
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

27 Design Patterns

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 16, 2018



27 Design Patterns

Administrative details

Specification using UML

Design patterns

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 2/31



Administrative Details

Today’s slide are partially based on slides by Dr. Wassyng
and on van Vliet (2000)

A3
I Part 1 - Solution: Mar 18
I Part 2 - Code: due 11:59 pm Mar 26

A4
I Your own design and specification
I Model module for game of Freecell
I Due April 9 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 3/31



UML Diagram for Generic Classes

UML Class Diagram Template

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 4/31

https://coderanch.com/t/626984/a/5041/UML_class_diagram_template.png


Use Cases

An overview of the usage requirements for a system

Made up of:
I Actors - person, organization, external system
I Use cases - action to be performed

Example of University Enterprise Resource Planning
(ERP) software (Mosaic)

I Actors?
I Use cases?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 5/31



UML 2 Use Case Diagrams: An Agile Introduction
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 6/31

http://www.agilemodeling.com/artifacts/useCaseDiagram.htm


Use Cases

Often used for capturing requirements

From user’s (actor’s) viewpoint
I Person
I Other system
I Hardware
I etc. (anything external

Each circle is a use case

Lines represent possible interactions

An actor represents a role, individuals can take on
different roles

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 7/31



Sequence Diagram For On-Line Shopping

http://people.cs.ksu.edu/~reshma/buying_3.JPG


Sequence Diagram Question

Is a sequence diagram an operational or a descriptive
specification?

If objects exchange a message, should there be an
association between their classes?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 9/31



Sequence Diagrams

Represents a specific use case scenario

How objects interact by exchanging messages

Time progresses in the vertical direction

The vertically oriented boxes show the object’s lifeline

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 10/31



Design Patterns

Christopher Alexander (1977, buildings/towns):
I “Each pattern describes a problem which occurs over

and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way.”

Design reuse (intended for OO)

Solution for recurring problems

Transferring knowledge from expert to novice

A design pattern is a recurring structure of
communicating components that solves a general design
problem within a particular context

Design patterns consist of multiple modules, but they do
not constitute an entire system architecture

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 11/31



Strategy Design Pattern

From Source Making web-page

Define a family of algorithms, encapsulate each one, and
make them interchangeable.

Strategy lets the algorithm vary independently from the
clients that use it.

Capture the abstraction in an interface, bury
implementation details in derived classes.

Where have we used this pattern?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 12/31

https://sourcemaking.com/design_patterns/strategy


UML Diagram of Measurable Interface

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 13/31



UML Diagram of Measurer Interface

Rectangle 
Measurer Rectangle

DataSet <<interface>>
Measurer

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 14/31



Model View Controller (MVC)

Separate computational elements from I/O elements

Three components

1. Model encapsulates the system’s data as well as the
operations on the data

2. View displays the data from the model components,
possibly multiple view components

3. Controller handles input actions

The controller may or may not depend on the state of the
model

The controller depends on model state when menu items
are enabled or disabled depending on the state of the
model

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 15/31



MVC

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 16/31



MVC Web Applications

From /Tutorials/OLD MVC

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 17/31



MVC Example

https://www.tutorialspoint.com/design pattern/mvc pattern.htm
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 18/31

https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm


MVC Critique

Advantages
I Simultaneous development
I High cohesion
I Low coupling
I Ease of modification
I Multiple views for a model

Disadvantages
I Code navigability
I Multi-artifact consistency
I Pronounced learning curve

Wikipedia page

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 19/31

https://en.wikipedia.org/wiki/Model–view–controller


Design Pattern Properties

A pattern addresses a recurring design problem that arises
in specific design situations and presents a solution to it

A pattern must balance a set of opposing forces

Patterns document existing, well-proven design experience

Patterns identify and specify abstractions above the level
of single components (modules)

Patterns provide a common vocabulary and understanding
for design principles

Patterns are a means of documentation

Patterns support the construction of software with
defined properties, including non-functional requirements,
such as flexibility and maintainability

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 20/31



Classification of Patterns

Creational design patterns
I Abstract factory
I Object pool
I Prototype
I Singleton

Structural design patterns
I Adapter
I Bridge
I Facade
I Proxy

Behavioural design patterns
I Command
I Iterator
I Observer
I State
I Strategy

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 21/31



Describing Patterns

Context: the situation giving rise to a design pattern

Problem: a recurring problem arising in that situation

Solution: a proven solution to that problem

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 22/31



The Proxy Pattern (from van Vliet (2000))

Context: A client needs services from another
component. Though direct access is possible, this may
not be the best approach

Problem: We do not want to hard-code access to a
component into a client. Sometimes, such direct access is
inefficient; in other cases it may be unsafe. This
inefficiency or insecurity is to be handled by additional
control mechanisms, which should be kept separate from
both the client and the component to which it needs
access.

Solution: The client communicates with a representative
rather than the component itself. This representative, the
proxy, also does and pre- and postprocessing that is
needed.

Code
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 23/31

https://en.wikipedia.org/wiki/Proxy_pattern


UML Diagram of Proxy

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 24/31



Command Processor Pattern

Context: User interfaces which must be flexible or provide
functionality that goes beyond the direct handling of user
functions. Examples are undo facilities or logging
functions

Problem: We want a well-structured solution for mapping
an interface to the internal functionality of a system. All
‘extras’ which have to do with the way user commands
are input, additional commands such as undo and redo,
and any non-application-specific processing of user
commands, such as logging, should be kept separate from
the interface to the internal functionality.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 25/31



Command Processor Pattern Continued

Solution: A separate component, the command processor,
takes care of all commands. The command processor
component schedules the execution of commands, stores
them for later undo, logs them for later analysis, and so
on. The actual execution of the command is delegated to
a supplier component within the application.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 26/31



Command in UML

http://www.dofactory.com/net/command-design-pattern

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 27/31

http://www.dofactory.com/net/command-design-pattern


Adapter Design Pattern

When have we used the adapter (or wrapper) design pattern?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 28/31



Adapter Design Pattern

Adapter wraps one class

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 29/31



Factory Pattern

Code

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 30/31

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm


Singleton Pattern

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 27 Design Patterns 31/31


