Assignment 2

COMP SCI 2ME3 and SFWR ENG 2AA4
February 21, 2017

The purpose of this software design exercise is to write a Python program that creates,
uses, and tests an ADT for points, lines and circles. A module that stores a deque of
circles is also to be implemented and tested. As for the previous assignment, you will use
doxygen, make, LaTeX and Python. In addition, this assignment will use PyUnit for unit
testing.

This assignment takes advantage of functional programming in Python. In a few cases
functions are passed as arguments and returned as output. In particular, a function is
used for easy modification of the following gravitational law:

I = ﬁmlmg = f(r)myms

where F' is the force between bodies 1 and 2, G is the universal gravitation constant
(G =6.672 x 10~ in standard ST units), and my, my are the masses of bodies 1 and 2.
The functionf(r) : R — R is used to parameterize the gravitational law. In your code
you will be able to substitute any value for f(r) that you like.

We will use the gravitational law to calculate the force between circles. For simplicity,
we will assume that the circles have a density of 1 and that they are of unit thickness. This
means that we can replace the mass with the area of the circle. Once we have the force
acting on one circle from another, we can determine the x component of the force so that
we can find a total force in the = direction. Although not asked for in the specification,
we could do the same thing in the y direction. Moreover, once we know the components
of the unbalanced force on a circle we can calculate its acceleration, and thus determine
how its position changes over time. The change in position over time could be used in a
simulation, computer graphics visualization or in a computer game.

All of your code (all files) should be documented using doxygen. Your report should
be written using LaTeX. Your code should follow the given specification exactly. In
particular, you should not add public methods or procedures that are not specified and
you should not change the number or order of parameters for methods or procedures. If

you need private methods or procedures, please use the Python convention of naming the
files with the double underscore (__methodName__).

Deadlines

e Files due by 11:59 pm Feb 19
e Partner files sent by 11:59 pm Feb 20

e Lab report due by 11:59 pm Feb 27

Step 1

Write a module that creates a point ADT. It should consist of a Python code file named
pointADT.py. The specification for this module (Point Module) is given at the end of the
assignment.

Step 2

Write a module that creates a line ADT. It should consist of a Python file named
1ineADT.py. The new module should follow the specification (Line Module) given at
the end of the assignment.

Step 3

Write a module that creates a circle ADT. It should consist of a Python file named
circleADT.py. The new module should follow the specification (Circle Module) given at
the end of the assignment.

Step 4

Write a module that implements a deque (double ended queue) of circles. It should
consist of a Python file named deque.py. The new module should follow the specification
(Deque of Circles) given at the end of the assignment. Although efficient use of computing
resources is always a good goal, your implementation will be judged on correctness and
not on performance.

Step 5

Write a module, using PyUnit, that tests all of the other modules together. It should be
an Python file named testCircleDeque.py that uses all of the other modules. Write a
makefile Makefile to run testCircleDeque via the rule test. Each procedure should
have at least one test case. Record your rationale for test case selection and the results
of using this module to test the procedures in your modules. (You will submit your
rationale with your report.) Please make an effort to test normal cases, boundary cases,
and exception cases. Your test program should compare the calculated output to the
expected output and provide a summary of the number of test case that have passed or

failed.

Step 6

Add to your makefile a rule for doc. This rule should compile your source code documen-
tation into an html and LaTeX version. Your documentation should be generated to the
A2 folder.

Step 7

Submit the files pointADT. py, 1ineADT.py, circleADT.py, deque.py, testCircleDeque.py
and Makefile using git. This must be completed no later than 11:59 pm of the deadline
for file submission. Please use the names and locations for these files already given in your
git project repo. You should also push your doxygen configuration file to the repo. You
will have to add this file to the repo. Ideally, you should place it in the A2 folder. You
should NOT sumbit your generated documentation (html and latex folders). In general,
files that can be regenerated are not put under version control. You should tag your final
submission of part 1 of the assignment with the name A2Part1.

Step 8

Your circleADT.py file will automatically be pushed to your partner’s repo and vice
versa. You actually do not have to take any overt action for this part. I will happen
automatically about a day after the deadline for part 1 of the assignment. The location
in your repo of your partner’s file is given in the Notes section below.

Step 9

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not make any modifications to any of the code. Run your test module and
record the results. Your evaluation for this step does not depend on the quality of your
partner’s code, but only on your discussion of the testing results.

Step 10

Write a report and push it to your project repo. The final submission should have the
tag A2Part2. The report should include the following:

1.

2.

Your name and macid.

Your pointADT.py, 1ineADT.py, circleADT.py, deque.py, testCircleDeque.py
and Makefile files.

Your partner’s circleADT.py file. (You can push this to the repo in the folder
srcPartner.)

The results of testing your files (along with the rational for test case selection).

The results of testing your files combined with your partner’s files. The summary
of the results should consist of the following: the number of passed and failed test
cases, and brief details on any failed test cases.

A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules. How did using a formal module interface specification
for this assignment compare to the informal specification provided for Assignment
17 What are the advantages of using a testing framework, such as PyUnit for testing
your code?

The specification for the last two access programs (totalArea() and averageRadius())
is missing the definition for the output. Please complete the specification as part of
your report. You should write the specification as LaTeX equations in your report.
You are not required to implement these two access programs.

. Provide a critique of the Circle Module’s interface. In particular, comment on whet-

her the exported access programs provide an interface that is consistent, essential,
general, minimal and opaque.

9. What is the output of the mathematical specification of Deq_disjoint() when there
is one circle in the deque? Explain your answer. Does this answer make sense? Is
it the same result as calculated by your code?

Your commit (push) to the repository should include the file report.tex as given
in your initial folder structure. You should also push the file report.pdf in the same
folder. Although the pdf file is a generated file, we’ll make an exception to the general
rule of avoiding version control for generated files. The purpose of the exception is for
the convenience of the TAs doing the grading.

The final submission of your report, including your tex file, should be done using git
by 11:59 pm on the assigned due date. If you notice problems in your original *.py files,
you should discuss these problems, and what changes you would make to fix them, in
your report. However, the code files submitted on the first deadline will be the ones that
are graded.

Notes

1. Your git repo will be organizes with the following directories at the top level: A1,
A2, A3, and A4.

2. Inside the A2 folder you will start with initial stubs of the files and folders that you
need to use. Please do not change the names or locations of any of these files or
folders. The structure of your project files and folders should look like:

o A2

x doxConfig
x Makefile
— report

* report.tex

x report.pdf
— src

— srcPartner
* circleADT.py
pointADT.py
lineADT.py
circleADT.py
deque.py

* Kk Xk X X

testCircleDeque.py

. Please put your name and macid at the top of each of your source files.

. Your program must work in the I'TB labs on mills when compiled with its versions
of Python (version 2), LaTeX, doxygen and make.

. Python specifics:

e The exceptions in the specification should be implemented via Python excepti-
ons. Your exceptions should have exactly the same name as given in the speci-
fication (FULL, EMPTY). Your exceptions should inherit from the Exception
class and they should only be used with one argument, a string explaining what
problem has occurred.

e For the Python implementation of the abstract module, your access programs
should be called via, Deq.accessProg, not Deq_accessProg, as shown in the spe-
cification. Some sample calls include the following: Deq.init(), Deq.pushBack(c),
Deq.pushFront(c), etc.

e Since the specification is silent on this point, for methods that return an object,
you can decide to either return a reference to the appropriate existing object,
or construct a new object.

. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

. Any changes to the assignment specification will be announced in class.
It is your responsibility to be aware of these changes. Please monitor all
pushes to the course git repo.

Point ADT Module

Template Module

pointADT

Uses
N/A

Syntax

Exported Types

PointT = 7

Exported Access Programs

Routine name | In Out Exceptions
new PointT real, real | PointT

xcrd real

yerd real

dist PointT real

rot real
Semantics

State Variables
zc: real
yc: real
State Invariant

None

Assumptions

None

Access Routine Semantics

new PointT (z,y):
e transition: zc,yc:=x,y
e output: out := self

e exception: none

e output: out := zc

e exception: none

e output: out := yc
e exception: none

dist(p):

e output: out := \/(zc — p.xcrd())? + (yc — p.ycrd())?
e exception: none

rot(¢):
e ¢ is in radians
e transition:
xc | | cosg —sing xc
yc |~ | sing cos¢ yc

e exception: none

Line Module

Template Module
lineADT

Uses
pointADT

Syntax
Exported Types
LineT =7

Exported Access Programs

Routine name | In Out Exceptions
new LineT PointT, PointT | LineT

beg PointT

end PointT

len real

mdpt PointT

rot real

Semantics

State Variables
b: PointT
e: PointT
State Invariant

None

Assumptions

None

Access Routine Semantics
new LineT (p1,po):
e transition: b, e := pi, s
e output: out := self
e exception: none
beg:
e output: out :=b

e exception: none

e output: out :=e
e exception: none
len:
e output: out := b.dist(e)
e exception: none
mdpt:
e output:

out := new PointT (avg(b.xcrd(), e.xcrd()), avg(b.ycrd(), e.ycrd()))

e exception: none

rot (¢):

e ¢ is in radians
e transition: b.rot(¢), e.rot(¢)

e cxception: none

Local Functions

avg: real x real — real

avg(ry, zo) = B2

10

Circle Module

Template Module
circleADT

Uses
pointADT, lineADT

Syntax
Exported Types
CircleT =7

Exported Access Programs

Routine name | In Out Exceptions
new CircleT PointT, real | CircleT

cen PointT

rad real

area real

intersect CircleT boolean

connection CircleT LineT

force real — real | CircleT — real
Semantics

State Variables
c: PointT

r: real

State Invariant

None

Assumptions

None

11

Access Routine Semantics
new CircleT (cin, rin):
e transition: c,r := cin, mn
e output: out := self

e exception: none

e output: out :=c

e cxception: none

e output: out :=r

e exception: none

e output: out := 7r?
e exception: none
intersect(ci):
e output: I(p : PointT|insideCircle(p, ci) : insideCircle(p, self))
e exception: none
connection(ci):

e output: out := new LineT(c, ci.cen())

e exception: none
force(f):

e output: out := Az — self .area() - z.area() - f(self .connection(x).len())

e exception: none

Local Functions

insideCircle: PointT x CircleT — boolean
insideCircle(p, ¢) = p.dist(c.cen()) < c.rad()

12

Deque Of Circles Module

Module
DequeCircleModule

Uses
circleADT

Syntax
Exported Constants
MAX_SIZE = 20

Exported Access Programs

Routine name In Out Exceptions
Deq_init
Deq_pushBack CircleT FULL
Deq_pushFront CircleT FULL
Deq_popBack EMPTY
Deq_popFront EMPTY
Deq_back CircleT | EMPTY
Deq_front CircleT | EMPTY
Deq_size integer
Deq_disjoint boolean | EMPTY
Deq_sumFx real — real | real EMPTY
Deq_totalArea real EMPTY
Deq_averageRadius real EMPTY
Semantics

State Variables

s: sequence of CircleT

State Invariant

|s| < MAX_SIZE

13

Assumptions

Deq.init() is called before any other access program.

Access Routine Semantics
Deq_init():

e transition: s :=<>

e exception: none
Deq_pushBack(c):

e transition: s:=s|| <c¢>

e exception: exc := (|s| = MAX_SIZE = FULL)
Deq_pushFront(c):

e transition: s:=<c>||s

e exception: exc:= (|s| = MAX_SIZE = FULL)
Deq_popBack():

e transition: s := s[0..|s| — 2]

e cxception: exc:= (|s| = 0= EMPTY)
Deq_popFront():

e transition: s:= s[l..|s| — 1]

e cxception: exc:= (|s| = 0= EMPTY)
Deq_back():

e output: out := s||s| — 1]

e cxception: exc:= (|s| = 0= EMPTY)
Deq_front():

e output: out := s[0]

e cxception: exc:= (|s| = 0= EMPTY)

14

Deq_size():
e output: out := |s|
e exception: none
Deq_disjoint():
e output

out :=VY(i,7 :NJji € [0..]s] = 1] A7 € [0..]s] — 1] Ai # j: —s[i].intersect(s[]]))

e exception: exc:= (|s| = 0 = EMPTY)
Deq_sumFx(f):

e output

out := +(1: N|i € ([1..|s| — 1)) : Fx(f, s[i], s[0]))
e cxception: exc:= (|s| = 0= EMPTY)
Deq_totalArea():

e output
out :="?

[The total area is the sum of the area of all of the circles in the deque. You do not
need to worry about overlap between circles. The assignment asks you to provide
the missing equation, but you do not have to implement this access program.|

e exception: exc:= (|s| = 0= EMPTY)
Deq_averageRadius():

e output
out =7

[The assignment asks you to provide the missing equation, but you do not have to
implement this access program.]

e cxception: exc:= (|s| = 0 = EMPTY)

15

Local Functions

Fx: (real — real) x CircleT x CircleT — real
Fx(f, ci, cj) = xcomp(ci.force(f)(cj), ci, cj)

xcomp: real x CircleT x CircleT — real

ci.cen().xerd() — ¢j.cen().xcrd()

Fcicj)=F
xcomp(F, ¢i, ¢j) ci.connection(cj).len()

16

