
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

29 Introduction to Verification (Ch.
6) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017

29 Introduction to Verification (Ch. 6) DRAFT

Partially based on slides by Dr. Wassyng, Ghezzi et al

Administrative details

pointInRegion(p)

Outline of verification topics

Testing so far in SFWR ENG 2AA4

Need for verification

Properties and approaches to verification

Goals of testing

Test plan

Types of test - white box, versus black box, manual
versus automated, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 2/20

Administrative Details

Investigating 9 academic integrity cases for A2

A3 deadlines
I Part 2 - Code: due 11:59 pm Mar 20
I Part 1 spec available in repo
I Change of < to ≤ in natural language and spec

A4
I Your own design and specification
I Due April 3 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 3/20

A Table for pointInRegion(p)

Consider all of the cases

Draw a picture

Short form notation
I px = p.xcoord()
I py = p.ycoord()
I llx = lower left.xcoord()
I lly = lower left.ycoord()
I llxw = lower left.xcoord() + width
I llyh = lower left.ycoord() + height
I T = Constants.TOLERANCE

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 4/20

Nine Cases
out

px < llx py < lly p.dist(PointT(llx , lly)) ≤ T
lly ≤ py ≤ llyh (llx − px) ≤ T
py > llyh p.dist(PointT(llx , llyh)) ≤ T

llx ≤ px ≤
llxw

py < lly (lly − py) ≤ T

lly ≤ py ≤ llyh True
py > llyh (py − llyh) ≤ T

px > llxw py < lly p.dist(PointT(llxw , lly)) ≤ T
lly ≤ py ≤ llyh (px − llxw) ≤ T
py > llyh p.dist(PointT(llxw , llyh)) ≤ T

Seven Cases
out

px < llx py < lly p.dist(PointT(llx , lly)) ≤ T
lly ≤ py ≤ llyh (llx − px) ≤ T
py > llyh p.dist(PointT(llx , llyh)) ≤ T

llx ≤ px ≤ llxw (lly − T) ≤ py ≤ (llyh + T)
px > llxw py < lly p.dist(PointT(llxw , lly)) ≤ T

lly ≤ py ≤ llyh (px − llxw) ≤ T
py > llyh p.dist(PointT(llxw , llyh)) ≤ T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 6/20

Six Cases
out

px < llx py < lly p.dist(PointT(llx , lly)) ≤ T
py > llyh p.dist(PointT(llx , llyh)) ≤ T

llx ≤ px ≤ llxw (lly − T) ≤ py ≤ (llyh + T)
px > llxw py < lly p.dist(PointT(llxw , lly)) ≤ T

py > llyh p.dist(PointT(llxw , llyh)) ≤
T

lly ≤ py ≤ llyh (llx − T) ≤ px ≤ (llxw + T)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 7/20

Three Cases
out

llx ≤ px ≤ llxw (lly − T) ≤ py ≤ (llyh + T)
lly ≤ py ≤ llyh (llx − T) ≤ px ≤ (llxw + T)
¬(llx ≤ px ≤ llxw)∧¬(lly ≤
py ≤ llyh)

min[p.dist(PointT(llx , lly)),
p.dist(PointT(llxw , lly)),
p.dist(PointT(llx , llyh)),
p.dist(PointT(llxw , llyh))] ≤
T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 8/20

Nine Cases, but 2D

How would you write all 9 cases, but with a tabular form
that closely matches the original 2D problem description?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 9/20

Outline of Verification Topics

What are the goals of verification?

What are the main approaches to verification?
I What kind of assurance do we get through testing?
I Can testing prove correctness?
I How can testing be done systematically?
I How can we remove defects (debugging)?

What are the main approaches to software analysis?

Informal versus formal analysis

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 10/20

Testing on Assignment 1 to 3

Limited guidance on test case selection

Maybe improved test cases would improve the results?

Consider the method for deleting from a sequence of T
(next slide)

We have been using automated testing

We have seen the advantages of regression testing
Some have adopted the excellent strategy of testing while
developing

I Helps isolate errors
I Does not leave testing to the end when there is no time

to do it properly
I Helps improve the understanding of the problem and the

program

Hopefully the experience on the assignments has
motivated you to think more about testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 11/20

Incorrect Version of Delete

Using s = new T[MAX SIZE], for some type T

publ ic s t a t i c void d e l (i n t i)
{

i n t j ;

fo r (j = i ; j <= (l e n g t h − 1) ; j ++)
{

s [j] = s [j +1] ;
}

l e n g t h = l e n g t h − 1 ;
}

What is the error?

What test case would highlight the error?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 12/20

Correct Version of Delete

publ ic s t a t i c void d e l (i n t i)
{

i n t j ;

fo r (j = i ; j < (l e n g t h − 1) ; j ++)
{

s [j] = s [j +1] ;
}

l e n g t h = l e n g t h − 1 ;
}

Avoids potential ArrayIndexOutOfBoundsException Exception

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 13/20

Verification Versus Validation

What is the difference between verification and validation?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 14/20

Verification Versus Validation

Verification - Are we building the product right? Are we
implementing the requirements correctly (internal)

Validation - Are we building the right product? Are we
getting the right requirements (external)

According to Capability Maturity Model (CMM)
I Software Verification: The process of evaluating software

to determine whether the products of a given
development phase satisfy the conditions imposed at the
start of that phase. [IEEE-STD-610]

I Software Validation: The process of evaluating software
during or at the end of the development process to
determine whether it satisfies specified requirements.
[IEEE-STD-610]

We will focus on verification

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 15/20

https://en.wikipedia.org/wiki/Software_verification_and_validation

Verification Activities

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 16/20

Need for Verification

Designers are fallible even if they are skilled and follow
sound principles

We need to build confidence in the software

Everything must be verified, every required functionality,
every required quality, every process, every product, every
document

For every work product covered in this class we have
discussed its verification

Even verification itself must be verified

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 17/20

Properties of Verification

May not be binary (OK, not OK)
I Severity of defect is important
I Some defects may be tolerated
I Our goal is typically acceptable reliability, not correctness

May be subjective or objective - for instance, usability,
generic level of maintainability or portability

I How might we make usability objective?

Even implicit qualities should be verified
I Because requirements are often incomplete
I For instance robustness, maintainability

What is better than implicitly specified qualities?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 18/20

Approaches to Verification

What are some approaches to verification?

How can we categorize these approaches?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 19/20

Approaches to Verification

Experiment with behaviour of product
I Sample behaviours via testing
I Goal is to find “counter examples”
I Dynamic technique
I Examples: unit testing, integration testing, acceptance

testing, white box testing, stress testing, etc.

Analyze product to deduce its adequacy
I Analytic study of properties
I Static technique
I Examples: Code walk-throughs, code inspections,

correctness proof, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 29 Introduction to Verification (Ch. 6) DRAFT 20/20

