SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

15 Functional Programming in
Python

Dr. Spencer Smith
Faculty of Engineering, McMaster University

February 7, 2018

McMaster
University ‘f*ﬂ

15 Functional Programming in Python

@ Administrative details

e Functional programming

e Functional programming in Python
Defining functions

List comprehension

Map

Filter

Fold (Reduce)

Anonymous functions

» Partial functions

vV vV vV VvV VY

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 2/15

Administrative Details

@ Assignment 1 solution in repo
@ Assignment 2

» Part 1: February 12, 2018

» Partner Files: February 18, 2018

» Part 2: March 2, 2018

» Steps have been written out

» When working with object, either create or use references

» Use exact names and cases

» Exceptions take one argument, a string

» Exceptions in Exceptions.py

» Data.accessProg, not Data_accessProg or
Data.Data_accessProg

» Two sample input files in repo

» Added Data_getC

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 3/15

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Assignments/A1/A1Soln

Functional Programming

@ Computation is treated a the evaluation of mathematical
functions (not CS subroutines)
» No state
» No mutable data
» Programming with expressions, not statements

No side effects

Easier to reason about than imperative or OO code

Functions are a first order data type

» Can pass functions as arguments
» Can return functions

Origin with lambda calculus

There is a focus on list processing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python

4/15

Functional Programming in Python

@ Python was an imperative/OO language first

@ Other functional languages (like Haskell) have pattern
matching

@ Python is dynamically typed

@ Cannot inspect the type of a function

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 5/15

List Comprehension

@ Examples from Learn You a Haskell for Great Good
@ Gries and Schneider notation for set comprehension:
{x: T|R: E}
» x is the dummy variable
» E is an expression
» R is a predicate

e Modified version: {x: TIRAP: E}
» P is a predicate (filter)

@ Python code: [E for x in R if P]
» R is a sequence (list)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 6/15

http://learnyouahaskell.com/

List Comprehension Examples
{x: TIRANP:E} (set) to [E for x in R if P] (sequence)

o {x:N|x €[1.10] : x*}
[x**2 for x in range(1l, 11)]
o {x:N|x €[1.10] A x> >12: x?}
[x**2 for x in range(1l, 11) if x*x2 >= 12]
@ A list or radii for a seq circles of CircleT (A1-2017)
radii=[c.radius() for c in circles]
4 [507 51, ey 5‘5|,1] to
[So.eval(x), Si.eval(x), ..., Sjs|—1.eval(x)] (A2-2018)
[s.eval(x) for s in S]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 7/15

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/PreviousYears/2017/A1/A1Soln/src/Statistics.py
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf

List Comprehension to find List Length

def length(xs):
return sum([? for x in xs])

What should ? be to return the length of xs?

Similar to how we write count mathematically:
+(i:N|x € xs : 1)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 8/15

List Comprehension Examples Cont'd

@ Write a function rep(x, n) that returns a list of n
elements, where each element is x

@ Write a function that takes a list of integers (xs) and
replaces each odd number greater or equal to 10 with
"BANG!" and each odd number that's less than 10 with
"BoOM!"

» What is the basic structure for the list comprehension?
[E for x in R if P]
» What are R and P?
[E for x in xs if odd(x)]
» How do you write conditional expressions in Python?
X = true_value if condition else false_value
» What is E?
["BOOM!" if x < 10 else "BANG!" for x in xs if odd(x)]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 9/15

List Comprehension Two Lists

@ Given the lists
» nouns = ["smurf", "frog", "dwarf"]
» adjectives = ["lazy", "grouchy", "scheming"]

@ Write a list comprehension that concatenates all the
adjectives with all the nouns

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python

10/15

Remove Everything but Uppercase

Write a function removeNonUpperCase (st) that takes a

string st and returns the string that results by removing all
non upper case letters

How would you build the sequence of [’A’, ’B’, ...,
)Z;]?

[chr(i) for i in range(ord(’A’),ord(’Z’)+1)]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 11/15

Nested List Comprehension

Given a list of several lists of numbers, remove all odd
numbers without flattening the list.

XXs =
[[1,3,5;2)3,1,2:4’5]) [1:2,3,43576,7,8;9]) [1,2: L]

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 12/15

Map

@ Examples from Learn You a Haskell for Great Good
@ Mathematical model:

» map: (a— b) x seq of a — seq of b

» map:(a— b) x[a] — [b]
@ Python code: map(func, seq)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 13/15

http://learnyouahaskell.com/

Map Example

def add3(x):
return x + 3

list(map(add3, [1, 5, 3, 1, 61))

@ What do you think will be printed?
@ What is the type of add3?

@ What type does map return in this case?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python

14/15

Anonymous Function Example

list(map(lambda x: x + 3, [1, 5, 3, 1, 6]))
or

add3 = lambda x: x + 3
list(map(add3, [1, 5, 3, 1, 6]))

@ lamda followed by list of arguments: expression

@ Write code to add ’ !’ to every string in a list of strings

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 15 Functional Programming in Python 15/15

