
The Draw-Bot:A Project for Teaching Software EngineeringMartin v. MohrenschildtComputing and SoftwareCommunications Research Laboratory,McMaster University,Hamilton, Ontario, Canada L8S 4K1e-mail: mohrens@mcmaster.ca
Dennis K. PetersFaculty of Engineering & Applied ScienceMemorial University of Newfoundland,St. John's, Newfoundland, Canada A1B 3X5e-mail: dpeters@engr.mun.caJune 4, 1998AbstractWe present a course project which was successfully usedto teach software design principles to third year computerengineering students. The goal of the project is to pro-gram a robot to trace a shortest path through a maze.The students, organized in teams of �ve, have to followthe classical steps of software development and prepare in-terface, design and testing documents. Having a projectthat requires controlling a device to complete a clear taskgenerates enthusiasm in the students and helps them tounderstand the principles taught in the course.1 IntroductionComputer Engineering 3VA3 is a third year course in soft-ware design taught at McMaster University. A key ele-ment of this course is an opportunity to apply softwareengineering principles such as software speci�cation, de-sign and testing to systems with safety-critical and real-time requirements in a concrete project. In previous yearspure software projects i.e., projects that did not involveany hardware other than the computer, were used. Suchabstract projects have a number of disadvantages:� they often have many seemingly arbitrary rules,� they often fail to inspire enthusiasm in students, and� it is hard to tell success from failure.In this paper we present an alternative project: control-ling a robot constructed from a commercially available kitto complete a simple task. In the next section we presentthe educational goals of the course and the criteria forchoosing the project. Section 3 describes how we con-ducted the project to avoid the problems that typically

arise in such project based courses. We give an overviewof the project in section 4 and evaluate its success in sec-tion 5.2 Educational GoalsThis course is intended for students who already knowhow to program and are familiar with the use of datastructures. In this course, students are exposed to theprinciples of professional software development from anengineering point of view. The major topics are� software speci�cation and documentation,� modularity,� module interface design,� module internal design,� real time and safety critical software,� testing and inspection, and� software development in a team.Past experience has shown that students often do notrealize some of the issues that arise in multi-person soft-ware development projects until they are confronted withthem. The project, which is a major component in thecourse (60% of the �nal mark), exposes the students tosome of these issues and allows them to practice the prin-ciples taught in the course.For the course to be successful, the project must havea concrete and well de�ned goal. Its requirements mustbe achievable, and the amount of e�ort required must beappropriate for the course timetable. The students' levelof interest is also a key factor, which we have found is

signi�cantly improved by requirements that are based onreality.We chose to step away from the pure software projectsused in previous years and to design an \action" project|a project where there is some physical interaction of acomputer with the world. The goal of the project is tocontrol a robot to trace a shortest path through a maze.To stay feasible and safe we could not use real industrialrobots, so we constructed the robot using a small edu-cational robot kit that is controlled through a softwareinterface. In this way the students don't have to concernthemselves with the hardware aspects of constructing orcontrolling the robot. The software-hardware interactiono�ers interesting and challenging problems including real-time and safety critical aspects.This software engineering course is a major componentof the curriculum for computer engineers (and, since 1998,also electrical engineers). It is the last course in a se-ries of three software courses where students are taughtthe principles of professional software development. Thiscourse is a cornerstone of the education of these studentssince they will be expected to develop software as partof engineered systems during both their studies and theirprofessional careers.3 Project and Course Organiza-tionThe classroom time for the course consisted of three 50minute lecture periods per week over a 12 week semester.Two periods each week were used for lectures to presentthe theoretical concepts and principles, and the third wasused as a tutorial to discuss the project.3.1 Phases and MilestonesAt the beginning of the course the students are given therequirements speci�cation|a document that precisely de-scribes the required behavior of the software. Further itdescribes all deliverables for each of the project phases.We found that this structure is essential to ensure thateach student understands what is expected. The require-ments speci�cation can be seen as a contract between theclient (instructor) and the software developer (students).We identi�ed seven project phases, each of which re-sults in a document:1. ModularizationThe module guide presents the modularization cho-sen by the groups. It contains a list of all of themodules in the system, and, for each module, an in-formal description of the \service" it provides, andthe \secret" it hides. It also describes the interac-tion between modules by specifying (typically using

a �gure or a table) the modules each module reliesupon in order to provide its service (i.e., the useshierarchy).2. Interface DesignThe module interface speci�cation describes the in-terface to each module by specifying all interfacefunctions, their input and output arguments, typesand exceptions and the declaration of data types ifneeded. The visible e�ects of each interface functionis described using one of the speci�cation techniquespresented in the lectures.3. Internal designThe internal design document describes how themodules provide their services by presenting and ex-plaining the internal data structures and algorithmsof each module.4. Code InspectionEach team must prepare a code inspection report,which lists the properties of the code to be checkedduring the inspection, the method to be used to con-duct the inspection, and the rationale for choosingthis method. Reports of the actual code inspectionslist any problems that were found during the inspec-tion.5. TestingThe module testing report describes how each mod-ule was tested. This testing should be conducted bysomeone other than the primary author of the mod-ule and that person must prepare a test report. Itlist the test cases and expected and actual results.6. System Safety AnalysisThe system safety analysis report shows in a veri�-able manner how the software satis�es the safety re-quirements. It starts from the possible failures and,with reference to the design, shows how such a failureis prevented.7. Final PresentationAll of the documents are combined into one �nal doc-ument, and the groups demonstrate their software.As each phase was completed, the students were re-quired to submit a draft of the corresponding document,which was credited with 20% of the value for that docu-ment. These were reviewed by the instructor or TA andfeedback was given to the students. Having these mile-stones, with �xed due dates, kept the students on track:they worked consistently over the term rather than pro-crastinating until the end of the term. In addition thisprovided an opportunity to correct poor design decisionsbefore they had too much e�ect on the project.

3.2 Project Teams and LeaguesThe project was conducted in teams of �ve students. Thisnumber was chosen considering the size and amount ofdocumentation and programming required. Past experi-ence has shown that the formation of the teams is crucial:if the students are permitted to form their own teamstop students tend to group together, resulting in verystrong groups and weak groups. To solve this problemwe decided to mandate the most knowledgeable studentsas group leaders and let the leaders choose their teams.The leaders were chosen using results of a multiple choicetest given in the �rst lecture of the semester.The tutorials played a major role in the project: theywere used to give guidance in design, documentation andother technical matters. Further groups were asked togive small presentations of their own designs in order toexpose all students to a variety of design alternatives andto give students an opportunity to practice and improvetheir presentation skills.For these tutorials we split the groups into leagueswhich were lead by either an experienced TA or the in-structor. Within each league the groups agree on highlevel design decisions, such as the modular structure andthe interfaces to the software components, and submit acommon module guide and set of module interface speci�-cations. This helps to emphasize the importance of care-fully documenting design decisions and gives practice indeveloping the system to adhere to the speci�cations. Anadded advantage is that groups of one league can inter-change project modules if one of the groups fails to com-plete one or more modules (e.g., due to a student droppingthe course or getting sick).3.3 Instructional ResourcesThis course required signi�cant preparation e�ort to de-velop the project and prepare the requirements document.In addition, several components had to work for it to besuccessful:� League Leaders The league leaders are the mainsource of direction for the students with respect tothe project, so they must be experienced in softwaredesign and have a solid knowledge of the practice ofthe principles being taught in the course. In additionto an instructor who has industrial experience, wewere lucky to have very competent and experiencedTAs who were involved in the development of theproject and were capable of acting as league leaders.� Hardware (Robots, Computers) The draw-bot isconstructed using a RobixTM RCS-6 construction set[1]. It consists of three arms, each of which is con-trolled by a motor. The �rst two arms move in the

horizontal plane to position the pen and the thirdarm is used to raise or lower the pen. The modularstructure of this set and the simple software interfacemade constructing the draw-bot and interface soft-ware easy. Also it is easy to construct new robots tobe used for future projects. We used two kits for ourclass.� Software (Interface, Simulator) Since this is acourse in software, not hardware, we provided thestudents with a software interface to the hardware.This interface contained only the elements needed tocontrol the robot|accelerations, speeds, and hard-ware interface details were not shown. In additionwe provided a simulator, which has exactly the samesoftware interface as the actual hardware and illus-trates the behavior of the robot on the computerscreen. This turned out to be essential since it al-lowed students to test their software without using(and possibly damaging) the actual robot. All stu-dents who \mastered" the simulator got the robotrunning the �rst time.4 Project OverviewThe goal of the project is to control a robot to tracethe shortest path thought a 2-dimensional (paper) maze.Further, some real time and safety critical elements areadded: there is an emergency stop button, a home button(return to initial position) and a reverse button (tracebackwards).In the requirements speci�cation the behavior is de-scribed in terms of the monitored and controlled variables.[2][3] These are the quantities that the software can mea-sure, e.g. the status of a button, and the ones that thesoftware can set, e.g. the position of a certain motor. Toaid in understanding, and to help expose students to a va-riety of formats, the requirements are presented in threeforms: Informal, Logic, and State Machine, all using thenotation of the textbook [4]. These descriptions are in-tended to describe the same behavior and are in somesense complimentary. In this paper we only show partsof the informal description, the complete description canbe found in [5].4.1 System InterfaceTable 1 lists the variables that represent the quantitiesin the environment to be monitored and/or controlled bythe system. All environment variables are functions oftime.

Table 1: Environmental VariablesVariable Type Descriptioni mazeWalls set of positionT The set of points that make up the walls of the maze. Notethat the exterior walls (i.e., the perimeter) are included.i mazeStart positionT Start position for the maze.i mazeEnd positionT Finish position for the maze.i stopButton buttonT The status of the button labeled \stop".i homeButton buttonT The status of the button labeled \home".i backButton buttonT The status of the button labeled \back".i mazeFile string The �le name passed on the command line.o penPos positionT The position of the pen relative to the `origin' h0; 0i, which isthe center of the robot base post.o penDown Boolean true i� the pen is touching the plane containing the maze.Assumed to be initially false .o powerOn Boolean true i� the robot power is on. Assumed to be initially false .o message string The message displayed on the operator console.4.1.1 Pen PositionWe represent the location of the draw-bot pen tip using aBoolean, o penDown, to indicate if the pen is touching themaze surface or not, and a pair, ho penPos:x; o penPos:yiof reals, representing the location in the horizontal planewhere the pen tip is touching the maze (if o penDown istrue) or would touch the maze if lowered. The `home'location of the pen-tip (to which it is returned on initial-ization of the draw-bot), is hHOME X ;HOME Y i.4.1.2 MazeAs illustrated in Figure 1, the maze is contained within a15� 15 cm region of the horizontal plane. The `internalwalls' of the maze are segments of the lines forming asquare grid with line spacing 10 mm. Figure 2 illustratesa maze, reduced from an actual size of 15� 15 cm.4.2 Behavioral RequirementsThis section describes the required behavior of the Maze-Tracing Robot in terms of the environmental quantitiesdescribed in Table 1.4.2.1 Safety RequirementsAs stated, our project contains safety critical aspects.These are requirements which have to be satis�ed nomater what happens:If at any time the stop button is pressed the robot muststop moving within 0.5 seconds and must remain station-ary until the stop button is released.When the pen is down the pen tip must never comewithin 2 mm of a wall point.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

M_X_OFFSET

M_WIDTH

M_CELL_SIZE

Maze

Robot Base

M
_Y

_O
FF

SE
T

M
_H

E
IG

H
T

M
_C

E
L

L
_S

IZ
E

x

y

Figure 1: Robot and Maze ParametersIn the �nal evaluation we examined the documents andsoftware extensively for these requirements. Failing to ful-�ll them resulted in a signi�cant reduction in the group'sgrade.4.2.2 Modes of OperationThe operation of the draw-bot can be split into severalphases or modes. The following is a description of the

B
E

Figure 2: Sample Mazerequired behavior of the robot in each of these modes.Initialization When the program is started i mazeFileis read. If an error occurs (e.g. �le read failure) or if thereis no path through the maze, then an appropriate diag-nostic message must be output and the control programmust exit without powering the robot.Starting After i mazeFile has been read, and it hasbeen determined that there is a path through the maze,the robot power must be turned on, which initializes thepen to the home position with the pen up. The pen mustthen be moved to the start position of the maze.Forward Once the starting position has been reachedthe pen must be lowered and a path traced through themaze to the end. When the pen reaches the end of themaze it must be raised and returned to the home position.Reverse If at any time while the path is being tracedthe \back" button is pressed the Draw-bot is requiredto reverse the direction of its tracing within 0.5 secondsand begin to re-trace its path back to the beginning. Itshould continue to re-trace it's path only as long as the\back" button is held down; when it is released the Draw-bot should continue in the forward direction. If, whilereversing, it reaches the start position it should stop thereuntil either the \back" button is released or the \home"button is pressed.Home If at any time while the path is being traced (ineither direction) the \home" button is pressed the Draw-bot is required to stop tracing within 0.5 seconds, raisethe pen and return to the home position, without makingany further marks.

Done When the pen has been returned to the homeposition, the power must be turned o� and the systemmust exit.5 AssessmentThe project was very successful from several points ofview. We did not encounter large technical nor organiza-tional problems, this is mostly due to the vast amount ofpreparation and the strong commitment of the TAs.All but one group completed the project and, thanksto the league structure, the software produced by the oneunsuccessful team could be shown to work by using somecomponents from other teams in the same league.The team selection process (based on our selection ofteam leaders) was quite successful at quickly forming rel-atively compatible teams, while still ensuring that themost knowledgeable students were not grouped in thesame team. There were relatively few personality con
ictswithin the teams and no team was excessively stronger orweaker than the others.The student response was very positive. The anony-mous course evaluation contained only positive commentsand is reported to have been one of the most positiveever seen in this department. Most students stated thatthey felt that they solved a real problem and learned agreat deal. Our formal approach, to which we encoun-tered scepticism at the beginning, was accepted by themajority of the students at the end of the course. Theyunderstood that a well structured approach to softwaredevelopment, even if it initially seems like more work,pays out in the end. The students were excited to testtheir project using the real robot and were happy thatit worked from the beginning most of the time, and wasstable even in unexpected situations.5.1 Problems EncounteredOur group structure helped many weaker students to ac-complish a task which they would not have been able todo by themselves. But since the project mark was thesame for all members of each team, the individual �nalmarks did not accurately represent the skills or e�ort ofeach individual student. A grading scheme that will allowus to give more individual marks would be an improve-ment, but is di�cult to do in a fair manner.The source code of the simulator was provided to thestudents, which lead to some confusion. Some groupsmade some minor changes to it, which they should nothave, causing them some problems as they tested usingthe real robot. However, the lesson that the studentslearned from this experience|that it is important to re-spect a module interface no matter how unwieldy it maybe|was valuable.

The technical aspects of the draw-bot caused some di�-culty in getting the mazes to be traced correctly using thereal robot. For example, positioning the pen tip such thatthe pressure applied was su�cient to make a mark, butnot so much that it impeded the draw-bot movements,was quite di�cult and required that the pen height beadjusted depending on the distance of the pen from thebase. The interface provided to the students did not allowthem to adjust the pen height|they could only set it to\up" or \down"|so they were not able to account for thisa�ect. We overcame this by adjusting the con�gurationsuch that the pen did not actually make a mark, but justcame close to touching the paper. In addition the actualvalue of o penPos was quite sensitive to small mechanicalvariations in the robot construction so it was not alwayspossible to avoid `touching' the `walls'. We accepted ademonstration using the ideally behaving simulator as ev-idence that the student designs behaved correctly in thatrespect.6 ConclusionsSoftware team projects are often a signi�cant componentof software design courses similar to Computer Engineer-ing 3VA3. We have found that choosing a project thatinvolves controlling a device to complete a clearly de�nedtask has a number of advantages:� the students are more enthusiastic,� it is easier to tell success from failure,� the project requirements can be based in reality, and� the importance of interface design is clearly illus-trated.These advantages outweigh, in our opinion, the e�ort re-quired to develop such a project.The `league' structure adopted for this course empha-sizes the importance of clear module interface de�nitionsand gives some resilience to certain kinds of failure. Thisstructure can only be used where there is a su�cientlylow ratio of students to quali�ed league leaders.AcknowledgmentsWe gratefully acknowledge the e�orts of Dr. David L.Parnas, who o�ered many thoughtful comments to helpgive us the bene�ts of his experience with teaching thiscourse in the past. Kavitha Nadarajah was one of theTAs for the course and her assistance is greatly appreci-ated. We obtained a grant from the Teaching and LeaningCommittee of McMaster University, which was matched

by the Department of Electrical and Computer Engineer-ing. This enabled us to pay for the robots and for theservices of Igor Vulanovic to develop the simulator. Weix-iong Lin helped to �ne-tune the draw-bot con�gurationand developed some test software and mazes.References[1] \ROBIXTM RCS-6 robot construction set user guideand project book," Advanced Design, Inc., 1101 EastRudasill Road, Tucson, AZ 85718 USA, Sept. 1995.URL http://www.robix.com/.[2] Heninger, K., Parnas, D. L., Shore, E. J., and Kallan-der, J., \Software requirements for the A-7E aircraft,"Tech. Rep. MR 3876, Naval Research Laboratory,1978.[3] van Schouwen, A. J., Parnas, D. L., and Madey, J.,\Documentation of requirements for computer sys-tems," in Proc. International Symposium on Require-ments Engineering (RE '93), pp. 198{207, IEEE, Jan.1993.[4] Ho�man, D. and Strooper, P., Software Design, Au-tomated Testing, and Maintenance: A Practical Ap-proach. International Thomson Computer Press,1995.[5] Peters, D. K. and von Mohrenschildt, M..Course Handout for Computer Engineering3VA3, McMaster University, Sept. 1997. Avail-able at http://ece.eng.mcmaster.ca/faculty/mohrens/robot/robot rs.html.

