
DRAFT Assignment 2

COMP SCI 2ME3 and SFWR ENG 2AA4

January 22, 2018

1 Dates and Deadlines

Assigned: February 1, 2018

Part 1: February 12, 2018

Receive Partner Files: February 18, 2018

Part 2: March 2, 2018

Last Revised: January 22, 2018

All submissions are made through git, using your own repo located at:

https://gitlab.cas.mcmaster.ca/se2aa4 cs2me3 assignments 2018/[macid].git

where [macid] should be replaced with your actual macid. The time for all deadlines
is 11:59 pm. If you notice problems in your Part 1 *.py files after the deadline, you
should fix the problems and discuss them in your Part 2 report. However, the code files
submitted for the Part 1 deadline will be the ones graded.

2 Introduction

The purpose of this software design exercise is to write a Python program that creates,
uses, and tests an ADT for points, curves and data. Plus something. As for the previous
assignment, you will use doxygen, make, LaTeX and Python. In addition, this assignment
will use PyTest for unit testing.

This assignment takes advantage of functional programming in Python. In a few cases
functions are passed as arguments and returned as output. (Check passed as inputs).

1

Examples of glass capacity. Example of thermocouples for temperature.
All of your code (all files) should be documented using doxygen. Your report should be

written using LATEX. Your code should follow the given specification exactly. In particular,
you should not add public methods or procedures that are not specified and you should
not change the number or order of parameters for methods or procedures. If you need
private methods or procedures, please use the Python convention of naming the files with
the double underscore (methodName) (dunders). Python coding conventions.

Step 1

Write a module that creates a point ADT. It should consist of a Python code file named
pointADT.py. The specification for this module (Point Module) is given at the end of the
assignment.

Step 2

Write a module that creates a curve ADT. It should consist of a Python file named
curveSeqADT.py. The new module should follow the specification (Line Module) given
at the end of the assignment.

Step 3

Write a module that creates a second curve ADT. Same interface, but different state
variables. It should consist of a Python file named circleFuncADT.py. The new module
should follow the specification given at the end of the assignment.

Step 4

Write a module that implements data - a sequence of curves. It should consist of a Python
file named data.py. The new module should follow the specification given at the end of
the assignment. Although efficient use of computing resources is always a good goal, your
implementation will be judged on correctness and not on performance.

- interpolation, regression, plotting modules?

2

Step 5

Write a module, using PyUnit, that tests all of the other modules together. It should be
an Python file named testCircleDeque.py that uses all of the other modules. Write a
makefile Makefile to run testCircleDeque via the rule test. Each procedure should
have at least one test case. Record your rationale for test case selection and the results
of using this module to test the procedures in your modules. (You will submit your
rationale with your report.) Please make an effort to test normal cases, boundary cases,
and exception cases. Your test program should compare the calculated output to the
expected output and provide a summary of the number of test case that have passed or
failed.

Step 6

Add to your makefile a rule for doc. This rule should compile your source code documen-
tation into an html and LaTeX version. Your documentation should be generated to the
A2 folder.

Step 7

Submit the files pointADT.py, lineADT.py, circleADT.py, deque.py, testCircleDeque.py
and Makefile using git. This must be completed no later than 11:59 pm of the deadline
for file submission. Please use the names and locations for these files already given in your
git project repo. You should also push your doxygen configuration file to the repo. You
will have to add this file to the repo. Ideally, you should place it in the A2 folder. You
should NOT sumbit your generated documentation (html and latex folders). In general,
files that can be regenerated are not put under version control. You should tag your final
submission of part 1 of the assignment with the name A2Part1.

Step 8

Your circleADT.py file will automatically be pushed to your partner’s repo and vice
versa. You actually do not have to take any overt action for this part. I will happen
automatically about a day after the deadline for part 1 of the assignment. The location
in your repo of your partner’s file is given in the Notes section below.

3

Step 9

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not make any modifications to any of the code. Run your test module and
record the results. Your evaluation for this step does not depend on the quality of your
partner’s code, but only on your discussion of the testing results.

Step 10

Write a report and push it to your project repo. The final submission should have the
tag A2Part2. The report should include the following:

1. Your name and macid.

2. Your pointADT.py, lineADT.py, circleADT.py, deque.py, testCircleDeque.py
and Makefile files.

3. Your partner’s circleADT.py file. (You can push this to the repo in the folder
srcPartner.)

4. The results of testing your files (along with the rational for test case selection).

5. The results of testing your files combined with your partner’s files. The summary
of the results should consist of the following: the number of passed and failed test
cases, and brief details on any failed test cases.

6. A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules. How did using a formal module interface specification
for this assignment compare to the informal specification provided for Assignment
1? What are the advantages of using a testing framework, such as PyUnit for testing
your code?

7. The specification for the last two access programs (totalArea() and averageRadius())
is missing the definition for the output. Please complete the specification as part of
your report. You should write the specification as LaTeX equations in your report.
You are not required to implement these two access programs.

8. Provide a critique of the Circle Module’s interface. In particular, comment on
whether the exported access programs provide an interface that is consistent, essen-
tial, general, minimal and opaque.

4

9. What is the output of the mathematical specification of Deq disjoint() when there
is one circle in the deque? Explain your answer. Does this answer make sense? Is
it the same result as calculated by your code?

Your commit (push) to the repository should include the file report.tex as given
in your initial folder structure. You should also push the file report.pdf in the same
folder. Although the pdf file is a generated file, we’ll make an exception to the general
rule of avoiding version control for generated files. The purpose of the exception is for
the convenience of the TAs doing the grading.

The final submission of your report, including your tex file, should be done using git
by 11:59 pm on the assigned due date. If you notice problems in your original *.py files,
you should discuss these problems, and what changes you would make to fix them, in
your report. However, the code files submitted on the first deadline will be the ones that
are graded.

Notes

1. Your git repo will be organizes with the following directories at the top level: A1,
A2, A3, and A4.

2. Inside the A2 folder you will start with initial stubs of the files and folders that you
need to use. Please do not change the names or locations of any of these files or
folders. The structure of your project files and folders should look like:

• A2

∗ doxConfig

∗ Makefile

– report

∗ report.tex

∗ report.pdf

– src

− srcPartner

∗ circleADT.py

∗ pointADT.py

∗ lineADT.py

∗ circleADT.py

∗ deque.py

∗ testCircleDeque.py

5

3. Please put your name and macid at the top of each of your source files.

4. Your program must work in the ITB labs on mills when compiled with its versions
of Python (version 2), LaTeX, doxygen and make.

5. Python specifics:

• The exceptions in the specification should be implemented via Python excep-
tions. Your exceptions should have exactly the same name as given in the spec-
ification (FULL, EMPTY). Your exceptions should inherit from the Exception
class and they should only be used with one argument, a string explaining what
problem has occurred.

• For the Python implementation of the abstract module, your access programs
should be called via, Deq.accessProg, not Deq accessProg, as shown in the spec-
ification. Some sample calls include the following: Deq.init(), Deq.pushBack(c),
Deq.pushFront(c), etc.

• Since the specification is silent on this point, for methods that return an object,
you can decide to either return a reference to the appropriate existing object,
or construct a new object.

6. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

7. Any changes to the assignment specification will be announced in class.
It is your responsibility to be aware of these changes. Please monitor all
pushes to the course git repo.

8. Python coding convention

6

https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions

Point ADT Module

Template Module

pointADT

Uses

N/A

Syntax

Exported Types

PointT = ?

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcrd real
ycrd real
dist PointT real
rot real

Semantics

State Variables

xc: real
yc: real

State Invariant

None

Assumptions

None

7

Access Routine Semantics

new PointT (x, y):

• transition: xc, yc := x, y

• output: out := self

• exception: none

xcrd:

• output: out := xc

• exception: none

ycrd:

• output: out := yc

• exception: none

dist(p):

• output: out :=
√

(xc− p.xcrd())2 + (yc− p.ycrd())2

• exception: none

rot(φ):

• φ is in radians

• transition: [
xc
yc

]
:=

[
cosφ − sinφ
sinφ cosφ

] [
xc
yc

]
• exception: none

8

Line Module

Template Module

lineADT

Uses

pointADT

Syntax

Exported Types

LineT = ?

Exported Access Programs

Routine name In Out Exceptions
new LineT PointT, PointT LineT
beg PointT
end PointT
len real
mdpt PointT
rot real

Semantics

State Variables

b: PointT
e: PointT

State Invariant

None

Assumptions

None

9

Access Routine Semantics

new LineT (p1, p2):

• transition: b, e := p1, p2

• output: out := self

• exception: none

beg:

• output: out := b

• exception: none

end:

• output: out := e

• exception: none

len:

• output: out := b.dist(e)

• exception: none

mdpt:

• output:

out := new PointT(avg(b.xcrd(), e.xcrd()), avg(b.ycrd(), e.ycrd()))

• exception: none

rot (φ):

• φ is in radians

• transition: b.rot(φ), e.rot(φ)

• exception: none

Local Functions

avg: real × real → real
avg(x1, x2) ≡ x1+x2

2

10

Circle Module

Template Module

circleADT

Uses

pointADT, lineADT

Syntax

Exported Types

CircleT = ?

Exported Access Programs

Routine name In Out Exceptions
new CircleT PointT, real CircleT
cen PointT
rad real
area real
intersect CircleT boolean
connection CircleT LineT
force real → real CircleT → real

Semantics

State Variables

c: PointT
r: real

State Invariant

None

Assumptions

None

11

Access Routine Semantics

new CircleT (cin, rin):

• transition: c, r := cin, rin

• output: out := self

• exception: none

cen:

• output: out := c

• exception: none

rad:

• output: out := r

• exception: none

area:

• output: out := πr2

• exception: none

intersect(ci):

• output: ∃(p : PointT|insideCircle(p, ci) : insideCircle(p, self))

• exception: none

connection(ci):

• output: out := new LineT(c, ci.cen())

• exception: none

force(f):

• output: out := λx→ self .area() · x.area() · f(self .connection(x).len())

• exception: none

Local Functions

insideCircle: PointT × CircleT → boolean
insideCircle(p, c) ≡ p.dist(c.cen()) ≤ c.rad()

12

Deque Of Circles Module

Module

DequeCircleModule

Uses

circleADT

Syntax

Exported Constants

MAX SIZE = 20

Exported Access Programs

Routine name In Out Exceptions
Deq init
Deq pushBack CircleT FULL
Deq pushFront CircleT FULL
Deq popBack EMPTY
Deq popFront EMPTY
Deq back CircleT EMPTY
Deq front CircleT EMPTY
Deq size integer
Deq disjoint boolean EMPTY
Deq sumFx real → real real EMPTY
Deq totalArea real EMPTY
Deq averageRadius real EMPTY

Semantics

State Variables

s: sequence of CircleT

State Invariant

|s| ≤ MAX SIZE

13

Assumptions

Deq init() is called before any other access program.

Access Routine Semantics

Deq init():

• transition: s :=<>

• exception: none

Deq pushBack(c):

• transition: s := s|| < c >

• exception: exc := (|s| = MAX SIZE⇒ FULL)

Deq pushFront(c):

• transition: s :=< c > ||s

• exception: exc := (|s| = MAX SIZE⇒ FULL)

Deq popBack():

• transition: s := s[0..|s| − 2]

• exception: exc := (|s| = 0⇒ EMPTY)

Deq popFront():

• transition: s := s[1..|s| − 1]

• exception: exc := (|s| = 0⇒ EMPTY)

Deq back():

• output: out := s[|s| − 1]

• exception: exc := (|s| = 0⇒ EMPTY)

Deq front():

• output: out := s[0]

• exception: exc := (|s| = 0⇒ EMPTY)

14

Deq size():

• output: out := |s|

• exception: none

Deq disjoint():

• output

out := ∀(i, j : N|i ∈ [0..|s| − 1] ∧ j ∈ [0..|s| − 1] ∧ i 6= j : ¬s[i].intersect(s[j]))

• exception: exc := (|s| = 0⇒ EMPTY)

Deq sumFx(f):

• output
out := +(i : N|i ∈ ([1..|s| − 1]) : Fx(f, s[i], s[0]))

• exception: exc := (|s| = 0⇒ EMPTY)

Deq totalArea():

• output
out :=?

[The total area is the sum of the area of all of the circles in the deque. You do not
need to worry about overlap between circles. The assignment asks you to provide
the missing equation, but you do not have to implement this access program.]

• exception: exc := (|s| = 0⇒ EMPTY)

Deq averageRadius():

• output
out :=?

[The assignment asks you to provide the missing equation, but you do not have to
implement this access program.]

• exception: exc := (|s| = 0⇒ EMPTY)

15

Local Functions

Fx: (real → real) × CircleT × CircleT → real
Fx(f, ci, cj) ≡ xcomp(ci.force(f)(cj), ci, cj)

xcomp: real × CircleT × CircleT → real

xcomp(F, ci, cj) ≡ F

[
ci.cen().xcrd()− cj.cen().xcrd()

ci.connection(cj).len()

]

16

	Dates and Deadlines
	Introduction

