Introduction to C++ 1/44

Introduction to C++

CS 2ME3/SE 2AA4

Steven Palmer

Department of Computing and Software
McMaster University

March 26, 2018

Introduction to C++

Loutline

Outline

B B RN

B AR

C++ Basics
Enumerated Types
Classes

Generics

Memory Management
Exceptions

Example

Additional Resources

Introduction to C++
LC++ Basics

C++

m C++ is a language based on C — started as an Object
Oriented extension to C (originally called “C with Classes”)

m Backwards compatible with C — any C program will compile
(or be made to compile) with C++

m Modern C++ standards have added many additional
constructs to the language — both OO related and not

m As a result, C++ is a very big language — this tutorial will
cover some basic syntax and concepts you will need for the
assignments

m You will almost certainly need to do some reading/practice on

your own to fill in the gaps — references to good resources are
provided on the last slide

Introduction to C++
LC-}—+ Basics

gcc (the GNU Compiler Collection)

m In this course we will use g++ (part of the GNU Compiler
Collection — gcc) to compile C++ code
m Installation:

m Windows: via MinGW
m Mac:

m by default gcc/g++ is probably available, but this is actually
an alias for clang
B use homebrew or macports to get proper gcc/g++
m Linux:
m likely installed by default
m if not check your package manager

http://www.mingw.org/
https://brew.sh/
https://www.macports.org/

Introduction to C++
LC-}—+ Basics

File Organization

m C++ uses header files (extension .h) and source files
(extension .cpp)

m Generally, for every source file you write, you will write an
accompanying header file

m Header files contain declarations of variables, classes, and
functions

m Source files contain the definitions of the things defined in the
header

m More on this later

Introduction to C++
LC++ Basics

Base Types and Derived Types

m C++ includes the standard base types that you are familiar
with: int, float, double, bool, char, etc.

m There is an additional base type called void which is used as
the type for functions which do not return anything (there are
additional uses of void, but those are beyond the scope of this
course)

m Note that strings are not a base type in C++

m We can build additional derived types using various language
constructs (we will focus on enum and class — discussed later)

Introduction to C++
LC-}—+ Basics

Functions

m Function definitions in C++ use the following syntax:

type functionName (type pl, type p2, ...) {
function body
}

m For example, a function that returns the smallest of 2 integers
would be:

int min(int a, int b){
if (a < b)
return a;
return b;

Introduction to C++
LC-}—+ Basics

Importing Modules

m We can import modules in C++ by using the include directive
(#include)

m Modules that are part of the C++ standard library are
imported with angle brackets

m Local modules that you have written are included using quotes

m For example:

// this is a C++ std 1lib module
#include <iostream>

// these are local files
#include "MyModule.h"
#include "AnotherModule.h"

Introduction to C++
LC-}—+ Basics

Header Files

m Local files that you import should always be headers (.h), and
never source files (.cpp)

m Generally, we use header files to define all of the functions and
classes in a corresponding source file

m Consider a source file called MinMax. cpp with the following
function definitions:

int min(int a, int b){
return (a < b) ? a : b;

int max(int a, int b){
return (a > b) ? a : b;

Introduction to C++
LC++ Basics

Header Files

m The corresponding header file, MinMax.h, for this source would
simply be declarations of each function:

int min(int a, int b);
int max(int a, int b);

m An include directive for this header must be added to the top

of MinMax.cpp (otherwise the compiler will think you are
redeclaring these functions)

m Now you can use #include ‘‘MinMax.h’’ in any of your other
source files to gain access to these functions

m We will see how to create header files for class definitions later

Introduction to C++
LC-}—+ Basics

Some Frequently Used Modules

m The following are some frequently used modules from the
standard library:

#include
#include
#include
#include
#include
#include
#include
#include

<iostream>
<fstream>
<cmath>
<string>
<vector>
<list>
<set>
<algorithm>

console input and output
file input and output
math functions

string type and functions
vector container

list container

set container

common algorithms

Introduction to C++
LC-}—+ Basics

Namespaces

m C++ uses namespaces to provide different scope groups — this
is done to avoid name collisions

m All of the functions and classes that are imported from the
standard library using the namespace “std”

m To access a namespace, we use the scope resolution operator

m For example, if we import the string module from the standard
library and wanted to use the string class, we would use
std::string:

#include <string>

std::string s = "I’m a string";

Introduction to C++
LC++ Basics

Namespaces

m If we can be sure that no name collisions will happen, it is
convenient to just “use” a namespace instead of individually
scoping everything

m We can do this with the using keyword:

#include <string>
using namespace std;

string s = "I’m a string";

m This is similar to “import Module” vs “from Module import *”
in Python

m NEVER bring namespaces into scope with using in
header files — this will expose the namespace in all files
that use the header

Introduction to C++
L Enumerated Types

Enumerated Types

m Enumerated types are a common programming construct
where a type is defined to have a finite set of named values

m These names don't actually do anything other than provide
distinction between values in a meaningful way — they are
really the same as integers

m When used properly they result in much more readable and
understandable code

m Think, for example, of using 0 through 6 to represent days of
the week vs. using an enum with the set of values {SAT, SUN,
MON, TUE, WED, THU, FRI}

Introduction to C++
L Enumerated Types

Enumerated Type Example

m In C++ we can define an enumerated type using the keyword
enum:

enum Color {RED, BLUE, YELLOWZ};

void colorFunc(Color c){

if (¢ == BLUE)
else if (¢ == RED)
else

Introduction to C++

L Classes

Classes

m Class syntax is similar to Python and Java

m To define a new class called Example, the code looks like this:

class Example {
private:
// private fields and methods go here

protected:
// protected fields and methods go here

public:
// public fields and methods go here
s

Introduction to C++

L Classes

Class Access Specifiers

m Class members all have an associated access specifier (private,
protected, or public)

m private:
m these members are not visible outside of the class definition
m instances cannot access these members
m derived classes cannot access these members
m protected:
m same as private, except derived classes can access these
members
m public:

m visible to everyone
m class instances and derived classes can access these

Introduction to C++

L Classes

Constructors

All classes have constructors for creating instances of the class

By default, a constructor that takes no parameters exists even
if not defined — this constructor simply creates an instance

Custom constructor declarations/definitions look like normal
function declarations/definitions, except they have no return
type

Constructors must have the same name as the class
Constructors should always be public, otherwise they can't be
accessed by instances

Introduction to C++

L Classes

Constructor Example

class Point {
private:

double x;

double y;

public:
Point () {
this->x = 0;
this->y = 0;

X

Point (double x, double y){
this->x = x;
this->y = y;

}

Introduction to C++

L Classes

this

m In the example on the previous slide, we saw the keyword this

m this behaves like self in Python — it refers to the calling
instance

m Note the arrow operator (->) — you cannot use dot (.) with
this

m this is available in all class method definitions, not just the
constructors

Introduction to C++

L Classes

Classes in Header Files

m Similar to functions, whenever we define a class we should
separate the declaration and the definition into a header file
and a source file respectively

m Consider the following class definition (next slide)

Introduction to C++

L Classes

Classes in Header Files

class Point {
private:

double x;

double y;

public:

Point (double x, double y){
this->x = x;
this->y = y;

}

double getX(){ return this->x; }

double getY(){ return this->y; 1}

s

Introduction to C++

L Classes

Classes in Header Files

m To create a header file for this class, we remove the definitions
and just give the declarations:

class Point {
private:

double x;

double y;

public:
Point (double x, double y);
double getX();
double getY();
}s

Introduction to C++

L Classes

Classes in Header Files

m In the corresponding source file, we don't want to rewrite the
class — the compiler would tell us that it is already defined

m All we would like to do is add definitions for the class methods
— that is all that is missing from the header

m We can do this using the scope resolution operator:

#include "Point.h"

Point::Point (double x, double y){
this->x = x;
this->y = y;
}
double Point::getX(){ return this->x; }
double Point::getY(){ return this->y; }

Introduction to C++

L Classes

Class Inheritance

m In C++, subclasses can be created using the following syntax:

class Parent A

// create class Child as a subclass of Parent
class Child : public Parent {

Introduction to C++

L Classes

Class Inheritance

m When defining a subclass, you have access to all public and
protected members of the base class

m Remember that using private members in the base class means
that those members will not be accessible when writing the
definitions of the subclass: it generally makes sense to use
protected rather than private when you have inheritance

m Class instances of a subclass have access to all public methods
and fields in the base class, as well as any additional public
members defined in the subclass

Introduction to C++

L Classes

Polymorphism

m Polymorphism: “having multiple forms of one thing”

m Polymorphism occurs in classes when we have different
method definitions of the same method in parent classes and
subclasses — this is called overriding

m Methods of the base class that will be overrided should be
marked with the keyword virtual

class Animal {
public:
virtual void speak (){ cout << "Roar"; }
s
class Dog : public Animal {
public:
void speak (){ cout << "Woof"; } // override

};

Introduction to C++

L Generics

Generic Types

m C++ is statically typed: we must explicitly state the type of
every variable in our code

m This includes function return types, function parameter types,
and class member field and method types

m Sometimes we would like to use generic types so that a
function or class can work with multiple different types

m In C++ we use the keyword template to implement generics

Introduction to C++

L Generics

Generic Functions

m A generic version of the min function we defined previously
would be:

template <class T>
T min(T a, T b){
if (a < b)
return a;
return b;

m This defines T to be some generic class, and we can then use
T as a type in our function definition

m The min function can now be called with any type — T is
inferred based on what we pass as arguments

Introduction to C++

L Generics

Generic Classes

m Generic versions of classes work the same way:

template <class T>
class Pair {
private:
T a;
T b;

public:

Pair(T a, T b){
this->a = a;

this->b

|
o

etc.

Introduction to C++

L Generics

Instances of Generic Classes

m Unlike functions, generic types in classes are not inferred

m We must explicitly state which type:

// this 1is wrong:
Pair p(3, 3);

// this is correct:
Pair<int> p(3, 3);

Introduction to C++

L Generics

The Standard Template Library (STL)

m The Standard Template Library (STL) is a subset of the C++
standard library

m The STL includes several generic container classes (vector, list,
set, queue, deque, etc.)

m Also includes algorithms and functions that operate on the
containers, as well as iterators that can be used to iterate over
the containers

Introduction to C++

L Memory Management

Memory Management

m C++ is a lower level language compared to Python or Java
with respect to memory management

m Memory is not fully abstracted away

m C++ allows the programmer to allocate and deallocate
memory explicitly, and to access and use the memory locations
of variables

Introduction to C++

L Memory Management

Pointers

m Pointers are variables that “point” to memory locations

m Pointers are declared similar to other variables, with a * added
to the end of the type:

// this is an integer variable called i
int 1i;

// this is an integer pointer variable called j
int* j;

// this is an Example class pointer variable
Examplex* ex;

Introduction to C++

L Memory Management

Referencing and Dereferencing

m Pointer variables can be dereferenced with * to access their
contents

m Conversely, a reference to the memory location of a variable
can be found with the & operator

int* j inti

i *j &i i

Imem addrl value I Imem addrl value I

Introduction to C++

L Memory Management

Pointer Example

int i = 5; // int variable i with value 5

int* j; // int pointer variable j

j = &i; // j points to i‘s memory address

xj = 7; // change the value at address j to 7

std::cout << *j << std::endl;
std::cout << i << std::endl;

/* this prints
7
7

*/

Introduction to C++

L Memory Management

Allocating Memory with new

m When pointers are declared, they initially point to garbage
(some random address)

m As seen in the previous slides, we can point to addresses of
pre-existing variable using &

m Often when using pointers we want to allocate new memory,
fill it with something, and point to that: this is done via the
keyword new

// supposing we have a class Point
// with constructor that takes x and y values
Point* p = new Point (3,4);

// new vector from STL with default constructor
vector<int>* v = new vector<int>();

Introduction to C++

L Memory Management

De-allocating Memory with delete

m There is no garbage collection in C++

m Whenever we allocate new memory using new, we need to
deallocate that memory when we are done with it using the
keyword delete:

Vector<int>* v = new Vector<int>();

at some point later in code
// deallocates memory that was allocated to v
delete v;

m It is very important to remember to deallocate memory that
has been allocated; failure to do so will lead to “memory leak”

Introduction to C++

L Memory Management

A Note About Class Instances

m To access members of a class instance, we use dot (.)

m To access members of a class instance pointer, we use arrow
(->) — we've seen this with the this keyword, which is actually
a pointer in C++

MyClass ml1 = MyClass ();
MyClass* m2 = new MyClass ();

// use dot to access members of ml
ml.myField;
ml.myFunction();

// use arrow to access members of m2
m2->myField;
m2->myFunction ();

Introduction to C++

L Memory Management

Why Use Pointers?

m You might wonder: “why would we use pointers?”
m One reason is to keep variables alive through different scopes:

m The memory associated with variables declared in a certain
scope have a lifetime which ends when that scope ends

m Declaring a pointer and allocating memory to it with new will
keep that memory alive until we delete it

m Another reason is efficiency:

m When we call a function with parameters, the supplied
parameters are copied and the copies are used locally in the
function

m This is very inefficient when we are passing large data
structures

m We could instead pass a pointer to the structure and all that
needs to be copied is the integer memory address

Introduction to C++

L Exceptions

C++ Exception Handling

m C++ has a standard library called <exception> that is used
for exception handling

m Exception handling in C++ is done using a try...catch
block:

try
{
..some code that might cause exception...

}
catch (exception& e)
{

// handle exception here

cout << e.what () << endl;

Introduction to C++

L Exceptions

Custom Exceptions

m We can create custom exceptions in C++ by creating new
classes that inherit from the exception class:

#include <exception>
using namespace std;

class MyException : public exception {
virtual comnst char* what() const throw()
{

return "Exception message";

m This exception can then be thrown in code using:

throw MyException();

Introduction to C++

L Example

C++ Example

m An example of A4 from a previous year is given in the src folder

m This example gives an MIS and corresponding C++
implementations of each module

Introduction to C++

L Additional Resources

Additional Resources

B www.cplusplus.com/ is excellent

m https://stackexchange.com/ for specific questions — very
high chance your question has already been asked and
answered there

m The C++ Programming Language by Bjarne Stroustrup (the
creator of C++) — should be able to access via mcmaster
library online access

www.cplusplus.com/
https://stackexchange.com/
https://dl.acm.org/citation.cfm?id=2543987

	C++ Basics
	Enumerated Types
	Classes
	Generics
	Memory Management
	Exceptions
	Example
	Additional Resources

