
Tutorial 9 - MVC

Week of 13-17, March, 2017
Prepared by: Gurankash Singh

Description
 Software architecture pattern that separates

the model, the user interface and control logic
of an application in three distinct components:

 Separates representation of information from

user interaction

Model
 Implements the logic for the application's data

domain
 Logic ensures the integrity of data and allows to

derive it
 Example:

a Product object might retrieve information
from a database, operate on it, and then write
updated information back to a Products table in
a SQL Server database

 View
 Represents the model
 Components that display the application's user

interface (UI)
 Used to interact and access the data
 Example:

an edit view of a Products table that displays
text boxes, drop-down lists, and check boxes
based on the current state of a Product object

Controller
 Link between view and model
 Components that handle user interaction,

invoke changes on the model, and selects a view
 Responsible for receiving and responding to

user actions

Visual Representation

Control Flow
1. The user performs an action on the

interface.
2. The controller takes the input event.
3. The controller notifies the user action to

the model, which may involve a change of
state of the model.

4. It generates a new view. The view takes the
data model.

5. The user interface waits for another user
interaction, which starts a new cycle.

History
 Introduced in 1987 in the Smalltalk

programming language
 Fit quite well with Web applications
◦ With both the model and the controller on the

server side
◦ View on the client side

Benefits
 More organized
 Parallel development allows for rapid application

development
 Frequent UI updates can be made without slowing

down the business logic process
 Due to the separation of the model from the view, the

user interface can display multiple views of the same
data at the same time

Example
 Create a Student object
◦ Name
◦ Student Number

 a view class which can print student details on
console and

 A controller class responsible to store data
in Student object and update view accordingly

Diagram

StudentView

+printStudentDetails() :void

StudentController

model: Student
view: StudentView

+StudentController()
+setStudentName() :void
+getStudentName() :String
+setStudentNumber() :void
+getStudentNumber() :int
+updateView() :void

MVCPatterDemo

+retrieveStudentFromDatab-
ase() :Student
+main() :void

Student

name :String
number:int

+setStudentName() :void
+getStudentName() :String
+setStudentNumber() :void
+getStudentNumber() :int

uses

uses
updates

Model – Student.java

View – StudentView.java

Controller - StudentController

Main – MVCPatternDemo.java

Output

References
 https://www.tutorialspoint.com/design_pattern/

mvc_pattern.htm
 https://en.wikipedia.org/wiki/Model%E2%80%93

view%E2%80%93controller

Source files
 Tutorials\T9\src

https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
https://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

	Tutorial 9 - MVC
	Description
	Model
	 View
	Controller
	Visual Representation
	Control Flow
	History
	Benefits
	Example
	Diagram
	Model – Student.java
	View – StudentView.java
	Controller - StudentController
	Main – MVCPatternDemo.java
	Output
	References

