
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

12 Object Oriented Design (Ghezzi
Ch. 4)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

February 15, 2018



12 Object Oriented Design (Ghezzi Ch. 4)

Administrative details

OOD

Inheritance

Polymorphism

Dynamic binding

Introduction to UML

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 2/24



Administrative Details

Assignment 1
I Part 2: January 31, 2018

Questions?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 3/24



Reviewing Changes

Use GitLab to review changes between commits

Review before committing: git difftool

To better deal with changes, use a “hard wrap” at an 80
column width, even for LaTeX documents (why?)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 4/24

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/commit/1d1465c864cc29117ed5fd2c31af50e426537a91


Set Idiom (H&S)
Routine name In Out Exceptions
set add T Member, Full
set del T NotMember
set member T boolean
set size integer

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 5/24



Sequence Idiom (H&S)
Routine name In Out Exceptions
seq init
seq add integer, T PosOutOfRange, Full
seq del integer PosOutOfRange
seq setval integer, T PosOutOfRange
seq getval integer T PosOutOfRange
seq size integer
seq start
seq next T AtEnd
seq end boolean
seq append T Full

When would you use seq next in the interface, and exclude
seq getval?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 6/24



Tuple Idiom Version 1 (H&S)
Routine name In Out Exceptions
tp init
tp set f1 T1

tp get f1 T1

... ... ... ...
tp set fN TN

tp get fN TN

What is a potential problem with this idiom, especially if there
are many fields to the tuple?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 7/24



Tuple Idiom Version 2 (H&S)
Routine name In Out Exceptions
tp init
tp set T1, T2, ..., TN

tp get T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 8/24



Object Oriented Design

One kind of module, ADT, called class

A class exports operations (procedures) to manipulate
instance objects (often called methods)

Instance objects accessible via references

Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a
type)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 9/24



Inheritance

Another relation between modules (in addition to USES
and IS COMPONENT OF)

ADTs may be organized in a hierarchy

Class B may specialize class A
I B inherits from A
I Conversely, A generalizes B
I A is a superclass of B
I B is a subclass of A

In Python, what class do all classes inherit?

What method inherited from object did we recently override?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 10/24



Inheritance

Another relation between modules (in addition to USES
and IS COMPONENT OF)

ADTs may be organized in a hierarchy

Class B may specialize class A
I B inherits from A
I Conversely, A generalizes B
I A is a superclass of B
I B is a subclass of A

In Python, what class do all classes inherit?

What method inherited from object did we recently override?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 10/24



Template Module Employee
Routine name In Out Except
New Employee string, string, moneyT Employee
first Name string
last Name string
where siteT
salary moneyT
fire
assign siteT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 11/24



Inheritance Examples

Template Module Administrative Staff inherits Employee

Routine name In Out Exception
do this folderT

Template Module Technical Staff inherits Employee

Routine name In Out Exception
get skill skillT
def skill skillT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 12/24



Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

A subclass defines a subtype

A subtype is substitutable for the parent type

Polymorphism - a variable referring to type A can refer to
an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative Staff and Technical Staff
are instances of Employee

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 13/24



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

emp1 = Administrative Staff()

√

emp2 = Technical Staff()

√

emp3 = emp1

×

emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

emp1 = Administrative Staff()
√

emp2 = Technical Staff()

√

emp3 = emp1

×

emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

emp1 = Administrative Staff()
√

emp2 = Technical Staff()
√

emp3 = emp1

×

emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

emp1 = Administrative Staff()
√

emp2 = Technical Staff()
√

emp3 = emp1 ×
emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

emp1 = Administrative Staff()
√

emp2 = Technical Staff()
√

emp3 = emp1 ×
emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff

What assignments are allowed? That is, where would
polymorphism allow us to switch references to the RHS with
what appears on the LHS?

emp1 = Administrative Staff()
√

emp2 = Technical Staff()
√

emp3 = emp1 ×
emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 14/24



Dynamic Binding

Many languages, like C, use static type checking

OO languages use dynamic type checking as the default

There is a difference between a type and a class once we
know this

I Types are known at compile time
I The class of an object may be known only at run time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 15/24



How can Inheritance be Represented?

We start introducing the UML notation

UML (Unified Modelling Language) is a widely adopted
standard notation for representing OO designs

We introduce the UML class diagram

Classes are described by boxes

Any guesses on what Parnas said UML stood for?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 16/24



UML Representation of Inheritance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 17/24



Bank Account Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 18/24



Class Diagram Versus MIS

What information do the MIS and Class Diagram have in
common?

What information does the MIS add?

What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 19/24



Class Diagram Versus MIS

What information do the MIS and Class Diagram have in
common?

What information does the MIS add?

What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 19/24



Class Diagram Versus MIS

What information do the MIS and Class Diagram have in
common?

What information does the MIS add?

What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 19/24



Showing Exceptions in UML Class Diagrams

Usually exceptions are not shown

If they are, it is in brackets after the method name

+ findAllInstances(): Vector
{exceptions=NetworkFailure, DatabaseError}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 20/24

http://www.agilemodeling.com/style/classDiagram.htm
http://www.agilemodeling.com/style/classDiagram.htm


UML Associations

Associations are relations that the implementation is
required to support

Can have multiplicity constraints

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 21/24



Flight Example

From IBM

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 22/24

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/


UML Aggregation

Defines a PART OF relation

Differs from IS COMPONENT OF

TRIANGLE has its own methods

TRIANGLE implicitly uses POINT to define its data
attributes

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 23/24



UML Packages

IS COMPONENT OF is represented via the package notation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 12 Object Oriented Design (Ghezzi Ch. 4) 24/24


