
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

15 Functional Programming in
Python

Dr. Spencer Smith

Faculty of Engineering, McMaster University

February 7, 2018

15 Functional Programming in Python

Administrative details

Functional programming

Functional programming in Python
I Defining functions
I List comprehension
I Map
I Filter
I Fold (Reduce)
I Anonymous functions
I Partial functions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 2/15

Administrative Details

Assignment 1 solution in repo

Assignment 2
I Part 1: February 12, 2018
I Partner Files: February 18, 2018
I Part 2: March 2, 2018
I Steps have been written out
I When working with object, either create or use references
I Use exact names and cases
I Exceptions take one argument, a string
I Exceptions in Exceptions.py
I Data.accessProg, not Data accessProg or
Data.Data accessProg

I Two sample input files in repo
I Added Data getC

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 3/15

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Assignments/A1/A1Soln

Functional Programming

Computation is treated a the evaluation of mathematical
functions (not CS subroutines)

I No state
I No mutable data
I Programming with expressions, not statements

No side effects

Easier to reason about than imperative or OO code

Functions are a first order data type
I Can pass functions as arguments
I Can return functions

Origin with lambda calculus

There is a focus on list processing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 4/15

Functional Programming in Python

Python was an imperative/OO language first

Other functional languages (like Haskell) have pattern
matching

Python is dynamically typed

Cannot inspect the type of a function

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 5/15

List Comprehension

Examples from Learn You a Haskell for Great Good

Gries and Schneider notation for set comprehension:
{x : T |R : E}

I x is the dummy variable
I E is an expression
I R is a predicate

Modified version: {x : T |R ∧ P : E}
I P is a predicate (filter)

Python code: [E for x in R if P]

I R is a sequence (list)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 6/15

http://learnyouahaskell.com/

List Comprehension Examples

{x : T |R ∧ P : E} (set) to [E for x in R if P] (sequence)

{x : N|x ∈ [1..10] : x2}
[x**2 for x in range(1, 11)]

{x : N|x ∈ [1..10] ∧ x2 ≥ 12 : x2}
[x**2 for x in range(1, 11) if x**2 >= 12]

A list or radii for a seq circles of CircleT (A1-2017)
radii=[c.radius() for c in circles]

[S0, S1, ..., S|S |−1] to
[S0.eval(x), S1.eval(x), ..., S|S|−1.eval(x)] (A2-2018)
[s.eval(x) for s in S]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 7/15

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/PreviousYears/2017/A1/A1Soln/src/Statistics.py
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf

List Comprehension to find List Length

def length(xs):

return sum([? for x in xs])

What should ? be to return the length of xs?

Similar to how we write count mathematically:
+(i : N|x ∈ xs : 1)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 8/15

List Comprehension Examples Cont’d

Write a function rep(x, n) that returns a list of n
elements, where each element is x

Write a function that takes a list of integers (xs) and
replaces each odd number greater or equal to 10 with
"BANG!" and each odd number that’s less than 10 with
"BOOM!"

I What is the basic structure for the list comprehension?
[E for x in R if P]

I What are R and P?
[E for x in xs if odd(x)]

I How do you write conditional expressions in Python?
x = true value if condition else false value

I What is E?
[”BOOM!” if x < 10 else ”BANG!” for x in xs if odd(x)]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 9/15

List Comprehension Two Lists

Given the lists
I nouns = ["smurf", "frog", "dwarf"]
I adjectives = ["lazy", "grouchy", "scheming"]

Write a list comprehension that concatenates all the
adjectives with all the nouns

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 10/15

Remove Everything but Uppercase

Write a function removeNonUpperCase(st) that takes a
string st and returns the string that results by removing all
non upper case letters

How would you build the sequence of [’A’, ’B’, ...,

’Z’]?
[chr(i) for i in range(ord(’A’),ord(’Z’)+1)]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 11/15

Nested List Comprehension

Given a list of several lists of numbers, remove all odd
numbers without flattening the list.

xxs =

[[1,3,5,2,3,1,2,4,5],[1,2,3,4,5,6,7,8,9],[1,2,...

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 12/15

Map

Examples from Learn You a Haskell for Great Good

Mathematical model:
I map : (a→ b)× seq of a→ seq of b
I map : (a→ b)× [a]→ [b]

Python code: map(func, seq)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 13/15

http://learnyouahaskell.com/

Map Example

def add3(x):

return x + 3

list(map(add3, [1, 5, 3, 1, 6]))

What do you think will be printed?

What is the type of add3?

What type does map return in this case?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 14/15

Anonymous Function Example

list(map(lambda x: x + 3, [1, 5, 3, 1, 6]))

or

add3 = lambda x: x + 3

list(map(add3, [1, 5, 3, 1, 6]))

lamda followed by list of arguments: expression

Write code to add ’!’ to every string in a list of strings

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 15/15

