SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

35 Analysis (Ch. 6)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

April 5, 2018

McMaster
University ‘1*?:1



35 Analysis (Ch. 6)

@ Administrative details
Module testing

Integration testing

Testing concurrent and real-time systems

°
°
e Testing OO programs
°
@ Mutation testing

@ Analysis

» Code walk throughs and inspections
» Correctness proofs

» Symbolic execution

» Model checking

Debugging

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 2/39



Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng
@ A4: Due April 9 at 11:59 pm

e Final tutorials on Friday, Apr 6

@ Course evaluations

v

https://evals.mcmaster.ca

Start: Tues, Mar 27, 10:00 am
Close: Tues, Apr 10, 11:59 pm
Your participation is highly valued
Grade bonus for class participation

v

\{

v

v

@ Provide course feedback in last lecture

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 3/39


https://evals.mcmaster.ca

Unix Command of the Day: grep

@ Search for the lines in a collection of data that match a

specified pattern

@ From se2aa4_cs2me3/Lectures

» grep -r Parnas . > parnas.txt

» grep —-c LO4 parnas.txt

» grep —c ’LO.’ parnas.txt

4/39

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)



Strategies Without An Oracle

@ Using an independent program to approximate the oracle
(pseudo oracle)
@ Method of manufactured solutions

@ Properties of the expected values can be easier than
stating the expected output

» Examples?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 5/39



Strategies Without An Oracle

@ Using an independent program to approximate the oracle
(pseudo oracle)

@ Method of manufactured solutions

@ Properties of the expected values can be easier than
stating the expected output

» List is sorted

» Number of entries in file matches number of inputs

» Conservation of energy or mass

» Expected trends in output are observed (metamorphic
testing)

> etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 5/39



Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 6/39



Module Testing

@ Scaffolding needed to create the environment in which
the module should be tested

@ Stubs - a module used by the module under test

@ Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 7/39



Testing a Functional Module

PROCEDURE )
STUB - UNDER TEST - DRIVER
CALL CALL

ACCESS TO NONLOCAL VARIABLES

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 8/39



Integration Testing

@ Big-bang approach
» First test individual modules in isolation
» Then test integrated system

@ Incremental approach

» Modules are progressively integrated and tested
» Can proceed both top-down and bottom-up according to
the USES relation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

9/39



Integration Testing and USES relation

@ If integration and test proceed bottom-up only need
drivers

@ Otherwise if we proceed top-down only stubs are needed

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 10/39



Example

My Mo

Mo Mao

- - [

("] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M2’2}

@ In what order would you test these modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 11/39



Example

1 Mp

Maq1 Mo

- - 00

(*] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M272}
o Casel
» Test M; providing a stub for My and a driver for M;
» Then provide an implementation for M> 1 and a stub for
Mo »
o Case 2
» Implement M5 and test it by using a driver
» Implement M5 1 and test the combination of M, 1 and
M, (i.e. Mp) by using a driver
» Finally implement M; and test it with M, using a driver
for My

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

12/39



Testing OO and Generic Programs

@ New issues
> Inheritance
» Genericity
» Polymorphism
» Dynamic binding

@ Open problems still exist

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 13/39



Inheritance

Personnel
Consultant Employee
Manager Technical _Staff

Administrative_Staff

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

14/39



How to Test Classes of the Hierarchy

How would you approach testing for a class hierarchy?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 15/39



How to Test Classes of the Hierarchy

I\
\/\

o “Flattening” the whole hierarchy and considering every
class as totally independent component

@ This does not exploit incrementality
e Finding an ad-hoc way to take advantage of the hierarchy

@ Think about testing PointT.py and PointMassT .py

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 16/39



A Sample Strategy

@ A test that does not have to be repeated for any heir

@ A test that must be performed for heir class X and all of
its further heirs

@ A test that must be redone by applying the same input
data, but verifying that the output is not (or is) changed

@ A test that must be modified by adding other input
parameters and verifying that the the output changes
accordingly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 17/39



Testing Concurrent and Real-time Systems

What are the challenges for testing concurrent and real-time
systems?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 18/39



Testing Concurrent and Real-time Systems

Nondeterminism inherent in concurrency affects
repeatability

For real-time systems, a test case consists not only of
input data, but also of the times when such data are
supplied

Many potential time traces for the different inputs
System changes depends on the control actions

Considerable care and detail when testing real-time
systems

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

19/39



Testing your Tests

@ How did we estimate the number of errors in our code?

@ Can any of the ideas from estimating the number of
errors in our code be used to test our tests?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 20/39



Testing your Tests: Mutation Testing

@ Generate changes to the source code, called mutants,
which become code faults

@ Mutants include changing an operation, modifying
constants, changing the order of execution, etc.

@ The adequacy of a set of tests is established by running
the tests on all generated mutants

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

21/39



Analysis Versus Testing

@ Testing characterizes a single execution

@ Analysis characterizes a class of executions; it is based on
a model

@ They have complementary advantages and disadvantages

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

22/39



Informal Analysis Techniques and Code
Walkthroughs

@ Recommended prescriptions

» Small number of people (three to five)

» Participants receive written documentation from the
designer a few days before the meeting

» Predefined duration of the meeting (a few hours)

» Focus on the discovery of errors, not on fixing them

» Participants: designer, moderator, and a secretary

» Foster cooperation; no evaluation of people

» Experience shows that most errors are discovered by the
designer during the presentation, while trying to explain
the design to other people

@ Forces looking at the code from a different viewpoint

@ Can be used for documentation too

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 23/39



Informal Analysis Techniques Code Inspection

@ A reading technique aiming at error discovery
@ Based on checklists
» Use of uninitialized variables
Jumps into loops
Nonterminating loops
Array indexes out of bounds

v

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 24/39



Correctness Proofs

Formal program analysis is a verification aid that may
enhance program reliability

Mathematically prove that the program’s semantics
implies its specification

@ Can use pre and post conditions

@ We can prove correctness of operations (like those on an

abstract data type)
Use the proof of operations to prove fragments that
operate on the objects of an ADT

Tabular expressions can be proven to match between
specification of requirements and a specification of the
design

In many cases verification can be automated, at least
partially

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

25/39



Assessment of Correctness Proofs

@ Not often used in practice
@ However

» May be used for very critical portions

» Assertions may be the basis for a systematic way of
inserting runtime checks

» Proofs may become more practical as more powerful
support tools are developed

» Knowledge of correctness theory helps programmers
being rigorous

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 26/39



Symbolic Execution

@ Can be viewed as a middle way between testing and
analysis
@ Executes the program on symbolic values

@ One symbolic execution corresponds to many actual
executions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

27/39



Model Checking

@ Correctness verification, in general, is an undecidable
problem

@ Model checking is a recent verification technique based
on the fact that most interesting system properties
become decidable (algorithmically verifiable) when the
system is modelled as a finite state machine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 28/39



Model Checking Continued

@ Describe a given system - software or otherwise - as an
FSM

@ Express a given property of interest as a suitable formula
» Does a computation exist that allows a process to enter
a critical region?
» s there a guarantee that a process can access shared
resources?

@ Verify whether the system’s behaviour does indeed satisfy
the desired property
» This step can be performed automatically
» The model checker either provides a proof that the
property holds or gives a counter example in the form of
a test case that exposes the system’s failure to behave
according to the property

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

29/39



Why so Many Approaches to Testing and Analysis?

@ Testing versus (correctness) analysis

e Formal versus informal techniques

@ White-box versus black-box techniques
@ Techniques in the small/large

o Fully automatic versus semi-automatic techniques (for
undecidable problems)

View all of these as complementary

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 30/39



Debugging
What approaches do you use for debugging?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 31/39



Debugging

@ The activity of locating and correcting errors

@ It can start once a failure has been detected

@ The goal is closing the gap between a fault and a failure
» Memory dumps, watch points
» Intermediate assertions can help
» Tools like gdb, valgrind, etc.

@ Incremental integration tests helps

@ Incrementally add complexity to test cases

@ Like investigating an experiment - one controlled variable

at a time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 32/39



Verifying Performance

How might you measure/assess performance?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 33/39



Verifying Performance

@ Worst case analysis versus average behaviour

@ For worst case focus on proving that the system response
time is bounded by some function of the external requests
Standard deviation

Analytical versus experimental approaches

Consider verifying the performance of a pacemaker
Visualize performance via

» ldentify a measure of performance (time, storage,
FLOPS, accuracy, etc.)

» l|dentify an independent variable (problem size, number
of processors, condition number, etc.)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 34/39



Veritying Reliability

@ There are approaches to measuring reliability on a

probabilistic basis, as in other engineering fields
Unfortunately there are some difficulties with this
approach
Independence of failures does not hold for software
Reliability is concerned with measuring the probability of
the occurrence of failure
Meaningful parameters include

» Average total number of failures observed at time t:

AF(t)

» Failure intensity: FI(T) = AF'(t)

» Mean time to failure at time t: MTTF(t) = 1/FI(t)
Time in the model can be execution or clock or calendar
time

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

35/39



Verifying Subjective Qualities

@ What do you think is meant by empirical software
engineering?

@ What problems might be studied by empirical software
engineering?

@ Does the usual engineering analogy hold for empirical
software engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

36/39



Verifying Subjective Qualities

Consider notions like simplicity, reusability,
understandability
Software science (due to Halstead) has been an attempt

@ Tries to measure some software qualities, such as

abstraction level, effort,
by measuring some quantities on code, such as
» 71, number of distinct operators in the program
> 172, number of distinct operands in the program
» Ni, number of occurrences of operators in the program
» N>, number of occurrences of operands in the program
Extract information from repo, including number of
commits, issues etc.

e Empirical software engineering

Appropriate analogy switches from engineering to
medicine

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6)

37/39



Source Code Metric

@ What are the consequences of complex code?

@ How might you measure code complexity?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 38/39



McCabe's Source Code Metric

@ Cyclomatic complexity of the control graph
» C=e—n+2p
» e is number of edges, n is number of nodes, and p is
number of connected components
@ McCabe contends that well-structured modules have C in
range 3..7, and C = 10 is a reasonable upper limit for the
complexity of a single module

@ Confirmed by empirical evidence

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 39/39



