|ntr0 tO PyU ﬂ It and unit testing

Tutorial 5

Owen Huyn
February 6, 2017

Unit testing quote

“If you don’t like unit testing your product, most likely
your customers won'’t like to test it either.”

- Anonymous

What is unit testing?

* Unit testing verifies that individual units of code (usually
functions) work as intended

* Designed to be SIm ple easy to write and run

* You can test both from a blackbox perspective and a whitebox
perspective

Who should write unit tests?

* Developers should test their own code!

 The person who wrote the code usually has the best
understanding of what their code does!

So why do we unit test?

Catches bugs much earlier
Provides documentation on a specific function
Helps developer improve the implementation design of a

function

Every good developer should be a good tester too!

No one likes to work with someone who doesn’t
verify/test if their code works.

What is PyUnit

e PyUnitis a testing framework that belongs to the xUnit class of
testing frameworks

e Similar to JUnit (Java), CppUnit (C++)

 Knowledge is transferrable to another xUnit framework
regardless of language

Alright, I'm sold. How do | get started?

 The PyUnit library already comes preinstalled into Python!
* The library used to write tests is under the ‘unittest” module

Jemo

Let’s get started, | encourage everyone to pull out their
laptops and follow along.

Don’t be afraid to ask any
questions!

Jemo

 For our demo, let’s test our first assignment!

e The functions that we need to test should be familiar with
everyone

Let’s create our first unit testing file!

e To start, create a new Python file in the same directory of our file that we
want to test
* You can do this from the command line or any text editor of your choice

[] Name Date modified Type Size
24 test_circles 2017-02-02 12:23 PM Python Source File 1 KB
<% MINGW64:/c/Users/huyno/OneDrive/McMaster/2AA4/T5/src — O X

huyno@DESKTOP-75I1186 MINGW64 ~/OneDrive/McMaster/2AA4/T5/src
$ echo >> test_circles.py

huyno@DESKTOP-75II186 MINGW64 ~/OneDrive/McMaster/2AA4/T5/src
$

Let’s create our first test template

* To start with our unit test, follow this template:

test_circles.py %

1 import unittest

class CirclesTests(unittest.TestCase):

o NN OV B wN

if _name__ == '__main__":
unittest.main()

1. Import the unit test library
2. Write a unit testing class with ‘unittest.TestCase’ as your argument
3. Line 7 and Line 8 helps run the test file itself

OK, let’s write our first test

e Let us test something very simple

e Qur first test will be testing the xcoord and ycoord getters of
our Circle class

Import the
module you —
are testing

Create some
tests here;
Each
function

declaration /
Is one test

In this case,
we have two
tests.

b 4

1 import unittest

| —5—, from CircleADT import *

class CirclesTests(unittest.TestCase):

def test xcoord_are_qual(self):
circle = CircleT(1,2,3)
self.assertTrue(circle.xcoord() == 1)

def test xcoord are_not_equal(self):
circle = CircleT(1,2,3)
self.assertFalse(circle.xcoord() != 1)

if _name__ == "' _main__ ':

unittest.main()

CircleADT.py %
7
@brief An ADT that represents a circle
class CircleT:

@brief CircleT constructor

@details Initializes a CircleT object with a cartesian coordil

| and a radius

@param x The x coordinate of the circle center

@param y The y coordinate of the circle center

@param r The radius of the circle

@exception ValueError Throws if supplied radius is negative
def __init__(self, x, y, r):

if(r < 0):

raise ValueError("Radius cannot be negative")

self._ _x = X

self._y =y

self._r=r

@brief Gets the x coordinate of the circle center
@return The x coordinate of the circle center
def xcoord(self):

return self.__ X

@brief Gets the y coordinate of the circle center
@return The y coordinate of the circle center
def ycoord(self):

return self.__vy

From Wikipedia:

“... a statement that a predicate (Boolean-valued function, a true—false expression) is
expected to always be true at that point in the code. If an assertion evaluates to false
at run time, an assertion failure results, which typically causes the program to crash, or

to throw an assertion exception.”

ELIS:
Basically, if the test passes that Boolean expression, it will
continue. Otherwise the test will fail and it will not

continue with that test.

Example of an assertion

assertTrue(1l == 1)
This passes, and the test continues.

assertTrue(1 == 2)

This Boolean expression is false, and throws an
AssertionException which causes the test to fail.

assertFalse (1 == 2)

This Boolean expression is false, but the assertion asserts that
the expression is false thus it passes and the test continues.

Running the tests

* Run this command in your command prompt:
python -m unittest <name of your test module>
Inour demo, itis: python -m unittest test circles

* |f you have multiple test files, you can run this to run all of them at
once

python -m unittest discover

Module name is not the same as the class name!!

MINGW64:/c/Users/huyno/onedrive/mcmaster/2aa4/t5/src —

huyno@DESKTOP-75I1186 MINGW64
$ python -m unittest test_circles

|IRan 2 tests in 0.001s
oK

huyno@DESKTOP-75II3J86 MINGW64
$

Failed Tests

Let’s say we have an example like this:

class CirclesTests(unittest.TestCase):

def test _xcoord are equal(self):
circle = CircleT(1,2,3)
self.assertTrue(circle.xcoord() == 1)
This will fail!
def test_xcoord_are_not_equal(self):
circle = CircleT(1,2,3)
self.assertFalse(circle.xcoord() != 1)

def test xcoord will fail test(self):
circle = CircleT(1,2,3)
self.assertTrue(circle.xcoord() == 8)

huyno@DESKTOP-75I1186 MINGW64
$ python -m unittest test_circles
.F

Traceback (most recent call Tlast):
File "test_circles.py”, Tine 16, 1n test_xcoord_will_fail_test
self.assertTrue(circle.xcoord() == 8)
AssertionError: False 1s not true Reason for failure

Where it failed

Ran 3 tests in 0.000s

FAILED (failures=1) 3 total tests, 1 failed, 2 passed

Method

Checks that

assertEqual(a, b)

d

assertNotEqual(a, b)

1= b

assertTrue(x) bool(x) is True
assertFalse(x) bool(x) is False
assertIs(a, b) ais b
assertIsNot(a, b) a is not b
assertIsNone(x) X is None
assertIsNotNone(x) X is not None
assertIn(a, b) ainb
assertNotIn(a, b) a not in b

assertIsInstance(a, b)

isinstance(a, b)

assertNotIsInstance(a, b)

not isinstance(a, b)

Other assertions

e Documentation can be
found here:

https://docs.python.org/2
/library/unittest.html

* Most of the time, you
will use the first 4
assertions, however the
other assertions could
come in handy

e There are more
uncommon assertions
(not listed here) that
are in the docs

https://docs.python.org/2/library/unittest.html

Floating point assertions

def assertAlmostEqual (self, first, second, places=None,
msg=None, delta=None)

Checks if the two numbers are equal up until the given number of decimal places
(argument: places, default is 7); delta is used as an acceptable range for both numbers

def assertNotAlmostEqual (self, first, second,
places=None, msg=None, delta=None)

Similarly here, except this is the logical negation of the first assertion

More into optional arguments here:
http://www.diveintopython.net/power of introspection/optional arguments.html

http://www.diveintopython.net/power_of_introspection/optional_arguments.html

Redundant code in tests

Let’s say we have some redundant code in all our tests:

class CirclesTests(unittest.TestCase):

def test xcoord _are_equal(self):
circle = CircleT(1,2,3)
self.assertTrue(circle.xcoord() == 1)

def test xcoord_are not_equal(self):
circle = CircleT(1,2,3)
self.assertFalse(circle.xcoord() != 1)

This will

4
5

class CirclesTests(unittest.TestCase):

run before /5/» def setUp(self):

every test
(setUp)

This will run
after every
test
(tearDown)

8
9
10

12

14
15
16
17
18
19

if

self.circle = CircleT(1,2,3)

def tearDown(self):
self.circle = None

def test xcoord _are_equal(self):
self.assertTrue(circle.xcoord()

def test xcoord are not equal(self):
self.assertFalse(chrcle.xcoord()

__name__ == "' main__

unittest.main()

1)

= 1)

Group Activity:
A more complicated function

e Come up with some tests with your peers for the intersect and
insideBox function in the CircleT class

e Try to cover the requirements and edge cases along with any
ambiguity

A complete test file

e Refer to testStatistics.py for a more complete breakdown on
how to test complicated functions

How much should | test?

e Test all requirements in each function
* Cover edge cases that may cause unintended consequences
* Have an acceptable amount of code coverage

https://en.wikipedia.org/wiki/Code_coverage

Extra tutorials

PyUnit documentation website:

https://docs.python.org/2/library/unittest.html

If you want to really dive into how to be a unit testing pro:

https://pymotw.com/3/unittest/index.html (PyUnit tutorial)
Mocking: http://stackoverflow.com/questions/2665812/what-is-mocking

Mocking Tutorial: https://www.toptal.com/python/an-introduction-to-mocking-in-
python

https://docs.python.org/2/library/unittest.html
https://pymotw.com/3/unittest/index.html
http://stackoverflow.com/questions/2665812/what-is-mocking
https://www.toptal.com/python/an-introduction-to-mocking-in-python

