
C++ for A3(miscellaneous topics that will be helpful for A3) 1 / 23

C++ for A3
(miscellaneous topics that will be helpful for A3)

CS 2ME3/SE 2AA4

Steven Palmer

Department of Computing and Software
McMaster University



C++ for A3(miscellaneous topics that will be helpful for A3) 2 / 23

Outline

Outline

1 Compiling on Mills

2 Initializer Lists

3 Template Classes

4 typedef

5 Midterm Review



C++ for A3(miscellaneous topics that will be helpful for A3) 3 / 23

Compiling on Mills

A Note About Compiling on Mills

Your code for A3 should adhere to the C++11 standard
The default version of g++ on mills is outdated – it will not
recognize the -std=c++11 option
If you try to run the makefile for A3 on Mills, it will fail
You must first run the command:

. /opt/rh/devtoolset-7/enable
This will update the g++ version to one that supports C++11
You will then be able to compile A3 successfully



C++ for A3(miscellaneous topics that will be helpful for A3) 4 / 23

Compiling on Mills

Automating It

Everytime you ssh into Mills, you will need to run the
command on the previous slide
For convenience, you can edit your .bashrc file so that this
command is automatically run every time you log in by doing
the following:

1 run
nano ~/.bashrc

2 paste
. /opt/rh/devtoolset-7/enable

on a new line at the end of the file
3 CTRL + O, then ENTER to save
4 CTRL + X to exit nano



C++ for A3(miscellaneous topics that will be helpful for A3) 5 / 23

Initializer Lists

Initializing Classes

When you create a class instance in C++, all class fields are
initialized to default values before the constructor is called
This can be a problem if you’ve defined classes for which you
have supplied custom constructors, but have not defined a
default constructor (one that takes no arguments)
For an example of why this might be a problem, see the
example code on the slide



C++ for A3(miscellaneous topics that will be helpful for A3) 6 / 23

Initializer Lists

A Failing Example

class MyClass {
private:

int a;
public:

MyClass(int a) { this ->a = a; }
};

class MyOtherClass {
private:

MyClass m;
public:

MyOtherClass(MyClass mc) { this ->m = mc; }
};



C++ for A3(miscellaneous topics that will be helpful for A3) 7 / 23

Initializer Lists

Why The Previous Example Fails

The code on the previous slide will fail to compile
In MyClass, we did not define a default constructor – this
class has no default value
Since the fields of class instances are initialized to default
values before the constructor is called, the compiler won’t
know what to do about the MyClass m field of MyOtherClass
Even though we never actually use the default value, and we
assign to m in the constructor, the compiler will still insist on a
default value
This happens fairly often, where we have a class with no
default constructor as a field of another class – so how do we
get around this problem?



C++ for A3(miscellaneous topics that will be helpful for A3) 8 / 23

Initializer Lists

Initializer Lists

Initializer lists are used to initialize class variables immediately
with values when the class is being instantiated – no default
values are constructed for fields with initializers
When defining a constructor, we can put an initializer list right
after the signature like this:

Class::Class (...) : fld1(val1), fld2(val2), ...
{

// constructor body if necessary
// or just blank body

}

where fld1, fld2, etc. are the field names that you want to
initialize, and val1, val2, etc. are the values you want to
initialize them with



C++ for A3(miscellaneous topics that will be helpful for A3) 9 / 23

Initializer Lists

Initializer List Example

For example, we could fix the previous failing example by
changing the definition of the MyOtherClass to be:

class MyOtherClass {
private:

MyClass m;
public:

MyOtherClass(MyClass mc) : m(mc) { }
};

Using the initializer list means the compiler will no longer try
to construct a default value for m when an instance of the class
is created



C++ for A3(miscellaneous topics that will be helpful for A3) 10 / 23

Initializer Lists

Exercise 1: Initializer Lists

Exercise 1

There is some example code in example/initializer/without.
In this code, ClassB has a field of type ClassA. In ClassA we have
defined a constructor that takes an int, but no default constructor.
Try compiling this code:

g++ -c *.cpp

You should find that there is a compilation error. Since we didn’t
use an initializer list, the compiler doesn’t know how to construct a
default value for the ClassA field in ClassB.



C++ for A3(miscellaneous topics that will be helpful for A3) 11 / 23

Initializer Lists

Exercise 1: Initializer Lists

Exercise 1

Now look at the code in example/initializer/with. This code
is the same as before, except we have used an initializer list in
ClassB. You should be able to compile this without issue:

g++ -c *.cpp



C++ for A3(miscellaneous topics that will be helpful for A3) 12 / 23

Initializer Lists

Initializer List Hint

HINT for A3:
You will require an initializer list in your definition of the LineT
constructor in LineADT.cpp



C++ for A3(miscellaneous topics that will be helpful for A3) 13 / 23

Template Classes

Template (Generic) Class Implementation

Template classes are not actually class definitions – they are
patterns that the compiler uses to generate a family of classes
To generate a class from a template class, the compiler needs
to “see” the entire pattern – it needs the full definition, not
just the declaration
If we compile .cpp files without the full definition, the linker
will complain about undefined references
This mean that if we separate the declaration and definitions
of a template class into .h and .cpp files, we will run into
linking errors when trying to link other source files that use
instantiations of the template class



C++ for A3(miscellaneous topics that will be helpful for A3) 14 / 23

Template Classes

Ways to Handle Template Class Issue

There are two ways around this issue, but each come with pros and
cons:

1 Explicit instantiation of the template class with particular
types in the .cpp file

Pro: you are still able to hide the implementation
Con: you can only use the generic class with the types that
have been explicitly instantiated

2 Writing the full class definition in the .h file with no .cpp file
Pro: you get a true generic class that can be instantiated with
any type
Con: you expose the implementation details



C++ for A3(miscellaneous topics that will be helpful for A3) 15 / 23

Template Classes

Explicit Instantiation of Template Classes

Say we have a template class called MyClass that we declare
in a header file, i.e.

template <class T>
class MyClass {

...
};

In the corresponding source file, after we define all of the
member functions, we can make explicit instantiations via:

template class MyClass <int >;
template class MyClass <bool >;
template class MyClass <MyOtherClass >; // etc.



C++ for A3(miscellaneous topics that will be helpful for A3) 16 / 23

Template Classes

Exercise 2: Explicit Instantiation of Template Classes

Exercise 2

There is some example code in example/template. This code
declares a template class called Example in Example.h, with
definitions in Example.cpp. There is also a main function in
main.cpp that tries to make instances of the Example class
instantiated with int and double.

Try compiling this code into a program:

g++ -c *.cpp
g++ -o prog *.o



C++ for A3(miscellaneous topics that will be helpful for A3) 17 / 23

Template Classes

Exercise 2: Explicit Instantiation of Template Classes

Exercise 2

Your compilation attempt should have failed with a linking error
about undefined references to Example<int> and
Example<double>. The linker see we are trying to use
Example<int> and Example<double> in main.o, but can’t resolve
them to a type. This is a result of the problem discussed earlier –
we can’t separate the declaration and definition of a template class
in the usual way.

Now let’s try adding explicit instantiations. At the bottom of
Example.cpp, add the following lines:

template class Example <int >;
template class Example <double >;



C++ for A3(miscellaneous topics that will be helpful for A3) 18 / 23

Template Classes

Exercise 2: Explicit Instantiation of Template Classes

Exercise 2

Now try compiling again:

g++ -c *.cpp
g++ -o prog *.o

The explicit instantiations of Example<int> and
Example<double> cause the compiler to store the full definition of
those classes in Example.o. Now when linker can resolve the types
referenced in main.o and compilation is successful.



C++ for A3(miscellaneous topics that will be helpful for A3) 19 / 23

Template Classes

Template Classes Hint

In A3, you need to implement the generic class Seq2D<T>
Since you know ahead of time that you will only need two type
instances of the Seq2D class (LanduseT and int), you should
use should use explicit instantiation
HINT for A3: the last two lines of your Seq2D.cpp file should
be:

template class Seq2D <LanduseT >;
template class Seq2D <int >;



C++ for A3(miscellaneous topics that will be helpful for A3) 20 / 23

typedef

The typedef Keyword

typedef is used to create type aliases in C++

Usage:
typedef <known type> <new type alias>

For example:

// nat as alias for unsigned int
typedef unsigned int nat;
// real as alias for double
typedef double real;
// myIntClass as alias for MyClass <int >
typedef MyClass <int > myIntClass;



C++ for A3(miscellaneous topics that will be helpful for A3) 21 / 23

typedef

Using typedef’d Types

Once typedef’s have been made, you can use them like any
other type
For example, with the typedef’s from the previous slide, we
could then write:

nat n = 0;
real r = 1.50;

// assuming MyClass(T) constructor exists:
myIntClass mic (5);



C++ for A3(miscellaneous topics that will be helpful for A3) 22 / 23

typedef

typedef Hint

HINT for A3:
The LanduseMap and DEM modules will just be typedef’s in
the LanduseMap.h and DEM.h files
These module don’t need .cpp files – no further
implementation is required (the implementation is all done in
Seq2D.cpp!)



C++ for A3(miscellaneous topics that will be helpful for A3) 23 / 23

Midterm Review

Midterm Review

We will now take up the midterm.


	Compiling on Mills
	Initializer Lists
	Template Classes
	typedef
	Midterm Review

