SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017
29 Introduction to Verification

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 16, 2017

McMaster
University ':*ﬁ



Introduction to Verification

@ Today's slide are partially based on slides by Dr. Wassyng,
Ghezzi et al

@ Administrative details
@ pointInRegion(p)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 2/15



Administrative Details

@ Investigating 9 academic integrity cases for A2

@ A3 deadlines
» Part 2 - Code: due 11:59 pm Mar 20
» Part 1 spec available in repo
» Change of < to < in natural language and spec

o Ad
» Your own design and specification
» Due April 3 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 3/15



A Table for pointInRegion(p)

@ Consider all of the cases

e Draw a picture

@ Short form notation

px = p.xcoord()

py = p.ycoord()

lIx = lower _left.xcoord()

lly = lower _left.ycoord()

llxw = lower _left.xcoord() + width
llyh = lower _left.ycoord() + height
T = Constants. TOLERANCE

vV vV vV VvV VY

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 4/15



out

px < llx py < lly p.dist(PointT(/lx, lly)) < T
lly <py <llyh | (lIx—px)<T
py > llyh p.dist(PointT(/lx, llyh)) < T
Iix < px < | py <lly (ly —py) <T
lIxw
lly < py < llyh | True
py > llyh (py —llyh) <T
px > lxw | py <lly p.dist(PointT(/lxw, lly)) < T
ly < py <llyh | (px—Ixw)<T
py > llyh p.dist(PointT (Ilxw, llyh)) < T




Seven Cases

out

px < llx py < lly p.dist(PointT(/lx, lly)) < T

lly <py <llyh | (lIx—px)<T

py > llyh p.dist(PointT(/lx, llyh)) < T
lix < px < lIxw (ly =T) < py <(llyh+T)
px > lxw | py < lly p.dist(PointT(/lxw, lly)) < T

ly < py <llyh | (px—Ixw)<T

py > llyh p.dist(PointT (Ilxw, llyh)) < T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 6/15



Six Cases

out
px < llx py < lly p.dist(PointT(/llx, lly)) < T
py > llyh p.dist(PointT(llx, llyh)) < T
lIx < px < lixw (ly = T) < py <(llyh+T)
px > llxw py < lly p.dist(PointT(llxw, lly)) < T
py > llyh p.dist(PointT(/lxw, llyh)) <
T
lly < py < llyh (Ix =T) < px < (Ilxw +T)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 7/15



Three Cases

out

IIx < px < lIxw

(ly = T) < py < (llyh+T)

lly < py <llyh

(lIx —=T) < px < (Ilxw +T)

—(lx < px < Ixw) A=(lly <
py < llyh)

min[p.dist(PointT(/lx, lly)),
p.dist(PointT (llxw, Ily)),
p.dist(PointT(llx, llyh)),
p.dist(PointT(llxw, llyh))] <
T

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification

8/15



Nine Cases, but 2D

@ How would you write all 9 cases, but with a tabular form
that closely matches the original 2D problem description?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 9/15



Outline of Verification Topics

@ What are the goals of verification?
@ What are the main approaches to verification?

» What kind of assurance do we get through testing?
» How can testing be done systematically?
» How can we remove defects (debugging)?

@ What are the main approaches to software analysis?

@ Informal versus formal analysis

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 10/15



Testing on Assignment 1 to 4

@ Limited guidance on test case selection
@ Improved test cases would have improved the results
@ Consider the method for deleting from a sequence of T
(next slide)
@ We are moving toward automated testing
@ We have seen the advantages of regression testing
@ Some have adopted the excellent strategy of test as you
develop
» Helps isolate errors
» Does not leave testing to the end when there is no time
to do it properly
» Helps improve the understanding of the problem and the
program
@ Hopefully the experience on the assignments has
motivated you to think more about testing

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification

11/15



Incorrect Version of Delete

Using s = new T[MAX_SIZE], for some type T
public static void del(int i)

{

int j;

for (j = i; j <= (length — 1); j++)

{
}

length = length — 1;
}

What test cases will highlight the error?

s[jl = sli+1L;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 12/15



Correct Version of Delete

public static void del(int i)

{

int j;

for (j = i; j < (length — 1); j++)

{
}

length = length — 1;
}

Avoids potential ArraylndexOutOfBoundsException Exception

s[jl = sli+1];

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 13/15



Need for Verification

@ Designers are fallible even if they are skilled and follow
sound principles

@ We need to build confidence in the software

@ Everything must be verified, every required functionality,
every required quality, every process, every product, every
document

@ Even verification itself must be verified

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 14/15



Properties of Verification

@ May not be binary (OK, not OK)
» Severity of defect is important
» Some defects may be tolerated
» Our goal is typically acceptable reliability, not correctness
@ May be subjective or objective - for instance, usability,
generic level of maintainability or portability
e Even implicit qualities should be verified

» Because requirements are often incomplete
» For instance robustness, maintainability

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 29 Introduction to Verification 15/15



