
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

36 Design Patterns DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017



36 Design Patterns DRAFT

Administrative details

Debugging

Verifying performance and reliability

Design patterns

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 2/24



Administrative Details

TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 3/24



Verifying Performance

Worst case analysis versus average behaviour

For worst case focus on proving that the system response
time is bounded by some function of the external requests

Standard deviation

Analytical versus experimental approaches

Consider verifying the performance of a pacemaker

Visualize performance via
I Identify a measure of performance (time, storage,

FLOPS, accuracy, etc.)
I Identify an independent variable (problem size, number

of processors, condition number, etc.)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 4/24



Verifying Reliability

There are approaches to measuring reliability on a
probabilistic basis, as in other engineering fields

Unfortunately there are some difficulties with this
approach

Independence of failures does not hold for software

Reliability is concerned with measuring the probability of
the occurrence of failure

Meaningful parameters include
I Average total number of failures observed at time t:

AF (t)
I Failure intensity: FI (T ) = AF ′(t)
I Mean time to failure at time t: MTTF (t) = 1/FI (t)

Time in the model can be execution or clock or calendar
time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 5/24



Verifying Subjective Qualities

What do you think is meant by empirical software
engineering?

What problems might be studied by empirical software
engineering?

Does the usual engineering analogy hold for empirical
software engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 6/24



Verifying Subjective Qualities

Consider notions like simplicity, reusability,
understandability

Software science (due to Halstead) has been an attempt

Tries to measure some software qualities, such as
abstraction level, effort,
by measuring some quantities on code, such as

I η1, number of distinct operators in the program
I η2, number of distinct operands in the program
I N1, number of occurrences of operators in the program
I N2, number of occurrences of operands in the program

Extract information from repo, including number of
commits, issues etc.

Empirical software engineering

Appropriate analogy switches from engineering to
medicine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 7/24



Source Code Metric

What are the consequences of complex code?

How might you measure code complexity?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 8/24



McCabe’s Source Code Metric

Cyclomatic complexity of the control graph
I C = e − n + 2p
I e is number of edges, n is number of nodes, and p is

number of connected components

McCabe contends that well-structured modules have C in
range 3..7, and C = 10 is a reasonable upper limit for the
complexity of a single module

Confirmed by empirical evidence

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 9/24



Design Patterns

Christopher Alexander (1977, buildings/towns):
I “Each pattern describes a problem which occurs over

and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way.”

Design reuse (intended for OO)

Solution for recurring problems

Transferring knowledge from expert to novice

A design pattern is a recurring structure of
communicating components that solves a general design
problem within a particular context

Design patterns consist of multiple modules, but they do
not constitute an entire system architecture

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 10/24



Strategy Design Pattern

From Source Making web-page

Define a family of algorithms, encapsulate each one, and
make them interchangeable.

Strategy lets the algorithm vary independently from the
clients that use it.

Capture the abstraction in an interface, bury
implementation details in derived classes.

Where have we used this pattern?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 11/24

https://sourcemaking.com/design_patterns/strategy


UML Diagram of Measurable Interface

BankAccount PointT

DataSet <<interface>>
Measurable

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 12/24



UML Diagram of Measurer Interface

Rectangle 
Measurer Rectangle

DataSet <<interface>>
Measurer

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 13/24



Model View Controller (MVC)

Separate computational elements from I/O elements

Three components

1. Model encapsulates the system’s data as well as the
operations on the data

2. View displays the data from the model components,
possibly multiple view components

3. Controller handles input actions

The controller may or may not depend on the state of the
model

The controller depends on model state when menu items
are enabled or disabled depending on the state of the
model

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 14/24



Design Pattern Properties

A pattern addresses a recurring design problem that arises
in specific design situations and presents a solution to it

A pattern must balance a set of opposing forces

Patterns document existing, well-proven design experience

Patterns identify and specify abstractions above the level
of single components (modules)

Patterns provide a common vocabulary and understanding
for design principles

Patterns are a means of documentation

Patterns support the construction of software with
defined properties, including non-functional requirements,
such as flexibility and maintainability

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 15/24



Describing Patterns

Context: the situation giving rise to a design pattern

Problem: a recurring problem arising in that situation

Solution: a proven solution to that problem

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 16/24



The Proxy Pattern (from van Vliet (2000))

Context: A client needs services from another
component. Though direct access is possible, this may
not be the best approach

Problem: We do not want to hard-code access to a
component into a client. Sometimes, such direct access is
inefficient; in other cases it may be unsafe. This
inefficiency or insecurity is to be handled by additional
control mechanisms, which should be kept separate from
both the client and the component to which it needs
access.

Solution: The client communicates with a representative
rather than the component itself. This representative, the
proxy, also does and pre- and postprocessing that is
needed.

Code
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 17/24

https://en.wikipedia.org/wiki/Proxy_pattern


UML Diagram of Proxy

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 18/24



Command Processor Pattern

Context: User interfaces which must be flexible or provide
functionality that goes beyond the direct handling of user
functions. Examples are undo facilities or logging
functions

Problem: We want a well-structured solution for mapping
an interface to the internal functionality of a system. All
‘extras’ which have to do with the way user commands
are input, additional commands such as undo and redo,
and any non-application-specific processing of user
commands, such as logging, should be kept separate from
the interface to the internal functionality.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 19/24



Command Processor Pattern Continued

Solution: A separate component, the command processor,
takes care of all commands. The command processor
component schedules the execution of commands, stores
them for later undo, logs them for later analysis, and so
on. The actual execution of the command is delegated to
a supplier component within the application.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 20/24



Adapter Design Pattern

When have we used the adapter (or wrapper) design pattern?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 21/24



Adapter Design Pattern

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 22/24



Factory Pattern

Code

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 23/24

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm


Singleton Pattern

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 36 Design Patterns DRAFT 24/24


