C++ for A3(miscellaneous topics that will be helpful for A3) 1/23

C++ for A3

(miscellaneous topics that will be helpful for A3)
CS 2ME3/SE 2AA4

Steven Palmer

Department of Computing and Software
McMaster University



C++ for A3(miscellaneous topics that will be helpful for A3)
L outline

Outline

Compiling on Mills
Initializer Lists
Template Classes

typedef

Midterm Review



C++ for A3(miscellaneous topics that will be helpful for A3)
L Compiling on Mills

A Note About Compiling on Mills

m Your code for A3 should adhere to the C++11 standard
m The default version of g++ on mills is outdated — it will not
recognize the -std=c++11 option
m If you try to run the makefile for A3 on Mills, it will fail
m You must first run the command:
. /opt/rh/devtoolset-7/enable
m This will update the g++ version to one that supports C++11
m You will then be able to compile A3 successfully



C++ for A3(miscellaneous topics that will be helpful for A3)
L Compiling on Mills

Automating It

m Everytime you ssh into Mills, you will need to run the
command on the previous slide

m For convenience, you can edit your .bashrc file so that this
command is automatically run every time you log in by doing
the following:

run
nano ~/.bashrc
paste
/opt/rh/devtoolset-7/enable
on a new line at the end of the file
CTRL + O, then ENTER to save
CTRL + X to exit nano



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Initializing Classes

m When you create a class instance in C++, all class fields are
initialized to default values before the constructor is called

m This can be a problem if you've defined classes for which you
have supplied custom constructors, but have not defined a
default constructor (one that takes no arguments)

m For an example of why this might be a problem, see the
example code on the slide



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

A Failing Example

class MyClass {
private:
int a;
public:
MyClass (int a) { this->a = a; }
3

class MyOtherClass {
private:
MyClass m;
public:
MyOtherClass (MyClass mc) { this->m = mc; }
s



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Why The Previous Example Fails

m The code on the previous slide will fail to compile

m In MyClass, we did not define a default constructor — this
class has no default value

m Since the fields of class instances are initialized to default
values before the constructor is called, the compiler won't
know what to do about the MyClass m field of MyOtherClass

m Even though we never actually use the default value, and we
assign to m in the constructor, the compiler will still insist on a
default value

m This happens fairly often, where we have a class with no
default constructor as a field of another class — so how do we
get around this problem?



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Initializer Lists

m Initializer lists are used to initialize class variables immediately
with values when the class is being instantiated — no default
values are constructed for fields with initializers

m When defining a constructor, we can put an initializer list right
after the signature like this:

Class::Class(...) : fldil(vall), fld2(val2),
{

// constructor body if necessary
// or just blank body

}
m where fld1, fld2, etc. are the field names that you want to
initialize, and vall, val2, etc. are the values you want to
initialize them with



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Initializer List Example

m For example, we could fix the previous failing example by
changing the definition of the MyOtherClass to be:

class MyOtherClass {
private:
MyClass m;
public:
MyOtherClass (MyClass mc) : m(mc) { }
}s

m Using the initializer list means the compiler will no longer try
to construct a default value for m when an instance of the class
is created



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Exercise 1: Initializer Lists

Exercise 1

There is some example code in example/initializer/without.
In this code, ClassB has a field of type ClassA. In ClassA we have
defined a constructor that takes an int, but no default constructor.
Try compiling this code:

g++ -c *.cpp
You should find that there is a compilation error. Since we didn’t

use an initializer list, the compiler doesn't know how to construct a
default value for the ClassA field in ClassB.



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Exercise 1: Initializer Lists

Exercise 1

Now look at the code in example/initializer/with. This code
is the same as before, except we have used an initializer list in
ClassB. You should be able to compile this without issue:

g++ -C *.cpp



C++ for A3(miscellaneous topics that will be helpful for A3)

L Initializer Lists

Initializer List Hint

HINT for A3:

m You will require an initializer list in your definition of the LineT
constructor in LineADT .cpp



C++ for A3(miscellaneous topics that will be helpful for A3)

LTemplat:e Classes

Template (Generic) Class Implementation

m Template classes are not actually class definitions — they are
patterns that the compiler uses to generate a family of classes

m To generate a class from a template class, the compiler needs
to “see” the entire pattern — it needs the full definition, not
just the declaration

m If we compile .cpp files without the full definition, the linker
will complain about undefined references

m This mean that if we separate the declaration and definitions
of a template class into .h and .cpp files, we will run into
linking errors when trying to link other source files that use
instantiations of the template class



C++ for A3(miscellaneous topics that will be helpful for A3)

LTemplat:e Classes

Ways to Handle Template Class Issue

There are two ways around this issue, but each come with pros and
cons:
Explicit instantiation of the template class with particular
types in the .cpp file
m Pro: you are still able to hide the implementation
m Con: you can only use the generic class with the types that
have been explicitly instantiated
Writing the full class definition in the .h file with no .cpp file
m Pro: you get a true generic class that can be instantiated with

any type
m Con: you expose the implementation details



C++ for A3(miscellaneous topics that will be helpful for A3)

LTemplat:e Classes

Explicit Instantiation of Template Classes

m Say we have a template class called MyClass that we declare
in a header file, i.e.

template <class T>
class MyClass A

}s

m In the corresponding source file, after we define all of the
member functions, we can make explicit instantiations via:

template class MyClass<int>;
template class MyClass<bool>;
template class MyClass<MyOtherClass>; // etc.



C++ for A3(miscellaneous topics that will be helpful for A3)

LTemplate Classes

Exercise 2: Explicit Instantiation of Template Classes

Exercise 2

There is some example code in example/template. This code
declares a template class called Example in Example.h, with
definitions in Example.cpp. There is also a main function in
main.cpp that tries to make instances of the Example class
instantiated with int and double.

Try compiling this code into a program:

g*t+ -C *.cpp
g+t -0 prog *.o



C++ for A3(miscellaneous topics that will be helpful for A3)
LTemplate Classes

Exercise 2: Explicit Instantiation of Template Classes

Exercise 2

Your compilation attempt should have failed with a linking error
about undefined references to Example<int> and
Example<double>. The linker see we are trying to use
Example<int> and Example<double> in main.o, but can't resolve
them to a type. This is a result of the problem discussed earlier —
we can't separate the declaration and definition of a template class
in the usual way.

Now let's try adding explicit instantiations. At the bottom of
Example.cpp, add the following lines:

template class Example<int>;
template class Example<double>;



C++ for A3(miscellaneous topics that will be helpful for A3)

LTemplate Classes

Exercise 2: Explicit Instantiation of Template Classes

Exercise 2

Now try compiling again:

gt+ -c *.cpp
g+t+ -o prog *.o

The explicit instantiations of Example<int> and
Example<double> cause the compiler to store the full definition of
those classes in Example.o. Now when linker can resolve the types
referenced in main.o and compilation is successful.



C++ for A3(miscellaneous topics that will be helpful for A3)

LTemplat:e Classes

Template Classes Hint

m In A3, you need to implement the generic class Seq2D<T>

m Since you know ahead of time that you will only need two type
instances of the Seq2D class (LanduseT and int), you should
use should use explicit instantiation

m HINT for A3: the last two lines of your Seq2D.cpp file should
be:

template class Seq2D<LanduseT>;
template class Seq2D<int>;



C++ for A3(miscellaneous topics that will be helpful for A3)

L typedef

The typedef Keyword

m typedef is used to create type aliases in C++
m Usage:
typedef <known type> <new type alias>

m For example:

// nat as alias for unsigned int
typedef unsigned int nat;

// real as alias for double

typedef double real;

// myIntClass as alias for MyClass<int>
typedef MyClass<int> myIntClass;




C++ for A3(miscellaneous topics that will be helpful for A3)

L typedef

Using typedef'd Types

m Once typedef's have been made, you can use them like any
other type

m For example, with the typedef's from the previous slide, we
could then write:

nat n = 0;
real r = 1.50;

// assuming MyClass(T) constructor exists:
myIntClass mic(5);



C++ for A3(miscellaneous topics that will be helpful for A3)

L typedef

typedef Hint

HINT for A3:

m The LanduseMap and DEM modules will just be typedef's in
the LanduseMap.h and DEM.h files

m These module don't need .cpp files — no further
implementation is required (the implementation is all done in
Seq2D.cpp!)



C++ for A3(miscellaneous topics that will be helpful for A3)

L Midterm Review

Midterm Review

We will now take up the midterm.



	Compiling on Mills
	Initializer Lists
	Template Classes
	typedef
	Midterm Review

