
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017



13 Module Decomposition (Ghezzi Ch. 4, H&S Ch.

7) DRAFT

Administrative details

Module decomposition

Software architecture

Design for change

Relationship between modules

The USES relation

Module decomposition by secrets

The IS COMPONENT OF relation

Techniques for design for change

Module guide

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 2/20



Administrative Details

TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 3/20



Assumptions versus Exceptions

The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

Assumptions are expressed in prose

Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

Interface design should provide the programmer with a
means to check so that they can avoid exceptions

When an exceptions occurs no state transitions should
take place, any output is don’t care

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 4/20



QueueADT Module Syntax (Abstract Object)

What is missing from this interface?

Exported Access Programs

Routine name In Out Exceptions
q init queueT
add T NOT INIT, FULL
pop NOT INIT, EMPTY
front T NOT INIT, EMPTY
size integer NOT INIT
isempty boolean NOT INIT
isfull boolean NOT INIT

If MAX SIZE is exported, what could you replace isempty and
isfull by? (This new interface will move some work to the
programmer.)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 5/20



Quality Criteria

Consistent
I Name conventions
I Ordering of parameters in argument lists
I Exception handling, etc.

Essential - omit unnecessary features (only one way to
access each service)

General - cannot always predict how the module will be
used

As implementation independent as possible

Minimal - avoid access routines with two potentially
independent services

High cohesion - components are closely related

Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 6/20



QueueADT Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name In Out Exceptions
q init queueT
add T NOT INIT, FULL
pop T NOT INIT, EMPTY
size integer NOT INIT
isinit boolean

front has been merged with pop

size replaces isempty and isfull

isinit is added

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 7/20



Modular Decomposition

Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

We need to produce a software architecture

The architecture (modular decomposition) is summarized
in a Software Design Document

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 8/20



Software Architecture

Shows gross structure and organization of the system to
be defined

Its description includes the description of
I Main components of the system
I Relationship among those components
I Rationale for decomposition into its components
I Constraints that must be respected by any design of the

components

Guides the development of the design

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 9/20



Specific Techniques for Design for Change

What software tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 10/20



Specific Techniques for Design for Change

Anticipate definition of all family members
Identify what is common to all family members, delay
decisions that differentiate among different members
Configuration constants

I Factor constant values into symbolic constants
I Compile time binding
I MAXSPEED = 5600

Conditional compilation
I Compile time binding
I Works well when there is a preprocessor, like for C
I If performance is not a concern, can often “fake it” at

run time

Make
Software generation

I Compiler generator, like yacc
I Domain Specific Language

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 11/20



Questions

What relationships have we discussed between modules?

Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 12/20



Relationships Between Modules

Let S be a set of modules

S = {M1,M2, ...,Mn}

A binary relation r on S is a subset of S × S

If Mi and Mj are in S , < Mi ,Mj >∈ r can be written as
Mi rMj

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 13/20



Relations

Transitive closure r+ of r

Mi r
+Mj iff Mi rMj or ∃Mk in S such that Mi rMk and Mkr

+Mj

r is a hierarchy iff there are no two elements Mi , Mj such
that Mi r

+Mj ∧Mj r
+Mi

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 14/20



Relations Continued

Relations can be represented as graphs

A hierarchy is a DAG (directed acyclic graph)

Why do we prefer the uses relation to be a DAG?
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 15/20



References

Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. Weiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

Parnas, D. L., “On a ’Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336–339

Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053–1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 16/20



References Continued

Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128–138,

Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 17/20



References Continued

Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it”, IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu/428727.html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 18/20



References Continued

Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

ElSheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh
generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 19/20



References Continued

Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) DRAFT 20/20


