
Using Git 1 / 34

Using Git
CS 2ME3/SE 2AA4

Owen Huyn
Steven Palmer

Department of Computing and Software
McMaster University

January 8 - 12



Using Git 2 / 34

Outline

Outline

1 What is Version Control?

2 Prerequisite Software

3 Using Git
Git Workflow
Cloning a Repository
A Small Example
Modifying Files
Pushing Changes
Syncing Local with Remote
.gitignore
Issue Tracking

4 Additional Resources



Using Git 3 / 34

What is Version Control?

What is Version Control?

Tracks and provides control over changes to files (source code,
documents, etc.)
Used to keep a history of code (versions) over a period of time

Similar to system restore under Windows
Analogy: saving your progress in a video game
If a bug is introduced, easy to narrow down to a specific
version and roll back

Allows developers to work simultaneously (you won’t see this
in the course)



Using Git 4 / 34

What is Version Control?

Motivation for Learning to Use Git

It is a popular version control tool
Most software development companies use a version control
tool
Once you have learned one, switching between other version
control tools is easy (same ideas with different syntax)

Widely used in the open-source community (GitHub, GitLab)
Many large scale development projects use git



Using Git 5 / 34

Prerequisite Software

Installing Git

Linux (Ubuntu):

Run the command:

sudo apt-get install git

OSX:

Two options:
1 If you have Homebrew

installed, then run:

brew install git

2 Else you can use the installer

http://brew.sh
http://sourceforge.net/projects/git-osx-installer/


Using Git 6 / 34

Prerequisite Software

Installing Git

Windows:

1 Download the installer
2 Run the installer when download is complete
3 Follow steps on the next slides for selecting options

https://git-scm.com/download/win


Using Git 7 / 34

Prerequisite Software

Installing Git

Windows:

Make sure these
settings are on
Association of .sh files
is optional



Using Git 8 / 34

Prerequisite Software

Installing Git

Windows:

Git Bash is a command line
interface in Windows that
knows Bash commands
If you want to use Git Bash
exclusively for git, select the
first option
The second option will allow
you to run git commands
from the command prompt
as well as Git Bash
The third option is not
recommended



Using Git 9 / 34

Prerequisite Software

Installing Git

Windows:

Select the first option
here
The other options will
result in conflicts
when other people are
making changes to
your repo using
different operating
systems



Using Git 10 / 34

Prerequisite Software

Installing Git

Windows:

Select the first option
here



Using Git 11 / 34

Prerequisite Software

Installing Git

Windows:

Check both options



Using Git 12 / 34

Using Git

Git Workflow

Simplified Overview of Git

The repository for your project is stored on a remote server
In this course, we will use the CAS GitLab as the remote server
You should be able to create an account by signing in with
your MACID and password
If your password isn’t working, there is a link to reset your CAS
password to your MACID password on the left

You will use a local version of the repository to work in and
make changes
As changes are made, you can stage them and create a
commit that contains the staged changes
Commits are then pushed to the remote server

https://gitlab.cas.mcmaster.ca/


Using Git 13 / 34

Using Git

Cloning a Repository

Creating a Local Version of a Git Repository

You can create a local version of a remote repository to work
in by cloning it
This is done using the command:

git clone <link to repo>

This will create a new folder in whatever directory you were in
on your terminal/command prompt
The new folder will have the same name as your project and
contain copies of all of the files on the remote repository



Using Git 14 / 34

Using Git

Cloning a Repository

Creating a Local Version of a Git Repository

git clone <link to repo>

To get the <link to repo> using GitLab, go to the main
page of the GitLab project you want to clone and copy/paste
the following:



Using Git 15 / 34

Using Git

Cloning a Repository

Creating a Local Version of a Git Repository

Exercise 1: Clone the course repository

The course repository is located at:
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3

Find the git link to the repository and clone it.

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3


Using Git 16 / 34

Using Git

A Small Example

A Small Example

Exercise 2: A small example

We will use a small example to learn some git commands. We will
start by creating a new GitLab project:

1 Log in to GitLab in your web browser.
2 Create a new project using the green “New Project” button at

the top right of the page.
3 Give your project a name and click “Create project” (you can

leave all the other options as their defaults).
4 You are now on the main page for your new empty project.
5 Clone your empty repository using the repository link near the

top of the page.
6 Follow the instructions on the slides that follow.



Using Git 17 / 34

Using Git

A Small Example

Tracking a File

Create a new file in your empty repository called
“helloCountries.py”
Now run the git status command:



Using Git 18 / 34

Using Git

A Small Example

git status

git status displays paths that have differences between the
current state of the repo and the last commit
Use this command often: it will help you determine
what state your files are in.



Using Git 19 / 34

Using Git

A Small Example

Making a Commit

Commits are essentially different versions of your repository.
Making a new commit means bringing your repository to a
new version, with changes made on top of the last commit.
To make a new commit, you first need to stage your changed
files.
To stage a file, use the following command:

git add <relative path to file>

To stage all modified files, use:
git add *



Using Git 20 / 34

Using Git

A Small Example

Making a Commit

You can stage your new file “helloCountries.py” using the
command:

git add helloCountries.py

Running the git status will show you the new state of your
repository after staging:



Using Git 21 / 34

Using Git

A Small Example

Making a Commit

Now that we have staged the file, we can create a commit
using the command:

git commit -m “commit message”

Make sure to use a meaningful message that explains your
changes so you and other developers can easily tell what
changes you’ve made.



Using Git 22 / 34

Using Git

Modifying Files

Modifying Files

Now let’s make some changes to our file. Add the following
lines to “helloCountries.py” and save it:

print “Hello Canada!”
print “Hello USA”

Now run the git status command and notice that git is
aware that the file has been modified:



Using Git 23 / 34

Using Git

Modifying Files

Modifying Files

Now let’s do the same thing as before and stage our changes:



Using Git 24 / 34

Using Git

Modifying Files

Modifying Files

What if we want to modify a file that has been staged?
Add the following line to the end of “helloCountries.py” and
save it:

print “Hello Britain!”

Now run the git status command:



Using Git 25 / 34

Using Git

Modifying Files

Modifying Files

Notice that “helloCountries.py” is both staged and unstaged
This is not a problem:

Our original 2 lines are currently staged.
The additional line print “Hello Britain!” is not staged.
If we commit now, only the first 2 lines that we initially staged
will be part of the commit.



Using Git 26 / 34

Using Git

Modifying Files

Modifying Files

Let’s assume that we want both parts to be included in our
next commit.
All we have to do is stage the file again:

Now let’s commit the changes:



Using Git 27 / 34

Using Git

Pushing Changes

Pushing Changes to Remote

When you’ve made a commit(s) locally, only you can see them
For others to see your changes, you must push them to the
remote repository on GitLab using the following command:

git push

If you don’t push your changes, the TAs will not be able
to see your changes. It is very important to remember
to push your changes if you want to receive a grade for
your work!



Using Git 28 / 34

Using Git

Pushing Changes

Pushing Changes to Remote

Exercise 3: Push your changes

Try pushing the changes you’ve made to your new repository using
git push. After you push, you will be able to see the updates on
GitLab in your web browser.



Using Git 29 / 34

Using Git

Syncing Local with Remote

Syncing Your Local Repository with the Remote

When other people push changes to a remote repository on
GitLab, these changes will not automatically show up in your
local version
In order to get these changes, you must sync your local version
with the remote using the following command:

git pull

You should frequently execute the git pull command on the
course repo so that you have up-to-date lecture slides,
assignment instructions, etc. (Dr. Smith makes frequent
changes to the repo!)



Using Git 30 / 34

Using Git

Syncing Local with Remote

Syncing Your Local Repository with the Remote



Using Git 31 / 34

Using Git

.gitignore

Using .gitignore

When we are keeping a code base under version control, it is
often the case that we end up with generated files that should
not be stored in the repository
Compilation in particular generates many files, for example:

C/C++ .o files
Python .pyc files
LaTeX compilation files (.aux, .log, etc.)
executables

By adding a file called .gitignore to your repository, you can
tell git about file patterns that should be ignored
Take a look at the .gitignore file in the course repository as
an example (depending on your OS, you might need to unhide
this file)



Using Git 32 / 34

Using Git

Issue Tracking

Issue Tracking

GitLab provides an issue tracker for each individual project
Note that this is a feature of GitLab and not part of git itself
Access via web browser on GitLab project page

Issues are used to keep track of tasks, enhancements and bugs
They provide a forum where your team can contribute
discussion
Issues can be assigned to a specific person and categorized
with specific labels
You might find it useful to use the issue tracker to assign issues
to yourself as you are working on assignments in this course



Using Git 33 / 34

Using Git

Issue Tracking

Issue Tracking

Some examples of using the issue tracker:
1 Example in GitLab
2 Example of a popular issue tracking system on an open source

project
3 Example of a bug issue in the same repository as (2) with

discussion

https://gitlab.cas.mcmaster.ca/smiths/se3xa3/blob/master/Labs/L03/instructions_issue_tracking.pdf
https://github.com/facebook/react/issues
https://github.com/facebook/react/issues
https://github.com/facebook/react/issues/6895
https://github.com/facebook/react/issues/6895


Using Git 34 / 34

Additional Resources

Additional Resources

The basics covered in this presentation are sufficient for the
needs of this course
Should you run into problems or have any questions, here are
some additional resources:

1 Your peers (an invaluable resource)
2 StackOverflow
3 Your TAs and Avenue discussions
4 YouTube tutorials, such as this one
5 Atlassian git tutorials
6 The git reference manual

https://stackoverflow.com/
https://www.youtube.com/watch?v=Y9XZQO1n_7c
https://www.atlassian.com/git
https://git-scm.com/doc

	What is Version Control?
	Prerequisite Software
	Using Git
	Git Workflow
	Cloning a Repository
	A Small Example
	Modifying Files
	Pushing Changes
	Syncing Local with Remote
	.gitignore
	Issue Tracking

	Additional Resources

