
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

23 Finite State Machines (Ch. 5)
DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017

23 Finite State Machines (Ch. 5) DRAFT

Administrative details

Classification of specification styles

Continuation on specification qualities

Homework exercise

How to verify a specification

Finite state machines

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 2/30

Administrative Details

TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 3/30

Same Symbol/Term Different Meaning

Can you think of some symbols/terms that have different
meanings depending on the context?

Homonyms
I Homograph - same spelling different meaning, maybe

different pronunciation (ex. bank, bow, biweekly, ...)
I Homophone - same pronunciation, but different meaning,

origin or spelling (ex. new/knew, to/too/two, ...)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 4/30

http://writingexplained.org/homonyms-and-homophones

Consistent

Language and terminology must be consistent within the
specification

Potential problem with homonyms, for instance consider
the symbol σ

I Represents standard deviation
I Represents stress
I Represents the Stefan-Boltzmann constant (for radiative

heat transfer)

Changing the symbol may be necessary for consistency,
but it could adversely effect understandability

Potential problem with synonyms
I Externally funded graduate students, versus eligible

graduate students, versus non-VISA students
I Enter key versus Return key
I Other examples?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 5/30

https://en.wikipedia.org/wiki/Synonym

Complete

Internal completeness
I The specification must define any new concept or

terminology that it uses
I A glossary is helpful for this purpose

External completeness
I The specification must document all the needed

requirements
I Difficulty: when should one stop?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 6/30

Incremental

Referring to the specification process
I Start from a sketchy document and progressively add

details
I A document template can help with this

Referring to the specification document
I Document is structured and can be understood in

increments
I Again a document template can help with this

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 7/30

Another Example

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I “The result of sorting array a is an array b which is a

permutation of a and is sorted.”
I How can we further specify (formalize) the notion of

sorted?

I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i] ≤ A[i + 1])

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 8/30

Another Example

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I “The result of sorting array a is an array b which is a

permutation of a and is sorted.”
I How can we further specify (formalize) the notion of

sorted?
I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i] ≤ A[i + 1])

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 8/30

Classification of Specification Styles

Informal, semi-formal, formal

Operational
I Behaviour specification in terms of some abstract

machine

Descriptive
I Behaviour described in terms of properties

The module state machine specification that we use is a
mix of operational and descriptive specification - Why?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 9/30

Example Operational Specification

Specification of a geometric figure E
E can be drawn as follows

1. Select two points P1 and P2 on a plane
2. Get a string of a certain length and fix its ends to P1

and P2

3. Position a pencil as shown in the next figure
4. Move the pen clockwise, keeping the string tightly

stretched, until you reach the point where you started
drawing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 10/30

Example Descriptive Specification

Geometric figure E is described by the following equation

ax2 + by 2 + c = 0

where a, b and c are suitable constants

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 11/30

Homework Exercise

Consider the line formatter specification and

1. How well does the specification do with respect to the
following qualities: abstract, correct, unambiguous,
complete, consistent and verifiable?

2. For a requirement specification like that given, what are
the advantages and disadvantages of maintaining both a
formal specification and a natural language specification?

Even spending 5 minutes thinking about will help when
we discuss next week

In repo
I The line formatter specification
I Meyer (1985) “On Formalism in Specification”

Will discuss next day

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 12/30

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Lectures/LineFormatter
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/ReferenceMaterial/Meyer1985.pdf

How to Verify a Specification

Observe dynamic behaviour of the specified system
I Simulation
I Prototyping
I “testing” the specification

Analyze properties of the specified system

Analogy with traditional engineering
I Physical model of a bridge (prototype)
I Mathematical model of a bridge

We will return to this topic when we cover verification
(Chapter 6)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 13/30

Finite State Machines (FSMs)

Can specify control flow aspects
Defined as

I A finite set of states Q
I A finite set of inputs I
I A transition function δ : Q × I → Q (δ can be a partial

function)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 14/30

FSMs Continued

q0 q1 q2 q3

a q1 q2 - -
b - q3 q3 -
c - - - q0

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 15/30

Example: A Lamp

What are the states Q for a typical lamp?

What are the set of inputs I

What is the transition function δ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 16/30

Example: A Lamp

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 17/30

Example: A Plant Control System

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 18/30

A Refinement

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 19/30

When to use FSMs for Specification?

When is an FSM a good choice for specification?

What are some examples of things we would specify using
an FSM?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 20/30

When to Potentially use FSMs

Describing control flow

Clear finite set of states (or modes)

Specify acceptable strings for a parser

Specifying hardware design

For synchronous models (at any time a global state must
be defined and a single transition must occur)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 21/30

Classes of FSMs

Deterministic/nondeterministic

FSMs as recognizers - introduce final states

FSMs as transducers - introduce set of output

...

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 22/30

FSMs as Recognizers

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 23/30

FSMs as Recognizers Continued

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 24/30

Limitations

Finite memory

State explosion - Given a number of FSMs with
k1, k2, ...km states, their composition is an FSM with
k1× k2 × ...× kn. This growth is exponential with the
number of FSMs, not linear (we would like it to be
k1 + k2 + ... + kn)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 25/30

State Explosion: An Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 26/30

The Resulting FSM

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 27/30

Events Versus Conditions

Events can be viewed as “pulses” in time - they do not
last (retain their values)

Conditions may retain their values indefinitely

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 28/30

FSM Example: Security Alarm

SET

CLEAR

7

2

4

1

5

9

6

8

3

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 29/30

Security Alarm Example Continued

device
off

device
on

error

alarm
&

error

alarm

alarm
&

1 good

alarm
&

2 good

1 good

2 good

m_set

m
_clear

m_clear

m_clear

m_clear

m_clear

m_clear

m_trip

m
_badD

igit

m_badDigit

m_goodDigit

m_goodDigit

m_goodDigit m
_g

oo
dD

ig
it

m_goodDigit

m_goodDigit

m_trip

m_trip

m_badDigit

m_badDigit

m_badDigit

m
_badDigit

m_trip

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) DRAFT 30/30

