The Draw-Bot:
A Project for Teaching Software Engineering

Martin v. Mohrenschildt
Computing and Software
Communications Research Laboratory,
McMaster University,
Hamilton, Ontario, Canada L8S 4K1
e-mail: mohrens@mcmaster.ca

Dennis K. Peters
Faculty of Engineering & Applied Science
Memorial University of Newfoundland,
St. John’s, Newfoundland, Canada A1B 3X5
e-mail: dpeters@engr.mun.ca

June 4, 1998

Abstract

We present a course project which was successfully used
to teach software design principles to third year computer
engineering students. The goal of the project is to pro-
gram a robot to trace a shortest path through a maze.
The students, organized in teams of five, have to follow
the classical steps of software development and prepare in-
terface, design and testing documents. Having a project
that requires controlling a device to complete a clear task
generates enthusiasm in the students and helps them to
understand the principles taught in the course.

1 Introduction

Computer Engineering 3VA3 is a third year course in soft-
ware design taught at McMaster University. A key ele-
ment of this course is an opportunity to apply software
engineering principles such as software specification, de-
sign and testing to systems with safety-critical and real-
time requirements in a concrete project. In previous years
pure software projects i.e., projects that did not involve
any hardware other than the computer, were used. Such
abstract projects have a number of disadvantages:

e they often have many seemingly arbitrary rules,
e they often fail to inspire enthusiasm in students, and
e it is hard to tell success from failure.

In this paper we present an alternative project: control-
ling a robot constructed from a commercially available kit
to complete a simple task. In the next section we present
the educational goals of the course and the criteria for
choosing the project. Section 3 describes how we con-
ducted the project to avoid the problems that typically

arise in such project based courses. We give an overview
of the project in section 4 and evaluate its success in sec-
tion 5.

2 Educational Goals

This course is intended for students who already know
how to program and are familiar with the use of data
structures. In this course, students are exposed to the
principles of professional software development from an
engineering point of view. The major topics are

e software specification and documentation,

e modularity,

module interface design,

module internal design,

real time and safety critical software,
testing and inspection, and

¢ software development in a team.

Past experience has shown that students often do not
realize some of the issues that arise in multi-person soft-
ware development projects until they are confronted with
them. The project, which is a major component in the
course (60% of the final mark), exposes the students to
some of these issues and allows them to practice the prin-
ciples taught in the course.

For the course to be successful, the project must have
a concrete and well defined goal. Its requirements must
be achievable, and the amount of effort required must be
appropriate for the course timetable. The students’ level
of interest is also a key factor, which we have found is

significantly improved by requirements that are based on
reality.

We chose to step away from the pure software projects
used in previous years and to design an “action” project—
a project where there is some physical interaction of a
computer with the world. The goal of the project is to
control a robot to trace a shortest path through a maze.
To stay feasible and safe we could not use real industrial
robots, so we constructed the robot using a small edu-
cational robot kit that is controlled through a software
interface. In this way the students don’t have to concern
themselves with the hardware aspects of constructing or
controlling the robot. The software-hardware interaction
offers interesting and challenging problems including real-
time and safety critical aspects.

This software engineering course is a major component
of the curriculum for computer engineers (and, since 1998,
also electrical engineers). It is the last course in a se-
ries of three software courses where students are taught
the principles of professional software development. This
course is a cornerstone of the education of these students
since they will be expected to develop software as part
of engineered systems during both their studies and their
professional careers.

3 Project and Course Organiza-
tion

The classroom time for the course consisted of three 50
minute lecture periods per week over a 12 week semester.
Two periods each week were used for lectures to present
the theoretical concepts and principles, and the third was
used as a tutorial to discuss the project.

3.1 Phases and Milestones

At the beginning of the course the students are given the
requirements specification—a document that precisely de-
scribes the required behavior of the software. Further it
describes all deliverables for each of the project phases.
We found that this structure is essential to ensure that
each student understands what is expected. The require-
ments specification can be seen as a contract between the
client (instructor) and the software developer (students).

We identified seven project phases, each of which re-
sults in a document:

1. Modularization
The module guide presents the modularization cho-
sen by the groups. It contains a list of all of the
modules in the system, and, for each module, an in-
formal description of the “service” it provides, and
the “secret” it hides. It also describes the interac-
tion between modules by specifying (typically using

a figure or a table) the modules each module relies
upon in order to provide its service (i.e., the uses
hierarchy).

2. Interface Design

The module interface specification describes the in-
terface to each module by specifying all interface
functions, their input and output arguments, types
and exceptions and the declaration of data types if
needed. The visible effects of each interface function
is described using one of the specification techniques
presented in the lectures.

3. Internal design
The internal design document describes how the
modules provide their services by presenting and ex-
plaining the internal data structures and algorithms
of each module.

4. Code Inspection

Each team must prepare a code inspection report,
which lists the properties of the code to be checked
during the inspection, the method to be used to con-
duct the inspection, and the rationale for choosing
this method. Reports of the actual code inspections
list any problems that were found during the inspec-
tion.

5. Testing
The module testing report describes how each mod-
ule was tested. This testing should be conducted by
someone other than the primary author of the mod-
ule and that person must prepare a test report. It
list the test cases and expected and actual results.

6. System Safety Analysis
The system safety analysis report shows in a verifi-
able manner how the software satisfies the safety re-
quirements. It starts from the possible failures and,
with reference to the design, shows how such a failure
is prevented.

7. Final Presentation
All of the documents are combined into one final doc-
ument, and the groups demonstrate their software.

As each phase was completed, the students were re-
quired to submit a draft of the corresponding document,
which was credited with 20% of the value for that docu-
ment. These were reviewed by the instructor or TA and
feedback was given to the students. Having these mile-
stones, with fixed due dates, kept the students on track:
they worked consistently over the term rather than pro-
crastinating until the end of the term. In addition this
provided an opportunity to correct poor design decisions
before they had too much effect on the project.

3.2 Project Teams and Leagues

The project was conducted in teams of five students. This
number was chosen considering the size and amount of
documentation and programming required. Past experi-
ence has shown that the formation of the teams is crucial:
if the students are permitted to form their own teams
top students tend to group together, resulting in very
strong groups and weak groups. To solve this problem
we decided to mandate the most knowledgeable students
as group leaders and let the leaders choose their teams.
The leaders were chosen using results of a multiple choice
test given in the first lecture of the semester.

The tutorials played a major role in the project: they
were used to give guidance in design, documentation and
other technical matters. Further groups were asked to
give small presentations of their own designs in order to
expose all students to a variety of design alternatives and
to give students an opportunity to practice and improve
their presentation skills.

For these tutorials we split the groups into leagues
which were lead by either an experienced TA or the in-
structor. Within each league the groups agree on high
level design decisions, such as the modular structure and
the interfaces to the software components, and submit a
common module guide and set of module interface specifi-
cations. This helps to emphasize the importance of care-
fully documenting design decisions and gives practice in
developing the system to adhere to the specifications. An
added advantage is that groups of one league can inter-
change project modules if one of the groups fails to com-
plete one or more modules (e.g., due to a student dropping
the course or getting sick).

3.3 Imnstructional Resources

This course required significant preparation effort to de-
velop the project and prepare the requirements document.
In addition, several components had to work for it to be
successful:

e League Leaders The league leaders are the main
source of direction for the students with respect to
the project, so they must be experienced in software
design and have a solid knowledge of the practice of
the principles being taught in the course. In addition
to an instructor who has industrial experience, we
were lucky to have very competent and experienced
TAs who were involved in the development of the
project and were capable of acting as league leaders.

¢ Hardware (Robots, Computers) The draw-bot is
constructed using a Robix 7™ RCS-6 construction set
[1]. It consists of three arms, each of which is con-
trolled by a motor. The first two arms move in the

horizontal plane to position the pen and the third
arm is used to raise or lower the pen. The modular
structure of this set and the simple software interface
made constructing the draw-bot and interface soft-
ware easy. Also it is easy to construct new robots to
be used for future projects. We used two kits for our
class.

e Software (Interface, Simulator) Since this is a
course in software, not hardware, we provided the
students with a software interface to the hardware.
This interface contained only the elements needed to
control the robot—accelerations, speeds, and hard-
ware interface details were not shown. In addition
we provided a simulator, which has exactly the same
software interface as the actual hardware and illus-
trates the behavior of the robot on the computer
screen. This turned out to be essential since it al-
lowed students to test their software without using
(and possibly damaging) the actual robot. All stu-
dents who “mastered” the simulator got the robot
running the first time.

4 Project Overview

The goal of the project is to control a robot to trace
the shortest path thought a 2-dimensional (paper) maze.
Further, some real time and safety critical elements are
added: there is an emergency stop button, a home button
(return to initial position) and a reverse button (trace
backwards).

In the requirements specification the behavior is de-
scribed in terms of the monitored and controlled variables.
[2][3] These are the quantities that the software can mea-
sure, e.g. the status of a button, and the ones that the
software can set, e.g. the position of a certain motor. To
aid in understanding, and to help expose students to a va-
riety of formats, the requirements are presented in three
forms: Informal, Logic, and State Machine, all using the
notation of the textbook [4]. These descriptions are in-
tended to describe the same behavior and are in some
sense complimentary. In this paper we only show parts
of the informal description, the complete description can
be found in [5].

4.1 System Interface

Table 1 lists the variables that represent the quantities
in the environment to be monitored and/or controlled by
the system. All environment variables are functions of
time.

Table 1: Environmental Variables
| Variable Type Description |

i_mazeWalls set of positionT | The set of points that make up the walls of the maze. Note
that the exterior walls (i.e., the perimeter) are included.

i_mazeStart positionT Start position for the maze.

i_mazeEnd positionT Finish position for the maze.

i_stopButton | buttonT The status of the button labeled “stop”.

i_homeButton | buttonT The status of the button labeled “home”.

i_backButton | buttonT The status of the button labeled “back”.

i_mazeFile string The file name passed on the command line.

o_penPos positionT The position of the pen relative to the ‘origin’ (0, 0), which is
the center of the robot base post.

o_penDown Boolean true iff the pen is touching the plane containing the maze.
Assumed to be initially false.

o_powerOn Boolean true iff the robot power is on. Assumed to be initially false.

o_message string The message displayed on the operator console.

4.1.1 Pen Position

We represent the location of the draw-bot pen tip using a
Boolean, o_penDown, to indicate if the pen is touching the
maze surface or not, and a pair, (o_penPos.x, 0_penPos.y)
of reals, representing the location in the horizontal plane
where the pen tip is touching the maze (if o_penDown is
true) or would touch the maze if lowered. The ‘home’
location of the pen-tip (to which it is returned on initial-
ization of the draw-bot), is (HOME_X, HOME_Y).

4.1.2 Maze

As illustrated in Figure 1, the maze is contained within a
15 x 15 cm region of the horizontal plane. The ‘internal
walls’ of the maze are segments of the lines forming a
square grid with line spacing 10 mm. Figure 2 illustrates
a magze, reduced from an actual size of 15 x 15 cm.

4.2 Behavioral Requirements

This section describes the required behavior of the Maze-
Tracing Robot in terms of the environmental quantities
described in Table 1.

4.2.1 Safety Requirements

As stated, our project contains safety critical aspects.
These are requirements which have to be satisfied no
mater what happens:

If at any time the stop button is pressed the robot must
stop moving within 0.5 seconds and must remain station-
ary until the stop button is released.

When the pen is down the pen tip must never come
within 2 mm of a wall point.

M_HEIGHT

M_WIDTH

M_Y_OFFSET

% _

Figure 1: Robot and Maze Parameters

In the final evaluation we examined the documents and
software extensively for these requirements. Failing to ful-
fill them resulted in a significant reduction in the group’s
grade.

4.2.2 Modes of Operation

The operation of the draw-bot can be split into several
phases or modes. The following is a description of the

_

B [

Figure 2: Sample Maze

required behavior of the robot in each of these modes.

Initialization When the program is started i_mazeFile
is read. If an error occurs (e.g. file read failure) or if there
is no path through the maze, then an appropriate diag-
nostic message must be output and the control program
must exit without powering the robot.

Starting After i_mazeFile has been read, and it has
been determined that there is a path through the maze,
the robot power must be turned on, which initializes the
pen to the home position with the pen up. The pen must
then be moved to the start position of the maze.

Forward Once the starting position has been reached
the pen must be lowered and a path traced through the
maze to the end. When the pen reaches the end of the
magze it must be raised and returned to the home position.

Reverse If at any time while the path is being traced
the “back” button is pressed the Draw-bot is required
to reverse the direction of its tracing within 0.5 seconds
and begin to re-trace its path back to the beginning. It
should continue to re-trace it’s path only as long as the
“back” button is held down; when it is released the Draw-
bot should continue in the forward direction. If, while
reversing, it reaches the start position it should stop there
until either the “back” button is released or the “home”
button is pressed.

Home If at any time while the path is being traced (in
either direction) the “home” button is pressed the Draw-
bot is required to stop tracing within 0.5 seconds, raise
the pen and return to the home position, without making
any further marks.

Done When the pen has been returned to the home
position, the power must be turned off and the system
must exit.

5 Assessment

The project was very successful from several points of
view. We did not encounter large technical nor organiza-
tional problems, this is mostly due to the vast amount of
preparation and the strong commitment of the TAs.

All but one group completed the project and, thanks
to the league structure, the software produced by the one
unsuccessful team could be shown to work by using some
components from other teams in the same league.

The team selection process (based on our selection of
team leaders) was quite successful at quickly forming rel-
atively compatible teams, while still ensuring that the
most knowledgeable students were not grouped in the
same team. There were relatively few personality conflicts
within the teams and no team was excessively stronger or
weaker than the others.

The student response was very positive. The anony-
mous course evaluation contained only positive comments
and is reported to have been one of the most positive
ever seen in this department. Most students stated that
they felt that they solved a real problem and learned a
great deal. Our formal approach, to which we encoun-
tered scepticism at the beginning, was accepted by the
majority of the students at the end of the course. They
understood that a well structured approach to software
development, even if it initially seems like more work,
pays out in the end. The students were excited to test
their project using the real robot and were happy that
it worked from the beginning most of the time, and was
stable even in unexpected situations.

5.1 Problems Encountered

Our group structure helped many weaker students to ac-
complish a task which they would not have been able to
do by themselves. But since the project mark was the
same for all members of each team, the individual final
marks did not accurately represent the skills or effort of
each individual student. A grading scheme that will allow
us to give more individual marks would be an improve-
ment, but is difficult to do in a fair manner.

The source code of the simulator was provided to the
students, which lead to some confusion. Some groups
made some minor changes to it, which they should not
have, causing them some problems as they tested using
the real robot. However, the lesson that the students
learned from this experience—that it is important to re-
spect a module interface no matter how unwieldy it may
be—was valuable.

The technical aspects of the draw-bot caused some diffi-
culty in getting the mazes to be traced correctly using the
real robot. For example, positioning the pen tip such that
the pressure applied was sufficient to make a mark, but
not so much that it impeded the draw-bot movements,
was quite difficult and required that the pen height be
adjusted depending on the distance of the pen from the
base. The interface provided to the students did not allow
them to adjust the pen height—they could only set it to
“up” or “down”—so they were not able to account for this
affect. We overcame this by adjusting the configuration
such that the pen did not actually make a mark, but just
came close to touching the paper. In addition the actual
value of o_penPos was quite sensitive to small mechanical
variations in the robot construction so it was not always
possible to avoid ‘touching’ the ‘walls’. We accepted a
demonstration using the ideally behaving simulator as ev-
idence that the student designs behaved correctly in that
respect.

6 Conclusions

Software team projects are often a significant component
of software design courses similar to Computer Engineer-
ing 3VA3. We have found that choosing a project that
involves controlling a device to complete a clearly defined
task has a number of advantages:

e the students are more enthusiastic,
e it is easier to tell success from failure,
e the project requirements can be based in reality, and

e the importance of interface design is clearly illus-
trated.

These advantages outweigh, in our opinion, the effort re-
quired to develop such a project.

The ‘league’ structure adopted for this course empha-
sizes the importance of clear module interface definitions
and gives some resilience to certain kinds of failure. This
structure can only be used where there is a sufficiently
low ratio of students to qualified league leaders.

Acknowledgments

We gratefully acknowledge the efforts of Dr. David L.
Parnas, who offered many thoughtful comments to help
give us the benefits of his experience with teaching this
course in the past. Kavitha Nadarajah was one of the
TAs for the course and her assistance is greatly appreci-
ated. We obtained a grant from the Teaching and Leaning
Committee of McMaster University, which was matched

by the Department of Electrical and Computer Engineer-
ing. This enabled us to pay for the robots and for the
services of Igor Vulanovic to develop the simulator. Weix-
iong Lin helped to fine-tune the draw-bot configuration
and developed some test software and mazes.

References

[1] “ROBIXTM RCS-6 robot construction set user guide
and project book,” Advanced Design, Inc., 1101 East
Rudasill Road, Tucson, AZ 85718 USA, Sept. 1995.
URL http://www.robix.com/.

[2] Heninger, K., Parnas, D. L., Shore, E. J., and Kallan-
der, J., “Software requirements for the A-7E aircraft,”
Tech. Rep. MR 3876, Naval Research Laboratory,
1978.

[3] van Schouwen, A. J., Parnas, D. L., and Madey, J.,
“Documentation of requirements for computer sys-
tems,” in Proc. International Symposium on Require-
ments Engineering (RE ’93), pp. 198-207, IEEE, Jan.
1993.

[4] Hoffman, D. and Strooper, P., Software Design, Au-
tomated Testing, and Maintenance: A Practical Ap-

proach. International Thomson Computer Press,
1995.

[5] Peters, D. K. and von Mohrenschildt, M..
Course Handout for Computer Engineering

3VA3, McMaster University, Sept. 1997. Avail-
able at http://ece.eng.mcmaster.ca/faculty/
mohrens/robot/robot_rs.html.

