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15 Functional Programming in Python

Administrative details

Functional programming

Functional programming in Python
I Defining functions
I List comprehension
I Map
I Filter
I Fold (Reduce)
I Anonymous functions
I Partial functions
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Administrative Details

Assignment 1 solution in repo

Assignment 2
I Part 1: February 12, 2018
I Partner Files: February 18, 2018
I Part 2: March 2, 2018
I Steps have been written out
I When working with object, either create or use references
I Use exact names and cases
I Exceptions take one argument, a string
I Exceptions in Exceptions.py
I Data.accessProg, not Data accessProg or
Data.Data accessProg

I Two sample input files in repo
I Added Data getC
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https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Assignments/A1/A1Soln


Functional Programming

Computation is treated a the evaluation of mathematical
functions (not CS subroutines)

I No state
I No mutable data
I Programming with expressions, not statements

No side effects

Easier to reason about than imperative or OO code

Functions are a first order data type
I Can pass functions as arguments
I Can return functions

Origin with lambda calculus

There is a focus on list processing
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Functional Programming in Python

Python was an imperative/OO language first

Other functional languages (like Haskell) have pattern
matching

Python is dynamically typed

Cannot inspect the type of a function
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List Comprehension

Examples from Learn You a Haskell for Great Good

Gries and Schneider notation for set comprehension:
{x : T |R : E}

I x is the dummy variable
I E is an expression
I R is a predicate

Modified version: {x : T |R ∧ P : E}
I P is a predicate (filter)

Python code: [E for x in R if P]

I R is a sequence (list)
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http://learnyouahaskell.com/


List Comprehension Examples

{x : T |R ∧ P : E} (set) to [E for x in R if P] (sequence)

{x : N|x ∈ [1..10] : x2}
[x**2 for x in range(1, 11)]

{x : N|x ∈ [1..10] ∧ x2 ≥ 12 : x2}
[x**2 for x in range(1, 11) if x**2 >= 12]

A list or radii for a seq circles of CircleT (A1-2017)
radii=[c.radius() for c in circles]

[S0, S1, ..., S|S |−1] to
[S0.eval(x), S1.eval(x), ..., S|S|−1.eval(x)] (A2-2018)
[s.eval(x) for s in S]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 7/15

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/PreviousYears/2017/A1/A1Soln/src/Statistics.py
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf


List Comprehension to find List Length

def length(xs):

return sum([? for x in xs])

What should ? be to return the length of xs?

Similar to how we write count mathematically:
+(i : N|x ∈ xs : 1)
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List Comprehension Examples Cont’d

Write a function rep(x, n) that returns a list of n
elements, where each element is x

Write a function that takes a list of integers (xs) and
replaces each odd number greater or equal to 10 with
"BANG!" and each odd number that’s less than 10 with
"BOOM!"

I What is the basic structure for the list comprehension?
[E for x in R if P]

I What are R and P?
[E for x in xs if odd(x)]

I How do you write conditional expressions in Python?
x = true value if condition else false value

I What is E?
[”BOOM!” if x < 10 else ”BANG!” for x in xs if odd(x)]
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List Comprehension Two Lists

Given the lists
I nouns = ["smurf", "frog", "dwarf"]
I adjectives = ["lazy", "grouchy", "scheming"]

Write a list comprehension that concatenates all the
adjectives with all the nouns
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Remove Everything but Uppercase

Write a function removeNonUpperCase(st) that takes a
string st and returns the string that results by removing all
non upper case letters

How would you build the sequence of [’A’, ’B’, ...,

’Z’]?
[chr(i) for i in range(ord(’A’),ord(’Z’)+1)]
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Nested List Comprehension

Given a list of several lists of numbers, remove all odd
numbers without flattening the list.

xxs =

[[1,3,5,2,3,1,2,4,5],[1,2,3,4,5,6,7,8,9],[1,2,...
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Map

Examples from Learn You a Haskell for Great Good

Mathematical model:
I map : (a→ b)× seq of a→ seq of b
I map : (a→ b)× [a]→ [b]

Python code: map(func, seq)
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http://learnyouahaskell.com/


Map Example

def add3(x):

return x + 3

list(map(add3, [1, 5, 3, 1, 6]))

What do you think will be printed?

What is the type of add3?

What type does map return in this case?
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Anonymous Function Example

list(map(lambda x: x + 3, [1, 5, 3, 1, 6]))

or

add3 = lambda x: x + 3

list(map(add3, [1, 5, 3, 1, 6]))

lamda followed by list of arguments: expression

Write code to add ’!’ to every string in a list of strings
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