies off of the 2D sequence (map)
—SS]exc := (¬validLine(l)⇒ invalid argument)

count(pth: PathT, t: T):

• output: [Count the number of times the value t occurs in the path pth. —SS]out :=
+(p : PointT|p ∈ pointsInPath(pth) ∧ s[p.y][p.x] = t : 1)

• exception: [Exception if any point on the path lies off of the 2D sequence (map)
—SS]exc := (¬validPath(pth)⇒ invalid argument)

length(pth: PathT):

13

• output: [Use the scale to find the length of the path. —SS]out := pth.len · scale

• exception: [Exception if any point on the path lies off of the 2D sequence (map)
—SS]exc := (¬validPath(pth)⇒ invalid argument)

connected(p1: PointT, p2: PointT):

• output: [Return true if a path exists between p1 and p2 with all of the points
on the path being of the same value. p1 and p2 are considered to be part of the
path. —SS] out := ∃(pth : PathT|validPath(pth) ∧ pth.strt = p1 ∧ pth.end = p2 :
count(pth, s[p1.y][p1.x]) = pth.len)

• exception: [Return an exception if either of the input points is not valid. —SS]exc :=
(¬validPoint(p1) ∨ ¬validPoint(p1)⇒ invalid argument)

Local Functions

validRow: N→ B
[returns true if the given natural number is a valid row number. —SS]validRow(i) ≡ 0 ≤
i ≤ (nRow− 1)

validCol: N→ B
[returns true if the given natural number is a valid column number. —SS]validCol(j) ≡
0 ≤ j ≤ (nCol− 1)

validPoint: PointT→ B
[Returns true if the given point lies within the boundaries of the map. —SS]validPoint(p) ≡
validRow(p.y) ∧ validCol(p.x)

validLine: LineT→ B
[Returns true if all of the points for the given line lie within the boundaries of the map.
—SS]validLine(l) ≡ ∀(p : PointT|p ∈ pointsInLine(l) : validPoint(p))

validPath: PathT→ B
[Returns true if all of the points for the given path lie within the boundaries of the map.
—SS]validPath(pth) ≡ ∀(p : PointT|p ∈ pointsInPath(pth) : validPoint(p))

pointsInLine: LineT→ (set of PointT)

14

pointsInLine (l) [The same local function as given in the Path module. —SS]

≡ {i : N|i ∈ [0..(l.len− 1)] : l.strt.translate(

(l.orient = W⇒ −i|l.orient = E⇒ i|True⇒ 0), (l.orient = N⇒ i|l.orient = S⇒ −i|True⇒ 0))}

pointsInPath: PathT→ (set of PointT)
[Return the set of points that make up the input path. —SS] pointsInPath(p) ≡ ∪(i :
N|i ∈ [0..p.size] : pointsInLine(p.line(i)))

15

LanduseMap Module

Template Module

LanduseMapT is Seq2D(LanduseT)

DEM Module

Template Module

DEMT is Seq2D(Z)

16

1 Critique of Design

Write a critique of the interface for the modules in this project. Is there anything missing?
Is there anything you would consider changing? Why?

17

