
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

03 Software Quality (Ch. 2)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 10, 2018



03 Software Quality (Ch. 2)

Administrative details

Software development process
I Software documentation
I Software development phases
I Software life cycle models

How software differs from other engineering products

Definition of quality

Sample qualities

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 2/23



Administrative Details

Assignment 1
I Part 1: January 22, 2018
I Partner Files: January 28, 2018
I Part 2: January 31, 2018
I Correction to quadratic interpolation formula
I Clarification that input data files should also be under

version control

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 3/23



Rational Design Process

Development 
Plan

Requirements 
(SRS)

Design Docs 
(MG and MIS)

Code

V&V Report

Problem 
Statement

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 4/23



Software Lifecycle

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 5/23



Software Documentation

Every software product should include documentation
that presents the product to clients, reviewers, users and
maintainers

It is useful to produce documentation that makes it
appear as if the software product was developed by a
rational process

I Mathematics have long followed this approach in
presenting results

I See Parnas and Clements, 1986, “A Rational Design
Process: How and Why to Fake It,”

I See Parnas, 2010, “Precise Documentation: The Key to
Better Software” in The Future of Software Engineering
(2010)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 6/23

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/ReferenceMaterial/ParnasAndClements1986.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/ReferenceMaterial/Parnas2010.pdf


Software Development Process

A rational development process is needed to produce
quality software

Any proposed rational process is necessarily an
idealization

I Humans inevitably make errors
I Communication between humans is imperfect
I Many things are not understood at the start
I Supporting technology always has limitations
I Requirements change over time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 7/23



Software Development Process

1. Requirements: What is the problem that needs to be
solved? What are the product requirements that need to
be satisfied? (SRS)

2. Design: How will the problem be solved? How will the
product requirements be satisfied? (MG, MIS)

3. Implementation: What is a solution to the problem?
What is an executable implementation of the design?
(Code)

4. Verification: What behaviour does the product exhibit? Is
the behaviour correct? (VnV plan, VnV report)

5. Delivery and Maintenance: How will the product be
delivered? What needs to be maintained? How will it be
maintained?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 8/23



Software Life Cycle Models

Waterfall model
I Development follows the logical order of the phases

given above in a linear fashion
I Is an idealization of the software development process

that is rarely realized
I Potentially appropriate when requirements are well

understood and slow to change

Other life cycle models
I Refinement
I Incremental
I Spiral
I Prototyping

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 9/23



How Software Differs from other Engineering

Products

Intangible
I Not physical
I Hard to visualize
I Hard to separate what is key from what is incidental

Malleable
I Easy to modify
I But modification requires care

Human intensive
I Software production is 99.9% engineering, 0.1%

manufacturing
I Software is essentially documentation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 10/23



Question

Every software system should be designed to achieve an
uptime of 24 hours a day, 7 days a week, 365 days a year.

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 11/23



What is Quality?

Definition of quality?

Quality of a McDonald’s hamburger versus steak?

Quality of BMW versus Ford Escort?

Beta versus VHS?

Blu Ray versus HD DVD?

Mac OS X versus Linux versus Windows?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 12/23



What are the Important Qualities for Software?

Brainstorm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 13/23



Definition of Software Qualities

Measures of the excellence or worth of a software product
(code or document) or process with respect to some
aspect

Aspects include
I correctness
I reliability
I robustness
I performance
I verifiability
I productivity
I etc.

User Satisfaction = The Important Qualities are High +
Within Budget

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 14/23



Pick Any Two

Wikipedia Project Management Triangle
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 15/23

https://en.wikipedia.org/wiki/Project_management_triangle


Project Management Triangle

Wikipedia Project Management Triangle
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 16/23

https://en.wikipedia.org/wiki/Project_management_triangle


Software Qualities

The goal of software engineering is to produce quality
software. But what are the desirable qualities that
software should possess?

External versus internal software qualities
I External qualities are visible to the user
I Internal qualities are visible to the developer
I Internal qualities help external qualities be achieved

Product versus process qualities
I Product qualities concern the product itself
I Process qualities concern how the product is developed
I Process qualities help product qualities be achieved
I Process qualities can also reduce development costs

The importance of a particular software quality varies
across software products - external qualities are not as
important for embedded systems as for desktop software

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 17/23



Correctness Versus Reliability Versus Robustness

What might be the difference between these 3 qualities?

Can you assess correctness without a requirements
specification?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 18/23



Correctness

A software product is correct if it satisfies its
requirements specification

Correctness is extremely difficult to achieve because
I The requirements specification may be imprecise,

ambiguous, inconsistent, based on incorrect knowledge,
or nonexistent

I Requirements often compete with each other
I It is virtually impossible to produce “bug-free” software
I It is very difficult to verify or measure correctness

If the requirements specification is formal, correctness can
in theory and possibly in practise be

I Mathematically defined
I Proven by mathematical proof
I Disproven by counterexample

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 19/23



Reliability

A software product is reliable if it usually does what is
intended to do

Correctness is an absolute quality, while reliability is a
relative quality

A software product can be both reliable and incorrect

Reliability can be statistically measured

Software products are usually much less reliable than
other engineering products

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 20/23



Robustness

A software product is robust if it behaves reasonably even
in unanticipated or exceptional situations

A correct software product need not be robust
I Correctness is accomplished by satisfying requirements
I Robustness is accomplished by satisfying unstated

requirements

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 21/23



Question on Correctness and Robustness

All correct programs are robust, but all robust programs are
not necessarily correct. Is this statement True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 22/23



Performance

What are some ways you could measure software performance?

What are some ways you could specify performance
requirements to make them unambiguous and verifiable?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 03 Software Quality (Ch. 2) 23/23


