SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

10 Abstract Data Types (Ghezzi Ch.
4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 28, 2018

McMaster
University @

10 Abstract Data Types (Ghezzi Ch. 4)

@ Administrative details
@ Implementation of a sequence abstract object

@ Specification of abstract data types
e Example (similar to A2, 2017)

» PointADT

» LineADT

» CircleADT

» Deque

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 2/31

Administrative Details

@ Assignment 1

» Partner Files: January 28, 2018
» Part 2: January 31, 2018

@ Questions on assignment?
o NSERC USRA

Summer research positions available to top undergrads
Details on NSERC's website

Some interesting projects will be posted on Avenue

You can approach faculty members about other projects
Application deadline is Friday, February 9

>
>
>
>

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 3/31

http://www.nserc-crsng.gc.ca/Students-Etudiants/UG-PC/USRA-BRPC_eng.asp

Homework: Abstract Objects in Python

H&S versus Python for s = [4, 6, -2, 8, 11]
H&S for s[1:3]?

Python for s[1:3]?

H&S for s[0:-1]7?

Python for s[0:-1]?

H&S for s[0:0]?

Python for s[0:0]7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 4/31

Homework: Abstract Objects in Python

H&S versus Python for s = [4, 6, -2, 8, 11]
H&S for s[1:3]? [6, -2, 8]

Python for s[1:3]7 [6, -2]

H&S for s[0:-1]7?

Python for s[0:-1]?

H&S for s[0:0]?

Python for s[0:0]7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 4/31

Homework: Abstract Objects in Python
H&S versus Python for s = [4, 6, -2, 8, 11]

@ H&S for s[1:3]7 [6, -2, 8]

@ Python for s[1:3]7 [6, -2]

e H&S for s[0:-1]7]

e Python for s[0:-1]7 [4, 6, -2, §]
e H&S for s[0:0]7?

@ Python for s[0:0]?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 4/31

Homework: Abstract Objects in Python
H&S versus Python for s = [4, 6, -2, 8, 11]

@ H&S for s[1:3]7 [6, -2, 8]

@ Python for s[1:3]7 [6, -2]

e H&S for s[0:-1]7]

e Python for s[0:-1]7 [4, 6, -2, §]
o H&S for s[0:0]7 [4]

@ Python for s[0:0]7]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 4/31

Homework: Abstract Objects in Python

See the sample files Python in the repo and compare to
Sequence specification.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 5/31

Specification of ADTs

@ Similar template to abstract objects
@ “Template Module” as opposed to “Module”
o “Exported Types" that are abstract use a 7
» pointT =7
» pointMassT = 7

Access routines know which abstract object called them

Use “self” to refer to the current abstract object
@ Use a dot “." to reference methods of an abstract object

» p.xcoord()
» self .pt.dist(p.point())

Similar notation to Python or Java

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 6/31

Syntax Point ADT Module
Template Module

pointADT

Uses

N/A

Exported Types

pointT =7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 7/31

Syntax Point ADT Module Continued

Routine name | In Out Exceptions
new pointT real, real | pointT

xcoord real

ycoord real

dist pointT real

rotate real

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

8/31

Semantics Point ADT Module

State Variables

xc: real
yc: real

State Invariant
None
Assumptions

None

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 9/31

Access Routine Semantics Point ADT Module

new pointT (x,y):
@ transition: xc,yc (= x,y
@ output: 7
@ exception: none
xcoord:
@ output: out := xc
@ exception: none
ycoord:
@ output: out := yc

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 10/31

Access Routine Semantics Point ADT Module

new pointT (x,y):
@ transition: xc,yc (= x,y
@ output: out := self
@ exception: none
xcoord:
@ output: out := xc
@ exception: none
ycoord:
@ output: out := yc

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

10/31

Semantics Point ADT Module Continued

dist(p):
e output: out := +/(xc — p.xcoord)? + (yc — p.ycoord)?

@ exception: none
rotate(y):

@ ¢ is in radians

xc | | cosp —sing XC
yc | | sinp cosyp yc

@ exception: none

@ transition:

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 11/31

Syntax Line ADT Module

Template Module
lineADT

Uses

pointADT
Exported Types

lineT =7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 12/31

Syntax Line ADT Module Continued

Routine name | In Out Exceptions
new lineT pointT, pointT | lineT
start pointT
end pointT
length real
midpoint pointT
rotate real
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

13/31

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant
None
Assumptions

None

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 14/31

Access Routine Semantics Line ADT Module

new lineT (p1, p2):
@ transition: s, e ;= p1, p»
@ output: out := self
@ exception: none
start:
@ output: out :=s
@ exception: none
end:
@ output: out := e

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

15/31

Access Routine Semantics Continued

length:

@ output: 7

@ exception: none
midpoint:

@ output: out :=
new pointT (avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

@ exception: none

rotate (p):
@ is in radians

@ transition: s.rotate(y), e.rotate(y)

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 16/31

Access Routine Semantics Continued

length:
@ output: out := s.dist(e)
@ exception: none
midpoint:

@ output: out :=
new pointT (avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

@ exception: none

rotate (p):
@ is in radians

@ transition: s.rotate(y), e.rotate(y)

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 16/31

Line ADT Local Functions

Local Functions

avg: real x real — real

avg(xy, xp) = 122

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

17/31

Syntax Circle ADT Module

Template Module
circleADT

Uses

pointADT, lineADT
Exported Types

circleT =7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 18/31

Syntax Circle ADT Module Continued

Routine name | In Out Exceptions
new circleT pointT, real | circleT

centre pointT

radius real

area real

intersect circleT boolean

connection circleT lineT

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

19/31

Semantics Circle ADT Module

State Variables

c: pointT
r: real

State Invariant
None
Assumptions

None

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 20/31

Access Routine Semantics Circle ADT Module

new circleT (cinput, rinput):

@ transition: c, r := cinput, rinput

@ output: out := self

@ exception: none
centre:

@ output: out :=c¢

@ exception: none
radius:

@ output: out :=r

@ exception: none
area:

@ output: out := 7r?

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

21/31

Access Routine Semantics Continued

intersect(ci):

@ output:
(p : pointT|insideCircle(p, ci) : insideCircle(p, self))

@ exception: none
connection(ci):
@ output: out := new lineT(c, ci.centre)

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

22/31

Circle ADT Local Functions

Local Functions

insideCircle: pointT x circleT — boolean
insideCircle(p, c) =7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 23/31

Circle ADT Local Functions

Local Functions

insideCircle: pointT x circleT — boolean
insideCircle(p, c) = p.dist(c.centre) < c.radius

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

23/31

Syntax Deque Of Circles Module
Module

DequeCircleModule
Uses

circleADT

Exported Constants

MAXSIZE = 20

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 24/31

Syntax Deque Of Circles Module Continued

Routine name | In Out Exceptions
init

pushBack circleT FULL
pushFront circleT FULL
popBack EMPTY
popFront EMPTY
back circleT | EMPTY
front circleT | EMPTY
size integer

disjoint boolean | EMPTY
totalArea real EMPTY
averageRadius real EMPTY

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

25/31

Semantics Deque Of Circles Module

State Variables

State Invariant
|s| < MAX_SIZE
Assumptions

init() is called before any other access program.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 26/31

Semantics Deque Of Circles Module

State Variables

s: sequence of circleT
State Invariant

|s| < MAX_SIZE
Assumptions

init() is called before any other access program.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 26/31

Access Routine Semantics Deque Of Circles

Module
init():

@ transition:

@ exception:

pushBack(c¢):

@ transition:

@ exception:

pushFront(c):

@ transition:

@ exception:

S i=<>

none

?

exc := (|s| = MAX_SIZE = FULL)

si=<c>||s
exc := (|s| = MAX_SIZE = FULL)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

27/31

Access Routine Semantics Deque Of Circles
Module

init():

@ transition: s :=<>

@ exception: none
pushBack(c¢):

@ transition: s:=s|| <c >

@ exception: exc := (|s| = MAX_SIZE = FULL)
pushFront(c):

@ transition: s :=< ¢ > ||s

@ exception: exc := (|s| = MAX_SIZE = FULL)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 27/31

Access Routine Semantics Continued
popBack():

@ transition: 7

@ exception: exc := (|s| = 0 = EMPTY)
popFront():

@ transition: s := s[L..|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
back():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

28/31

Access Routine Semantics Continued

popBack():

@ transition: s :=s[0..|s| — 2]

@ exception: exc := (|s| = 0 = EMPTY)
popFront():

@ transition: s := s[L..|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
back():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

28/31

Access Routine Semantics Continued

front():

@ output: out := s[0]

@ exception: exc := (|s| = 0 = EMPTY)
size():

@ output: out := |s]

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

29/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.

What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out =7 (7 |?
27)

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

30/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.

What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out =7 (7 |?
27)

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

30/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.

What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out =7 (7 |?
27)

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

30/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.

What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out .= VY(? |?
27)

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

30/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.

What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out .= VY(? |?
—s[i].intersect(s[j]))
@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

30/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.

What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out = Y(i,j:N|?
—s[i].intersect(s[j]))
@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4)

30/31

Access Routine Semantics Disjoint

Disjoint returns true if none of the circles in the deque overlap.
What access program tells you whether two circles overlap?
In words how would you express the predicate for disjoint?

disjoint():
@ output
out:= Y(i,j:N| i€[0.]s|—1]Aj€[0..|s| —1]Ai#
J o —s[i].intersect(s[/]))
@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 30/31

Homework: Access Routine Semantics Continued

totalArea():

@ output
out =7

@ exception: exc := (|s| = 0 = EMPTY)
averageRadius():

@ output
out :="7

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 10 Abstract Data Types (Ghezzi Ch. 4) 31/31

