Assignment 1 Solution

Henry M. 000000000
January 22, 2018

Introductory blurb.

1 Testing of the Original Program

Description of approach to testing. Rationale for test case selection. Summary of results.
Any problems uncovered through testing.

2 Results of Testing Partner’s Code

Summary of results.

3 Discussion of Test Results

3.1 Problems with Original Code
3.2 Problems with Partner’s Code

3.3 Problems with Assignment Specification
Potential problems with the original assignment specification include the following:

e The add method is undefined for i less than zero, or greater than the length of the
sequence.

e The rm method is undefined for i less than zero, or greater than or equal to the
length of the sequence.

e The set method is undefined for i less than zero, or greater than or equal to the
length of the sequence.

The get method is undefined for i less than zero, or greater than or equal to the
length of the sequence.

The indexInSeq method is undefined for v not lying between any of the data points.
The specification also does not say what to do when the condition is satisfied by
more than one interval of data points.

The CurveT constructor does not say what to do in the case where the file does not
exist, or the data is in an incorrect format. Should the constructor check that the
x values are increasing?

For quadVal (x) where should the 3 data points be located relative to x?

For testing purposes, what is the relative error allowed between the calculated values
and the expected values?

Answers

. For each of the methods in each of the classes, please classify it as a constructor,

accessor or mutator.

For the abstract data type SeqADT the following table classifies each method:

Method Type
SeqT constructor
add mutator
rm mutator
set mutator
get accessor
size accessor
indexInSeq accessor
2. What are the advantages and disadvantages of using an external library like numpy?

e Advantage - Less work, don’t have to rebuild the software to perform the
functionality

e Advantage - Do not have unit test software

e Disadvantage - have to learn the interface for numpy

e Disadvantage - at the will of the package/library maintainer for bug fixes

3. The SeqT class overlaps with the functionality provided by Python’s in-built list
type. What are the differences between SeqT and Python’s list type? What benefits
does Python’s list type provide over the SeqT class?

Differences between SeqT and Python’s list type:

e Python’s lists have a more natural syntax and greater functionality. The SeqT
type is essentially a wrapper for list, that provides less functionality.

Benefits python list provide over SeqT:

e Python list provided more functionality of SeqT and is fully tested.
e The syntax for Python list’s is more natural and expressive than using the
interface for SeqT.
4. What complications would be added to your code if the assumption that z; < x;;1
no longer applied?
Simple solution would be to sort the values internally so they are x; < x;,1, otherwise
you would have to perform a search for nearby values for indexInSeq.
5. Will 1inVal(x) equal npolyVal(n, x) for the same x value? Why or why not?

Only if the input function (set of points) describe a line, otherwise they will not. This
is because 1inVal interpolates between 2 points and npolyVal does a regression
with all the data points.

E Code for SeqADT.py

@file SeqADT.py

@author Henry Madej

@brief Provides the Abstract Data Type (ADT) for representing Sequences
@date 06/01/2018

%%%%

@brief An abstract data type that represents a Sequence
class SeqT():
@brief SeqT constructor
@details Initializes a SeqT object with the empty sequence
def __init__(self):
self.seq = []

Q@brief add, adds values to/within ezisting sequence
or immediately after the last entry in the existing sequence.
@param i The index at which v will be inserted, if i >= length of the
sequence v will be inserted at the end of the sequence
@param v The real number to be inserted into the sequence
def add(self, i, v):
self .seq.insert (i, v)

@brief rm, deletes a value within a sequence at indezx i
@param i deletes the value at index i shrinking the length of the sequence
by 1
def rm(self, i):
del self.seq[i]

@brief set, sets the walue at index i in the sequence to wvalue v
@param i the index of the wvalue to be mutated
@param v the mew walue of the index i of the sequence
def set(self, i, v):
self.seq[i] = v

Q@Qbrief get, gets the wvalue of the sequence at index i
@param i the index of the wvalue to be retrieved from the sequence
@return the wvalue of the sequence at index 1
def get(self, i):
return self.seq[1i]

Q@Qbrief size, returns the size of the sequence
@return the current size of the sequence
def size(self):

return len(self.seq)

@brief indexInSeq, returns the index of the wvalue v such that
sequence [i] <= v <= sequence[i+1] if such a value exzists otherwise

returns —1

@param v the wvalue to be checked if in sequence

@return the index of the walue if it is in the sequence and satisfies

#

d

Sk

sequence [i] <= v <= sequence[i+1]
ef indexInSeq(self, v):
index = —1
for i in range(self.size()—1):
if self.seq[i] <= v and v <= self.seq[i+1]:

index = i

break;
return index

F Code for CurveADT.py

@file CurveADT.py

@author Henry Madej

@brief Provides the Abstract Data Type (ADT) for representing Curves
@date 07/01/2018

%%%%

import numpy as np
import re
from SeqADT import =*

def __get_points_from_sequence__(sequence, position, number_of_points):
values = []
for i in range(number_of_points):
values .append (sequence.get (position+i))
return values

Q@Qbrief An abstract data type that represents a Curve
class CurveT () :
_PATTERN__ = re.compile(’(\d+.\dx|\dx*.\d+|\d+),\s(\d+.\d=*|\d=*.\d+|\d+))

@brief CurveT constructor
@details Initializes a CurveT object from a set of points provided in file ,
filename
def __init__(self, filename):
self.x_sequence = SeqT ()
self.y_sequence = SeqT ()

self. __read_file__(filename)
def __read_file__(self, filename):

file = open(filename, ’'r’

index = 0

for line in file:
match = self . __PATTERN__.. match(line)
if match:
self .x_sequence.add(index, float (match.group(1l)))
self.y_sequence.add(index, float (match.group(2)))
index += 1
file.close ()

@brief linVal linear interpolation of the curve to approzimate output y
given some input T
@param x the input value of z to the line to predict the output y
@return y the output of the line at input =z
def linVal(self, x):
if self.x_sequence.size () < 2:
raise ValueError(”Not enough points for linear interpolation”)

position_in_sequence = self.x_sequence.indexInSeq(x)

x-. = __get_points_from_sequence__(self.x_sequence, position_in_sequence , 2)
y- = -_get_points_from_sequence__(self.y_sequence, position_in_sequence , 2)
denominator = x_-[1] — x_[0]

¥y = ((y-[1] — y-[0]) / denominator) * (x — x-[0]) + y-[0]

return y

@brief quadVal quadratic interpolation of the curve to approzimate output
Yy given some input x
@param z the input value of z to the quadratic to predict output y
@return y the output of the quadratic at input =z
def quadVal(self, x):
if self.x_sequence.size () < 3:
raise ValueError(”Not enough points for quadratic interpolation”)

position_in_sequence = self.x_sequence.indexInSeq(x)

xs = __get_points_from_sequence__(self.x_sequence, position_in_sequence , 3)

ys = __get_points_from_sequence__(self.y_sequence, position_in_sequence , 3)

b= ((ys[2] — ys[0]) / (xs[2] — xs[0])) = (x — xs[1])

a = ((ys[2] — 2 % ys[1] + ys[0]) / (2 % (xs[2] — xs[1]) =*x 2)) * ((x — xs[1]) =*x 2)

return a + b 4+ ys[1]

@brief Regression of n degree polynomial to approzimate output y given some
input x
@param n the highest degree of the polynomial to be fitted
@param z the input value of z to the polynomial to predict output y
@return y the output of the polynomial at input =z
def npolyVal(self, n, x):
xs = np.array(_-_get_points_from_sequence__(self.x_sequence, 0, self.x_sequence.size()))

ys = np.array(_-_get_points_from_sequence__(self.y_sequence, 0, self.y_sequence.size()))
estimated_polynomial_function = np.polyld(np.polyfit(xs, ys, n))
return estimated_polynomial_function (x)

G Code for testSeqs.py

from SeqADT import SeqT as SeqT
from CurveADT import CurveT as CurveT

def assertionEqual(test, result, name):
if test result:
print (" Test passed, %s == %s, %s 7 % (test, result, name))
else:
print (” Test failed , %s != %s, %s ” % (test, result, name))

def assertionApproximatelyEqual(test, result, error, name):

if abs(test — result) < error:
print (” Test passed, Actual: %s Approximate: %s, %s 7 % (test,
else:

print (" Test failed , Actual: %s Approximate: %s, %s 7 % (test,

def testSeql ():
seq = SeqT ()

result ,

result ,

A constructor (SeqT()) that takes no arguments and creates an object

whose state consists of an empty sequence
assertionEqual(seq.size (), 0, "Empty sequence”)

def testSeq2():
seq = SeqT ()
add immediately after the last entry in the exzisting sequence.
seq.add (0, 2.0)
assertionEqual(seq.seq[0], 2.0, "Add to an empty sequence”)

def testSeq3():
seq = SeqT ()
add immediately after the last entry in the exzisting sequence.
seq.add (52, 2.0)

assertionEqual (seq.seq[0], 2.0, "Add to an empty sequence large index”)

def testSeq4 ():
seq = SeqT ()
add immediately after the last entry in the exzisting sequence.
seq.add (1, 2.0)
seq.add (1, 3.0)
seq.add (1, 4.0)
seq.add (1, 5.0)
Values can only be added within the ezisting sequence
assertionEqual(seq.seq[1], 5.0, "Add within sequence”)

def testSeqb ():
seq = SeqT ()

seq.add (0, 1)
seq.add (1, 2)
seq.add (2, 3)
seq.add (3, 4)
seq.rm(0)

#A call to this method modifies the sequence so that the entry at
1s removed. The length of the list will decrease by 1.
assertionEqual(seq.seq[0], 2, "removed Oth element”)
assertionEqual(seq.size (), 3, ”"size decreased by 17)

def testSeq6 ():
seq = SeqT ()
undefined behaviour
seq.rm(0)

def testSeq7():
seq = SeqT ()
undefined behaviour
seq.set (0, 1)

def testSeq8():
seq = SeqT ()
seq.add (0, 9)
seq.set (0, 1)
assertionEqual (seq.seq[0], 1, "mutated item at index 07)

def testSeq9 ():
seq = SeqT ()
undefined behaviour
seq.get (0)

index

i

name))

name))

def testSeql0():
seq = SeqT ()
seq.add (0, 1)
seq.add (1, 2)
seq.add (2, 3)
assertionEqual (seq.get(2), 3, "got correct item?”)

def testSeqll():
seq = SeqT ()
assertionEqual(seq.size (), 0, "Empty sequence, size 07)

def testSeql2():
seq = SeqT ()
seq.add (0, 1)
seq.add (1, 2)
seq.add (2, 3)
assertionEqual(seq.size (), 3, "Non empty sequence, correct size”)

def testSeql3():
seq = SeqT ()
seq.add (0, 1.0)
seq.add (3, 2.0)
seq.add (4, 5.0)
seq.rm(2)
assertionEqual(seq.size (), 2, ”Size correct after removal”)

def testSeql4():
seq = SeqT ()
seq.add (0, 1.0)
seq.add (3, 2.0)
seq.add (4, 5.0)
assertionEqual (seq.indexInSeq(2.0), 0, ”Correct index”)

def testSeql4():
seq = SeqT ()
seq.add (0, 1.0)
seq.add (3, 2.0)
seq.add (4, 5.0)
assertionEqual(seq.indexInSeq(7.0), —1.0, ”Correct index”)

def testCurvel () :
curve = CurveT (”./src/linear”)
assertionApproximatelyEqual (4.85, curve.linVal(2.5), 0.000005, ”"Correct approximation”)

def testCurve2():
curve = CurveT(”./src/quad”)
assertionApproximatelyEqual (31.575, curve.quadVal(2.5), 0.000005, ”Correct approximation”)

def testCurve3():
curve = CurveT(”./src/points”)
try:
curve.linVal (0)
print (” Test failed: No exception! divion by zero!”)
except Exception as err:

if type(err) == ZeroDivisionError:
print (” Test passed: Exception: {0}”.format(err))
else:

print (” Test failed: Wrong Exception: {0} should be ZeroDivisionError” .format(err))

def testCurved ():
curve = CurveT (”./src/point”)
try:
curve.linVal (12)
print (” Test failed: No exception! not enough points for quadratic interpolation”)
except Exception as err:

if type(err) == ValueError:
print (” Test passed: {0}”.format(err))
else:

print (" Test failed: Wrong Exception: {0} should be {1}”.format(err, ValueError))

def testCurveb():
curve = CurveT (”./src/points”)
try:
curve.quadVal(12)
print (” Test failed: No exception! not enough points for quadratic interpolation”)
except Exception as err:

if type(err) == ValueError:
print (” Test passed: {0}”.format(err))

else:

print (” Test failed: Wrong Exception:

def testCurve6 ():
curve = CurveT (”./src/vertical”)

try:

curve.quadVal(12)
print (” Test failed: No exception! division
except Exception as err:
if type(err) == ZeroDivisionError:
print (” Test passed: {0}”.format(err))

else:

print (” Test failed: Wrong Exception:

def testCurve6 ():
curve = CurveT(”./src/vertical”)

try:

curve.linVal (12)
print (” Test failed: No exception! division
except Exception as err:
if type(err) == ZeroDivisionError:
print (” Test passed: {0}”.format(err))

else:

print (” Test failed: Wrong Exception:

def test ():
testSeql ()
testSeq2 ()
testSeq3 ()
testSeq4 ()
testSeqb ()
#testSeqb ()
#testSeq7 ()
testSeq8 ()
#testSeq9 ()
testSeql0 ()
testSeqll ()
testSeql2 ()
testSeql3 ()
testSeql4 (
testCurvel
testCurve2
testCurve3
testCurve4
testCurveb
testCurve6

)
()
0
0
0
0
O

test ()

undefined behaviour
undefined behaviour

undefined behaviour

{0}

{0}

{0}

should be {1}”.format(err, ValueError))

by zero!”)

should be {1}”.format(err, ZeroDivisionError))

by zero!”)

should be {1}”.format(err, ZeroDivisionError))

H Code for Partner’s SeqADT.py

Qfile SeqADT.py
@author Partner

10

I Code for Partner’s CurveADT.py

Qfile CurveADT.py
@author Partner

11

J Makefile

PY = python
PYFLAGS =

DOC = doxygen
DOCFLAGS =
DOCCONFIG = seqdoc

SRC = src/testSeqs.py
.PHONY: all test doc clean

test :
$(PY) $(PYFLAGS) $(SRC)

doc:

$(DOC) $(DOCFLAGS) $(DOCCONFIG)
cd latex && $(MAKE)

all: test doc
clean:

rm —rf html
rm —rf latex

12

