Assignment 4 Specification

SFWR ENG 2AA4
April 9, 2018

This Module Interface Specification (MIS) document contains modules, types and meth-
ods for implementing the game state of a game of FreeCell solitaire. The game involves a
standard 52-card deck of cards shuffled into 8 piles called Tableau cascades, four having
7 cards each and four having 6 cards each at the beginning. The player has 4 FreeCells
where they may choose to place any card as part of their moves. Tableaux can be built
by placing alternately-coloured cards of descending suits on top of one another. The
goal is to fill all four HomeCells, each stacked from Ace to King of the four different
suits. Throughout this document, each of these will be referred to as a different type
of “cell”, following naming conventions from the following gameboard visualization from
http://www.solitairecity.com/Help/FreeCell.shtml:

FreeCells HomeCells

ST 1 & Hi &4 A Tee Ty
04 & G & Bk i A Q4 4%, IS - O
2 & 3 3 & EaBR 4| 2 4 EvF¥ r
Ne .5 1 & Dk A Sh & D4 & Be &
) AFY _FRENTY . J % EF), Ow w Oes =
o0& & EaTk 4+ A J4 8% § + g &
e ¢« v 9 5o & [5& &
¥4 v ool s 4
o v ¢ % 3
LA SN Y VI 2R 21 R

T

Tableau

Card Types Module

Module
CardTypes

Uses
N/A

Syntax
Exported Constants

None

Exported Types

SuitT = {H, D, C, S}

RankT = {A, C2, C3, C4, C5, C6, C7, C8, C9, C10, J, Q, K}
ColourT = {Red, Black}

Exported Access Programs

None

Semantics
State Variables

None

State Invariant

None

Game Board Types Module

Module
GameBoardTypes

Uses
N/A

Syntax
Exported Constants

None

Exported Types
CellT = {FreeCell, HomeCell, Tableau}

Exported Access Programs

None

Semantics
State Variables

None

State Invariant

None

Card ADT Module

Template Module
CardT

Uses
CardTypes for SuitT, RankT, ColourT

Syntax
Exported Types
CardT =7

Exported Access Programs

Routine name | In Out Exceptions
CardT SuitT, RankT | CardT
getSuit SuitT
getColour ColourT
getRank RankT
Semantics

State Variables
suit: SuitT
rank: RankT
State Invariant

None

Assumptions

The constructor CardT is called for each object instance before any other access routine
is called for that object. The constructor cannot be called on an existing object.

Access Routine Semantics
CardT(s,7):

e transition: suit,rank :=s,r

e output: out := self

e exception: None
getSuit():

e output: out := suit

e exception: None
getColour():

e output: out := (suit = H V suit = D = Red | suit = C' V suit = S = Black)

e exception: None
getRank():

e output: out := rank

e exception: None

Generic Stack Module

Generic Template Module
Stack(T)

Uses
N/A

Syntax
Exported Types
Stack(T) =7

Exported Constants

None

Exported Access Programs

Routine name | In Out Exceptions
Stack N, seq of T | Stack invalid_argument
push T Stack stack_full
pop Stack stack_empty
top T stack_empty
getSize N
getMaxSize N
toSeq seq of T

Semantics

State Variables
S: seqof T
max_size: N
State Invariant

|S| < maz_size

Assumptions & Design Decisions

e The Stack(T) constructor is called for each object instance before any other access
routine is called for that object. The constructor can only be called once.

e Though the toSeq() method violates the essential property of the stack object, since
this could be achieved by calling top and pop many times, this method is provided
as a convenience to the client. In fact, it increases the property of separation of
concerns since this means that the client does not have to worry about details of
building their own sequence from the sequence of pops.

Access Routine Semantics
Stack(sze, s):

e transition: S, max_size := s, sze

e output: out := self

e exception: exc:= (sze = 0 = invalid_argument | |s| > sze = invalid_argument)
push(e):

e output: out := Stack(mazx_size, S || {(e))

e exception: exc := (|S| = max_size = stack_full)
pop():

e output: out := Stack(mazx_size, S[0..|S| — 2])

e exception: exc := (|S| = 0 = stack_empty)
top():

e output: out := S[|5| — 1]

e cxception: exc := (|S| = 0 = stack_empty)
getSize():

e output: out := |5

e exception: None

getMaxSize():

e output: out := max_size

e exception: None
toSeq():

e output: out := S5

e exception: None

CardStack Module

Template Module
CardStackT is Stack(CardT)

Game Board ADT Module

Template Module

GameBoardT

Uses

CardTypes for SuitT, RankT and ColourT
GameBoardTypes for CellT
CardADT for CardT
CardStack for CardStackT

Syntax

Exported Access Programs
Routine name | In Out Exceptions
GameBoardT GameBoardT
GameBoardT seq of CardT GameBoardT | invalid_argument
place CellT, N, CardT invalid_config, invaid_cell
isValidMove CellT, N, CellT, N | B invalid_cell
makeMove CellT, N, CellT, N invalid_cell, invalid_move
getCell CellT, N CardStackT | invalid_cell
validMoveExists B
islnWinState B

Semantics

State Variables

T seq of CardStackT
F: seq of CardStackT
H: seq of CardStackT

State Invariant

7| =38
IF| =4
|H| =4

Assumptions & Design Decisions

Either of the GameBoardT constructors is called before any other access routine is
called on that instance. Once a GameBoardT has been created, the constructor will
not be called on it again.

place() is only called before the game is started, as a way to build the game state.
It will not be used during the game by the client code. It is up to the client to
build the game state in a way that makes sense, i.e. all cards being present and no
duplicate cards, like the real game of FreeCell Solitaire. The RandomDeck module
provides functions for creating a valid shuffled deck of cards.

The main stacks on the board are referred to as the Tableau stacks. The freecells
are called FreeCell and the cells where the player must stack all the cards in order
to win the game are called HomeCells.

As per FreeCell rules, HomeCells must start with an ace, but any HomeCell can
start with any suit. Once an Ace of that suit is placed there, this HomeCell becomes
that type of stack and only those type of cards can be placed there.

Once a card has been move to a HomeCell, moving it back to the board is a pointless
move. For simplicity and to help a would-be player using this model, it is considered
invalid by the current model.

For better scalability, this module is specified as an Abstract Data Type (ADT)
instead of an Abstract Object. This would allow multiple games to be created and
tracked at once by a client.

The getCell() function is provided, though violating the property of being essential,
to give a would-be view function easy access to the state of the game. This ensures
that the model is able to be easily integrated with a game system in the future.

Access Routine Semantics

GameBoard():

transition: T, F, H := stackSeq(8, 19), stackSeq(4, 1), stackSeq(4, 13)

exception: None

GameBoard(deck):

transition: T, F, H := tableauDeck(deck), stackSeq(4, 1), stackSeq(4, 13)

10

e cxception: exc := (|deck| # 52 = invalid_argument)

place(cell, i, card):

e transition:

cell = Tableau | T[i] := Ti].push(card)
cell = FreeCell | F[i] := F[i].push(card)
cell = HomeCell | H[i| := H[i].push(card)
e exception:
exc =
cell = Tableau (((0 <7< 8) A (T[i].getSize() = Ti].getMaxSize()) = invalid_config |
(1 > 8) = invalid cell)
cell = FreeCell | (((0 <1 < 4) A (F[i].getSize() = F[i].getMaxSize()) = invalid_config |
(1 > 4) = invalid cell)
cell = HomeCell | (((0 <i < 4) A (H[i].getSize() = H[i].getMaxSize()) = invalid_config |
(1 > 4) = invalid_cell)
isValidMove(c0, n0, c1,n1):
e output:
out :=
c0 = Tableau cl = Tableau validTabTab(n0,n1)

¢l = FreeCell

validTabFree(n0,n1)

¢l = HomeCell

validTabHome(n0,n1)

c0 = FreeCell cl = Tableau validFreeTab(n0,n1)
cl = FreeCell validFreeFree(n0,n1)
cl = HomeCell | validFreeHome(n0,n1)
c0 = HomeCell = Tableau false
cl = FreeCell false
cl = HomeCell | false

e cxception: exc:= ((—isValidCell(c0, n0)

makeMove(c0, n0, cl,nl):

e transition:

V —isValidCell(cl,n1)) = invalid_cell)

c0 = Tableau = Tableau T[n0], T[n1] := T[n0].pop(), T[n1].push(T[n0].top())
cl = FreeCell T[n0], Finl] := T[n0].pop(), Fnl].push(T[n0].top())
cl = HomeCell | T[n0], H[nl] := T[n0].pop(), H{n1].push(T[r0].top())
c0 = FreeCell | c¢1 = Tableau F[n0], T[n1] := F[n0].pop(), T[rl].push(F[r0].top())
cl = FreeCell F[n0], F[nl] := F[n0].pop(), F[n1].push(F[n0].top())
cl = HomeCell | F[n0], H[nl] := F[n0].pop(), H[n1].push(F[r0].top())

e cxception: exc := ((— isValidCell(c0,n0) V —isValidCell(cl,n1)) = invalid_cell |
(= isValidMove(c0, n0, c¢1,n1)) = invalid_move)

getCell(cell, n):

e output:

out :=
cell = Tableau | T'[n]
cell = FreeCell | Fn|
cell = HomeCell | H|n|

e exception: exc := ((— isValidCell(cell, n)) = invalid_cell)
validMoveExists():
e output: out := (30, cl : CellT, 4, j : N : isValidMove(c0, i, c1, 7))
e exception: None
isInWinState():

e output: out :=
isWinningHomeCell(0)
isWinningHomeCell(1)
isWinningHomeCell(2)
isWinningHomeCell(3)

A\
A\
A\

e exception: None

Local Functions

stackSeq: N x N — (seq of CardStackT)
stackSeq (I,n) = s such that (|s| =1 A (Vi € [0..l — 1] : s[i] = CardStackT(n,()))

tableauDeck: (seq of CardT) — (seq of CardStackT)
tableauDeck (deck) =

(CardStackT(deck[O
(CardStackT(deck]7..
(CardStackT (deck|
(CardStackT (deck|
(CardStackT(deck|
(CardStackT(deck[3

12

(CardStackT(deck[40..45], 18))||
(CardStackT(deck[46..51], 18))

isValidCell: CellT x N — B
isValidCell (¢,n) =

¢ = Tableau 0<n<8
¢ = FreeCell 0<n<4
¢ = HomeCell 0<n<4

validTabTab: Nx N — B
validTabTab (0,t1) =

T[t0].getSize() > 0 T[t1].getSize() > 0 | tabPlaceable(T[t0].top(), T[t1].top())
T[t1].getSize() = 0 | true

T[t0].getSize() = 0 T[t1].getSize() > 0 | false
T[t1].getSize() = 0 | false

validTabFree: N x N — B
validTabFree (¢, f) = T[t].getSize() > 0 A F[f].getSize() = 0

validTabHome: Nx N — B
validTabHome (¢, h) =

T[t].getSize() > 0 | H[h].getSize() > 0 | homePlaceable(T[t].top(), H[h].top())
Hlh|.getSize() = 0 | T[t].top().getSuit() =

T[t].getSize() = 0 | H[h].getSize() > 0 | false
Hlh|.getSize() = 0 | false

validFreeTab: Nx N — B
validFreeTab (f,t) =

F[f].getSize() > 0 | T[t].getSize() > 0 | tabPlaceable(F[f].top(), T[t].top())
T[t].getSize() = 0 | true

F[f].getSize() = 0 | T[t].getSize() > 0 | false
T[t].getSize() = 0 | false

validFreeFree: N x N — B
validFreeFree (f0, f1) = F[f0].getSize() > 0 A F[f1].getSize() = 0

13

validFreeHome: N x N — B
validFreeHome (f, h) =

F[f].getSize() > 0 | H[h].getSize() > 0 | homePlaceable(F[f].top(), H[h].top())
Hlh|.getSize() = 0 | F[f].top().getRank() = A
F[f].getSize() = 0 | H[h].getSize() > 0 | false
H[h].getSize() = 0 | false

oneLess: CardT x CardT — B

oneLess (c0,cl) =

let sts = [A, C2, C3, C4, C5, C6, C7, C8, C9, C10, J, Q, K]

in (3i € [0..]sts| — 2] : sts|i] = c0.get Rank() A sts[i + 1] = cl.get Rank())

oneMore: CardT x CardT — B

oneMore (c0,cl) =

let sts = [A, C2, C3, C4, C5, C6, C7, C8, C9, C10, J, Q, K]

in (37 € [0..]sts| — 2] : sts[i] = cl.get Rank() A sts[i + 1] = c0.get Rank())

tabPlaceable: CardT x CardT — B

tabPlaceable (c0,cl) =

c0.getColour() # cl.getColour() | oneLess(c0, cl)
c0.getColour() = cl.getColour() | false

homePlaceable: CardT x CardT — B
homePlaceable (0, cl) =

c0.getSuit() = cl.getSuit() | oneMore(c0, cl)
c0.getSuit() # cl.getSuit() | false

isWinningHomeCell: N — B

isWinningHomeCell (i) =

let stSeq = H[i].toSeq() in

stSeq|0].get Rank() = AN|stSeq| = 13N (Vi € [0..|stSeq| —2] : oneLess(stSeq(i], stSeq[i+
1]))

14

Card Deck Utils Module

Module
CardDeckUtils

Uses

CardTypes for SuitT, RankT and ColourT
CardADT for CardT

Syntax

Exported Access Programs
Routine name In | Out Exceptions
CardDeckUtils_randomDeck seq of CardT

Semantics

State Variables
State Invariant
Assumptions

Access Routine Semantics

CardDeckUtils_randomDeck():
e output: out := permute(deckSet())

e exception: None

Local Functions
deckSet: (set of CardT)
deckSet() = {s : SuitT,r : RankT : CardT(s,r)}

permute(inSet): set of CardT — seq of CardT
permute = S such that S is a random permutation of inSet, satisfying
(Vee S:ceinSet) AN(Ve € inSet:c e S)AN|S| = |inSet| A (Vi,j: NJi # j: S[i] # S[j])

15

