
Computing and Software Department, McMaster University

Software Engineering 2AA4
(Software Design I) and

Computer Science 2ME3 –
Introduction to Software

Development

Dr. Spencer Smith

January 4, 2017

Smith:

Intro to Course (slide 1)



Introduction to Course

I Administrative details
I Course outline

• Introduction
• Learning objectives
• Outline of topics
• Grade assessment
• Policy statements

Smith:

Intro to Course (slide 2)



Administrative Details

I This course uses Avenue.

• http://avenue.mcmaster.ca/

• Please put a picture up on Avenue!

I We’ll also use git on GitLab

• https://gitlab.cas.mcmaster.ca/

• Create your account by logging in
• Course material and issue tracking at https:
//gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3

Smith:

Intro to Course (slide 3)

http://avenue.mcmaster.ca/
https://gitlab.cas.mcmaster.ca/
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3


Administrative Details

I Tutorials start next week
I This course uses Avenue

• http://avenue.mcmaster.ca/

• Please put a picture up on Avenue!

I We’ll also use git on GitLab

• https://gitlab.cas.mcmaster.ca/

• Create your account by logging in
• Course material and issue tracking at https:
//gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3

Smith:

Intro to Course (slide 4)

http://avenue.mcmaster.ca/
https://gitlab.cas.mcmaster.ca/
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3


Linux Tutorial for Beginners

The Linux Tutorial for beginners will be given on Tuesday, Jan
10th, from 1:30pm to 3:20 pm in lab ITB237. The second part of
the tutorial will be given in the following week at the same time
and location (on Tuesday, Jan. 17th, from 1:30pm to 3:20 pm in
lab ITB237)
The first part of the tutorial covers some basic Linux commands
and utilities. The second part is to show students to use text
editors, including VI(VIM), and to compile and run simple C and
Java programs and projects.
The first part of the same tutorial will be repeated on Wednesday,
Jan. 11th, from 12:20 pm to 2:20 pm in lab ITB237 for students
who can not attend the Tuesday session of tutorial. The second
part of the tutorial will be repeated on Wednesday, Jan. 18th,
from 12:20 pm to 2:20 pm in lab ITB237.

Smith:

Intro to Course (slide 5)



Instructors

I Instructor

• Dr. Spencer Smith (smiths@mcmaster.ca)
• ITB/167
• Drop in or make an appointment

I TAs

• Steven Palmer (palmes4@mcmaster.ca)
• Rober Boshra (boshrar@mcmaster.ca)
• Gurankash Singh (singhg47@mcmaster.ca)
• Owen Huyn (huyno@mcmaster.ca)
• Teaching assistants will

I Give tutorials
I Mark assignments
I Provide programming assistance
I Answer questions on the course material

Smith:

Intro to Course (slide 6)



Introduction of Instructor: Dr. Spencer Smith

I Associate Professor, Department of Computing and Software.

I B.Eng.C.S, Civil Engineering Department, McMaster
University.
M.Eng., Ph.D., Civil Engineering Department, McMaster
University.

I P.Eng. (Licensed Professional Engineer in Ontario).

I Teaching: Software design, scientific computing, introduction
to computing, communication skills, software project
management.

I Research: Application of software engineering methodologies
to improve the quality of scientific computing software.

Smith:

Intro to Course (slide 7)



Introduction

I Calendar description

• Development of small software units
• Precise specification expressed using logic and discrete math
• Design methods and design patterns
• Implementation and testing

I Mission

• Introduction to profession of software engineering
• Strategies for large applications with multiple developers
• Java and Python

Smith:

Intro to Course (slide 8)



Learning Objectives

https://gitlab.cas.mcmaster.ca/.../CourseOutline/LearningOutcomes

Smith:

Intro to Course (slide 9)

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/CourseOutline/LearningOutcomes


Resources

I Ghezzi et al. (2003) (required)

I Hoffman and Strooper (1995) (other), http://
citeseer.ist.psu.edu/428727.html

I VanVliet (2000) (other)

Smith:

Intro to Course (slide 10)



Outline of Topics

1. Introduction to Course

2. Software Engineering as an Engineering Discipline [Chapter 1]

3. Software Qualities [Chapter 2]

4. Software Engineering Principles [Chapter 3]

5. Software Design [Chapter 4]

6. Modularization [Chapter 4]

7. Specification [Chapter 5]

8. Verification [Chapter 6]

9. The Software Development Process [Chapter 7]

10. Design Patterns

Smith:

Intro to Course (slide 11)



Grade Assesment

1. Participation 5%

2. Assignments 20%

3. Midterm 25%

4. Final Exam 50%

Smith:

Intro to Course (slide 12)



Participation

I Based on participation in lectures

• Answer questions
• Ask questions

Smith:

Intro to Course (slide 13)



Assignments

I Four equally weighted assignments

I Assignments must be your own work

I Do not allow other students to copy your work

I Use any available resources, but explicitly cite all sources

I Keep all of your working notes and files used to prepare your
solutions

I If there is a problem with a grade

• Report it first to the TA and if necessary to the instructor
• Report it within two weeks of receiving your grade

I The assignment grade will only be counted in the final grade
if the weighted average of the participation, midterm and final
is greater than 50 %

Smith:

Intro to Course (slide 14)



Examinations

I Midterm

• 90 minutes
• Time and date on course outline
• Multiple choice
• Bring your student card
• Bring pencil
• Open book

I Final examination

• 2.5 hours
• Multiple choice
• Scheduled by registrar
• Will cover entire course
• Open book

Smith:

Intro to Course (slide 15)



Policy Statements

I No calculators

I Ideas to improve the course are welcomed

I Missed/late work use MSAF, or a penalty of 20 % per
working day

I If there is a problem with discrimination please contact the
Department Chair, or other appropriate body

Smith:

Intro to Course (slide 16)



Academic Dishonesty

I Academic dishonesty consists of misrepresentation by
deception or by other fraudulent means

I Can result in serious consequences, e.g. the grade of zero on
an assignment, loss of credit with a notation on the transcript,
and/or suspension or expulsion from the university.

I It is your responsibility to understand what constitutes
academic dishonesty

I Three examples of academic dishonesty

• Plagiarism
• Improper collaboration
• Copying or using unauthorized aids in tests and examinations

I Academic dishonesty will not be tolerated!

Smith:

Intro to Course (slide 17)



Course Evaluations

Class Participation Bonus

80–84% 0.75
85–89% 1.00
90–94% 1.25

95–100% 1.50

Smith:

Intro to Course (slide 18)



“Faked” Rational Design Process

Development Plan

Requirements 
Specification

Design 
Specification

Code

Verification and 
Validation Report

Problem 
Statement

Verification and 
Validation Plan

See Parnas and Clements 1986 about “Faking It”

Smith:

Intro to Course (slide 19)



What is Software Engineering?
I An area of engineering that deals with the development of

software systems that
• Are large or complex
• Exist in multiple versions
• Exist for large period of time
• Are continuously being modified
• Are built by teams

I Software engineering is “application of a systematic,
disciplined, quantifiable approach to the development,
operation and maintenance of software” (IEEE 1990)

I D. Parnas (1978) defines software engineering as
“multi-person construction of multi-version software”

I Like other areas of engineering, software engineering relies
heavily on mathematical techniques, especially logic and
discrete mathematics

Smith:

Intro to Course (slide 20)



The PEO

I Degree from an accredited program

I Experience requirement

I Law and ethics exam

I Still debating what constitutes software engineering

Smith:

Intro to Course (slide 21)



Software Engineering in System Design
I A physical system is often controlled by a software system

called an embedded system
I As a result, software engineering is often a crucial part of

system design
I Examples of embedded systems

• Cell phones
• Nuclear power plants
• Automobiles
• Aircraft
• Pacemakers
• mp3 players
• Programmable household devices

I Embedded systems are rapidly appearing everywhere
I The developers of software for an embedded system needs to

understand both the software and the physical device.

Smith:

Intro to Course (slide 22)


