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Same Symbol/Term Different Meaning

Can you think of some symbols/terms that have different
meanings depending on the context?

Homonyms
I Homograph - same spelling different meaning, maybe

different pronunciation (ex. bank, bow, biweekly, ...)
I Homophone - same pronunciation, but different meaning,

origin or spelling (ex. new/knew, to/too/two, ...)
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http://writingexplained.org/homonyms-and-homophones


Consistent

Language and terminology must be consistent within the
specification

Potential problem with homonyms, for instance consider
the symbol σ

I Represents standard deviation
I Represents stress
I Represents the Stefan-Boltzmann constant (for radiative

heat transfer)

Changing the symbol may be necessary for consistency,
but it could adversely effect understandability

Potential problem with synonyms
I Externally funded graduate students, versus eligible

graduate students, versus non-VISA students
I Enter key versus Return key
I Other examples?
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https://en.wikipedia.org/wiki/Synonym


Complete

Internal completeness
I The specification must define any new concept or

terminology that it uses
I A glossary is helpful for this purpose

External completeness
I The specification must document all the needed

requirements
I Difficulty: when should one stop?
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Incremental

Referring to the specification process
I Start from a sketchy document and progressively add

details
I A document template can help with this

Referring to the specification document
I Document is structured and can be understood in

increments
I Again a document template can help with this
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Another Example

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I “The result of sorting array a is an array b which is a

permutation of a and is sorted.”
I How can we further specify (formalize) the notion of

sorted?

I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i ] ≤ A[i + 1])
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Classification of Specification Styles

Informal, semi-formal, formal

Operational
I Behaviour specification in terms of some abstract

machine

Descriptive
I Behaviour described in terms of properties

The module state machine specification that we use is a
mix of operational and descriptive specification - Why?
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Example Operational Specification

Specification of a geometric figure E
E can be drawn as follows

1. Select two points P1 and P2 on a plane
2. Get a string of a certain length and fix its ends to P1

and P2

3. Position a pencil as shown in the next figure
4. Move the pen clockwise, keeping the string tightly

stretched, until you reach the point where you started
drawing
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Example Descriptive Specification

Geometric figure E is described by the following equation

ax2 + by 2 + c = 0

where a, b and c are suitable constants
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Homework Exercise

Consider the line formatter specification and

1. How well does the specification do with respect to the
following qualities: abstract, correct, unambiguous,
complete, consistent and verifiable?

2. For a requirement specification like that given, what are
the advantages and disadvantages of maintaining both a
formal specification and a natural language specification?

Even spending 5 minutes thinking about will help when
we discuss next week

In repo
I The line formatter specification
I Meyer (1985) “On Formalism in Specification”

Will discuss next day
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https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Lectures/LineFormatter
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/ReferenceMaterial/Meyer1985.pdf


How to Verify a Specification

Observe dynamic behaviour of the specified system
I Simulation
I Prototyping
I “testing” the specification

Analyze properties of the specified system

Analogy with traditional engineering
I Physical model of a bridge (prototype)
I Mathematical model of a bridge

We will return to this topic when we cover verification
(Chapter 6)
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Finite State Machines (FSMs)

Can specify control flow aspects
Defined as

I A finite set of states Q
I A finite set of inputs I
I A transition function δ : Q × I → Q (δ can be a partial

function)
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FSMs Continued

q0 q1 q2 q3

a q1 q2 - -
b - q3 q3 -
c - - - q0
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Example: A Lamp

What are the states Q for a typical lamp?

What are the set of inputs I

What is the transition function δ?
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Example: A Lamp
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Example: A Plant Control System
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A Refinement
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When to use FSMs for Specification?

When is an FSM a good choice for specification?

What are some examples of things we would specify using
an FSM?
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When to Potentially use FSMs

Describing control flow

Clear finite set of states (or modes)

Specify acceptable strings for a parser

Specifying hardware design

For synchronous models (at any time a global state must
be defined and a single transition must occur)
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Classes of FSMs

Deterministic/nondeterministic

FSMs as recognizers - introduce final states

FSMs as transducers - introduce set of output

...
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FSMs as Recognizers
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FSMs as Recognizers Continued
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Limitations

Finite memory

State explosion - Given a number of FSMs with
k1, k2, ...km states, their composition is an FSM with
k1× k2 × ...× kn. This growth is exponential with the
number of FSMs, not linear (we would like it to be
k1 + k2 + ... + kn)
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State Explosion: An Example
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The Resulting FSM
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Events Versus Conditions

Events can be viewed as “pulses” in time - they do not
last (retain their values)

Conditions may retain their values indefinitely
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FSM Example: Security Alarm
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Security Alarm Example Continued
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