
C++ Continued 1 / 27

C++ Continued
CS 2ME3/SE 2AA4

Steven Palmer

Department of Computing and Software
McMaster University



C++ Continued 2 / 27

Outline

Outline

1 The main() Function

2 Building C++ Code
The Build Process
Preprocessing
Compilation
Linking
Makefiles

3 Example

4 Doxygen with C++

5 Unit Testing in C++



C++ Continued 3 / 27

The main() Function

The main() Function

To build a C++ program, a main function is required
This is the entry point to your program – this function will be
called when your program begins
The main method in C++ has the following definition:

int main (){

// do stuff here

return 0;
}



C++ Continued 4 / 27

The main() Function

main() Return Type

If you have experience with Java, you might have noticed that
the return type of main() in C++ is int and not void
In C++, main returns an int to signify success or failure of
the program:

a return value of 0 signifies that the program ended normally
any other value signifies an error

The return value can be accessed via the terminal/console to
check for failures



C++ Continued 5 / 27

Building C++ Code

The Build Process

C++ Build Steps

Building from source in C++ is a three step process:

1 Preprocessing:
replaces preprocessor directives (#define, #include, etc.)
with C++ code

2 Compilation:
once preprocessing is done, the resulting pure C++ code can
be compiled
compile translates the C++ code into machine code “object”
(.o) files

3 Linking:
object files are linked into binaries or libraries



C++ Continued 6 / 27

Building C++ Code

Preprocessing

The Preprocessor

The preprocessor is really just a text substitution tool
Preprocessing must occur first in the build process:
preprocessor directives are not code and need to be replaced
Preprocessing is usually not carried out on its own – we can
have the compiler do this for us automatically when we do the
compilation to object files
We can choose to run the preprocessor, however, if we would
like to see the resulting code before compilation
Command: g++ -E -P source.cpp



C++ Continued 7 / 27

Building C++ Code

Preprocessing

Exercise 1: Run the Preprocessor

Exercise 1

There is some example code in
examples/compilation/withguards that we can use to test the
preprocessor.

Try running the preprocessor on each source file and see what it
does to the code in each file:

g++ -E -P A.cpp
g++ -E -P B.cpp
g++ -E -P main.cpp



C++ Continued 8 / 27

Building C++ Code

Preprocessing

Exercise 1: Run the Preprocessor

Exercise 1: Notes

Notice that the preprocessor replaces #include directives by simply
substituting the contents of the header file. Recall from last week
that we (generally) only put declarations in header files. Declaring
something is a promise to the compiler that whatever was declared
will eventually be defined. Definitions for everything that is
declared must exist somewhere, but so long as every variable,
function, class, etc. that is used in a source is declared, we are able
to compile that source.



C++ Continued 9 / 27

Building C++ Code

Preprocessing

Exercise 1: Run the Preprocessor

Exercise 1: Notes

You might have also noticed that the header files used some other
preprocessor directives:

#ifndef NAMEOFFILE_H
#define NAMEOFFILE_H
...
#endif

We will discuss what this does on the next slides.



C++ Continued 10 / 27

Building C++ Code

Preprocessing

Header Guards

The pattern of preprocessor directives in the previous slide is
called a header guard
This prevents headers from being substituted more than once
while preprocessing a source file
This is extremely important: if a header is substituted more
than once, we will end up with repeated declarations and the
source will fail to compile



C++ Continued 11 / 27

Building C++ Code

Preprocessing

How it Works

#ifndef NAMEOFFILE_H:
this means “if not defined”
the preprocessor checks if NAMEOFFILE_H has previously been
defined
if NAMEOFFILE_H has not been defined the preprocessor
continues to the next line
if NAMEOFFILE_H has been defined, the preprocessor skips to
#endif

#define NAMEOFFILE_H:
adds NAMEOFFILE_H to the preprocessors set of definitions

#endif:
ends an if block (in this case the block started by #ifndef
NAMEOFFILE_H)



C++ Continued 12 / 27

Building C++ Code

Preprocessing

Exercise 2: Run the Preprocessor Without Guards

Exercise 2

The code in examples/compilation/noguards contains the same
code as the last example with the header guards removed.

Look at main.cpp. Notice that main.cpp includes B.h, and B.h
includes A.h. Notice that main.cpp also includes A.h.

Try running

g++ -E -P main.cpp

and note the difference from before.



C++ Continued 13 / 27

Building C++ Code

Preprocessing

Exercise 2: Run the Preprocessor Without Guards

Exercise 2: Notes

Note that without the header guards, the code in A.h is now
substituted into main.cpp twice upon preprocessing. This will result
in compilation errors due to multiple declarations of the class A.
(the same situation occurs with B.cpp)

Whenever you write a header file, remember to always start
by writing the header guards!



C++ Continued 14 / 27

Building C++ Code

Compilation

Compiling to Object Files

After preprocessing, we have a pure C++ source that can be
compiled
Note that compilation with g++ will automatically run
the preprocessor first, and then compile: we do not have
to run the preprocessor manually
We can invoke C++ compilation via: g++ -c source.cpp

This will create the object file source.o



C++ Continued 15 / 27

Building C++ Code

Compilation

What are Object Files?

Object files are machine code fragments of a larger program or
library
So long as every identifier used in a source has been declared,
we can compile the source to an object (we don’t need the
definitions)
This gives us the ability to separate code into different source
files, which allows for the separate compilation of objects
This means that when we change code in some source file, we
only need to recompile that source file into a new object file –
all of the other object files can remain unchanged
In large projects, this can save minutes or hours of compilation
time



C++ Continued 16 / 27

Building C++ Code

Compilation

Exercise 3: Run the Compiler

Exercise 3

Let’s create object files for the source code in
examples/compilation/withguards. Run the commands:

g++ -c A.cpp
g++ -c B.cpp
g++ -c main.cpp

You should now have three corresponding .o files.



C++ Continued 17 / 27

Building C++ Code

Linking

Linking Object Files

Recall that object files are machine code fragments of an
overall program/library
Object files are essentially sets of symbols (names of variables,
functions, classes, etc.) with associated definitions
Linking combines object files into functioning programs or
libraries
Object files created from source files that have included
headers of other modules will have symbols with no associated
definition
The linker tries to resolve all undefined symbols by finding
their definitions in other objects and providing a memory
reference to their machine code (you get a linking error if it is
unsuccessful)



C++ Continued 18 / 27

Building C++ Code

Linking

Exercise 4: Run the Linker

Exercise 4

Let’s try linking the .o files you created in Exercise 3. Run the
command:

g++ -o prog main.o A.o B.o

You should now have an executable called prog in your directory.
You have successfully compiled a C++ program!



C++ Continued 19 / 27

Building C++ Code

Linking

Exercise 5: Linker Error

Exercise 5

Now let’s see what happens when we try to link with missing
definitions. Try running the command:

g++ -o prog main.o

Notice all of the undefined reference errors: this is telling us that
we are missing definitions. These definitions are in A.o and B.o
(which came from A.cpp and B.cpp, respectively).



C++ Continued 20 / 27

Building C++ Code

Makefiles

Using Makefiles

As projects get larger, manually compiling C++ via the
command line becomes tedious and hard to do efficiently
Makefiles are used to automate the compilation process
You were given makefiles for A1 and A2 – these makefiles were
trivial since Python is interpreted and doesn’t require
compilation
You will be supplied a makefile for A3 so you don’t have to
compile by hand
Knowing about the compilation process as described in the
previous slides will still be useful: you will undoubtedly run into
compilation errors and having an idea of how compilation
works will be helpful



C++ Continued 21 / 27

Building C++ Code

Makefiles

Exercise 6: Sample Makefile

Exercise 6

Look at examples/prev_assignment/Makefile for a sample
makefile for a C++ project. We will go over it briefly so you can
get an idea of how it works.

A complete understanding of this makefile is not necessary – you
will be given the makefile for A3, and you can also use this makefile
for A4. See the GNU make documentation if you want to learn
more.

https://www.gnu.org/software/make/manual/make.html


C++ Continued 22 / 27

Example

C++ Example: Implementation of A4 2009

We will now look at a larger example of a C++
implementation
See examples/prev_assignment



C++ Continued 23 / 27

Example

Exercise 7: Experimenting with A4 Implementation

Exercise 7

Let’s play with the code in the A4 implementation a bit.

The makefile includes a rule make experiment, which runs the
main method defined in experimentation/main.cpp – let’s write
some code in main to experiment with the implementation.



C++ Continued 24 / 27

Doxygen with C++

Doxygen with C++

You will be using Doxygen again to build documentation for
your C++ implementations
Since you already know how to use doxygen, this will be easy!
The only difference is a small change in syntax for the
comments – commands remain the same
Note that the doxygen comments go in the header files
and not the source files



C++ Continued 25 / 27

Doxygen with C++

Exercise 8: Doxygen

Exercise 8

The easiest way to see the difference in syntax is by example: see
examples/doxygen

Look at Example.h and notice the syntax difference between
doxygen in C++ and what you have done in Python.

Run doxygen via doxygen doxconfig



C++ Continued 26 / 27

Unit Testing in C++

Unit Testing in C++

You will use the Catch2 unit testing library to write tests for
your code in A3 and A4
Your experience with pytest will help you quickly learn to use
Catch2 – same idea, different syntax
We will again look at a code example to show the differences
in syntax between Catch2 and pytest



C++ Continued 27 / 27

Unit Testing in C++

Exercise 9: Unit Testing with Catch2

Exercise 9

Let’s look at the code in

examples/prev_assignment/test/tests.cpp

Refer to the comments in the code for an explanation of how
Catch2 is used.

Note that a main method is automatically generated with
testmain.cpp – you don’t need to write one.


	The main() Function
	Building C++ Code
	The Build Process
	Preprocessing
	Compilation
	Linking
	Makefiles

	Example
	Doxygen with C++
	Unit Testing in C++

