
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

29 Introduction to Verification

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 16, 2017

Introduction to Verification

Today’s slide are partially based on slides by Dr. Wassyng,
Ghezzi et al

Administrative details

pointInRegion(p)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 2/15

Administrative Details

Investigating 9 academic integrity cases for A2

A3 deadlines
I Part 2 - Code: due 11:59 pm Mar 20
I Part 1 spec available in repo
I Change of < to ≤ in natural language and spec

A4
I Your own design and specification
I Due April 3 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 3/15

A Table for pointInRegion(p)

Consider all of the cases

Draw a picture

Short form notation
I px = p.xcoord()
I py = p.ycoord()
I llx = lower left.xcoord()
I lly = lower left.ycoord()
I llxw = lower left.xcoord() + width
I llyh = lower left.ycoord() + height
I T = Constants.TOLERANCE

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 4/15

out
px < llx py < lly p.dist(PointT(llx , lly)) ≤ T

lly ≤ py ≤ llyh (llx − px) ≤ T
py > llyh p.dist(PointT(llx , llyh)) ≤ T

llx ≤ px ≤
llxw

py < lly (lly − py) ≤ T

lly ≤ py ≤ llyh True
py > llyh (py − llyh) ≤ T

px > llxw py < lly p.dist(PointT(llxw , lly)) ≤ T
lly ≤ py ≤ llyh (px − llxw) ≤ T
py > llyh p.dist(PointT(llxw , llyh)) ≤ T

Seven Cases
out

px < llx py < lly p.dist(PointT(llx , lly)) ≤ T
lly ≤ py ≤ llyh (llx − px) ≤ T
py > llyh p.dist(PointT(llx , llyh)) ≤ T

llx ≤ px ≤ llxw (lly − T) ≤ py ≤ (llyh + T)
px > llxw py < lly p.dist(PointT(llxw , lly)) ≤ T

lly ≤ py ≤ llyh (px − llxw) ≤ T
py > llyh p.dist(PointT(llxw , llyh)) ≤ T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 6/15

Six Cases
out

px < llx py < lly p.dist(PointT(llx , lly)) ≤ T
py > llyh p.dist(PointT(llx , llyh)) ≤ T

llx ≤ px ≤ llxw (lly − T) ≤ py ≤ (llyh + T)
px > llxw py < lly p.dist(PointT(llxw , lly)) ≤ T

py > llyh p.dist(PointT(llxw , llyh)) ≤
T

lly ≤ py ≤ llyh (llx − T) ≤ px ≤ (llxw + T)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 7/15

Three Cases
out

llx ≤ px ≤ llxw (lly − T) ≤ py ≤ (llyh + T)
lly ≤ py ≤ llyh (llx − T) ≤ px ≤ (llxw + T)
¬(llx ≤ px ≤ llxw)∧¬(lly ≤
py ≤ llyh)

min[p.dist(PointT(llx , lly)),
p.dist(PointT(llxw , lly)),
p.dist(PointT(llx , llyh)),
p.dist(PointT(llxw , llyh))] ≤
T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 8/15

Nine Cases, but 2D

How would you write all 9 cases, but with a tabular form
that closely matches the original 2D problem description?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 9/15

Outline of Verification Topics

What are the goals of verification?

What are the main approaches to verification?
I What kind of assurance do we get through testing?
I How can testing be done systematically?
I How can we remove defects (debugging)?

What are the main approaches to software analysis?

Informal versus formal analysis

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 10/15

Testing on Assignment 1 to 4

Limited guidance on test case selection

Improved test cases would have improved the results

Consider the method for deleting from a sequence of T
(next slide)

We are moving toward automated testing

We have seen the advantages of regression testing
Some have adopted the excellent strategy of test as you
develop

I Helps isolate errors
I Does not leave testing to the end when there is no time

to do it properly
I Helps improve the understanding of the problem and the

program

Hopefully the experience on the assignments has
motivated you to think more about testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 11/15

Incorrect Version of Delete

Using s = new T[MAX SIZE], for some type T

publ ic s t a t i c void d e l (i n t i)
{

i n t j ;

fo r (j = i ; j <= (l e n g t h − 1) ; j ++)
{

s [j] = s [j +1] ;
}

l e n g t h = l e n g t h − 1 ;
}

What test cases will highlight the error?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 12/15

Correct Version of Delete

publ ic s t a t i c void d e l (i n t i)
{

i n t j ;

fo r (j = i ; j < (l e n g t h − 1) ; j ++)
{

s [j] = s [j +1] ;
}

l e n g t h = l e n g t h − 1 ;
}

Avoids potential ArrayIndexOutOfBoundsException Exception

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 13/15

Need for Verification

Designers are fallible even if they are skilled and follow
sound principles

We need to build confidence in the software

Everything must be verified, every required functionality,
every required quality, every process, every product, every
document

Even verification itself must be verified

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 14/15

Properties of Verification

May not be binary (OK, not OK)
I Severity of defect is important
I Some defects may be tolerated
I Our goal is typically acceptable reliability, not correctness

May be subjective or objective - for instance, usability,
generic level of maintainability or portability

Even implicit qualities should be verified
I Because requirements are often incomplete
I For instance robustness, maintainability

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 15/15

