Assignment 3

COMP SCI 2ME3 and SFWR ENG 2AA4
March 5, 2018

Assigned: March 6, 2018

Part 1 (Spec): March 12, 2018

Receive Full Spec: March 18, 2018

Part 2 (Implement and Test): March 26, 2018

Last Revised: March 5, 2018
All submissions are made through git, using your own repo located at:
https://gitlab.cas.mcmaster.ca/se2aa4_cs2me3_assignments 2018/ [macid] .git

where [macid] should be replaced with your actual macid. The time for all deadlines is
11:59 pm.

1 Introduction

The purpose of this software design exercise is to design and implement a portion of the
specification for a Geographic Information System (GIS). For Part 1, you are given a
partial specification and asked to fill in the specification of the missing semantics. Once
the specification is complete, you will implement it for Part 2. To have a common interface
across the class, to facilitate unit testing by the TAs, you will implement the instructor
provided specification, rather than your own.

A sample GIS raster map is shown in Figure 1.

You will complete the specifications for the modules described in the specification file.
Your specifications should not involve writing algorithms or pseudo-code. The specifi-
cations should use discrete mathematics to specify the desired properties. That is, you

Figure 1: Example raster map

should be writing a descriptive specification as opposed to an operational specification.
Specifications within a module are free to use access programs defined within the current
module or from another module that is used by the current module. You should use the
provided local functions. You shouldn’t have to add more local functions, but you can, if
you find them helpful.

All of your code should be written in C++4-. All code files should be documented using
doxygen. Your report (for Part 1) should be written using LaTeX. Your code should
follow the given specification exactly. In particular, you should not add public methods
or procedures that are not specified and you should not change the number or order of
parameters for methods or procedures. If you need private methods or procedures, you
can add them by explicitly declaring them as private.

Part 1
Step 1

Complete the specification by addressing the comments given in the specification file
spec.tex. To help you interpret the specification, some examples are shown in the
Appendix to this assignment.

Step 2

Write a critique of the interface for the modules in this project. Is there anything missing?
Is there anything you would consider changing? Why? You critique should appear as the

last section of spec.tex.

Step 3

Push your spec, which will include the critique, in (spec.tex and spec.pdf) to your
GitLab project repo. The report, including the specifications, should be written in LaTeX.
This step should be completed by the deadline for Part 1 of the assignment.

DRAFT Part 2

Step 4

After the report has been submitted, you will be provided with a complete specification
for all of the modules. Implement the modules in C++. The names of the header files
(in the include folder) are as follows: LanduseMap.h, LineT.h, MapTypes.h, PathT.h,
PointT.h and Seq2D.h. You will be provided with a correct version of the Exceptions
header file in Exceptions.h. The source files you should create are as follows: LineT. cpp,
PathT.cpp, PointT.cpp and Seq2D. cpp.

Step 5

Experiment with the implementation. Test the supplied Makefile rule for experiment.
The purpose of this rule is to provide a means for “playing” with the code as you develop
it.

Step 6

Test the supplied Makefile rule for doc. This rule should compile your documentation
into an html and IXTEpXversion. Along with the supplied Makefile, a doxygen configura-
tion file is also given in your initial repo. You should not change these files.

Step 7

In the test folder you should have a corresponding test file for each module: testLineT. cpp,
testPathT.cpp, testPointT.cpp and testDEM.cpp. The testing framework being used
is called catch, as discussed in the tutorials. The header file you need will already be

pushed to your repo. Each procedure should have at least one test case. For this assign-
ment you are not required to submit a lab report, but you should still carefully think
about your rationale for test case selection. Please make an effort to test normal cases,
boundary cases, and exception cases.

The supplied makefile (named Makefile) will have a rule named test. This rule
should run all of your test cases.

Step 8

Push all of your code files to your GitLab project repo. This step should be completed
by the deadline for Part 2 of the assignment.

Notes

1.
2.

Please put your name and macid at the top of each of your source files

Your program must work in the ITB labs on mills when compiled with its versions
of g++ (Version 7), LaTeX, doxygen and make.

So that you will have the correct version of g++-, please add the following:
/opt/rh/devtoolset-7/enable
to the bottom of your .bashrc file on mills. (An earlier version of g++ has to

concurrently exist on mills; this allows you to switch to the version we are using.)

Many choices are available for containers to store your 2D sequence. So that unit
testing will work between submissions, we need to make a standard decision. There-
fore, please use a vector for your C++ implementation for the constructor for Seq2D:

template <class T>
Seq2D<T>::Seq2D (vector<vector<I>> s, double scale)

{
}

//details

. Your grade will be based to a significant extent on the ability of your

code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

Any changes to the assignment specification will be announced in class.
It is your responsibility to be aware of these changes. Please monitor all
pushes to the course git repo.

2 Appendix

A Examks g
vl
S G T I
o oL J[/ (pb58
@MT/ [C) Y l z
) , . jﬂ/ %W;
x 55
80 1Y) j e
b4 Ao % j,/ /’%(m
TS s s
e ki (@w)
/ S[O] =y B . Lo
e 1
SLo) PR 1[Gl (|
A
4 YR A
e jd i s) QO’J
W =
V O caw

