
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

4 Software Quality Continued (Ch.
2)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 11, 2017



Software Quality Continued

Administrative details

Example qualities
I Correctness, Reliability, Robustness
I Performance
I Usability
I Verifiability
I Maintainability
I Reusability
I Portability
I Understandability
I Interoperability
I Productivity
I Timeliness

Software systems requiring special qualities

Measurement of quality

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 2/22



Administrative Details
Assignment 1

I Initial draft in the repo
I Files due by midnight January 26
I E-mail partner files by January 27
I Lab report due February 2
I Using Python 2.7, doxygen, make, LaTeX
I May use git for submission

Questions on assignment?
I Constructor, accessor, mutator?
I Make?
I Testing?

Consider bringing your laptop to tutorials

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 3/22



Question on Correctness. Reliability and

Robustness

Reliable programs are a superset of correct programs AND
robust programs are a superset of reliable programs. Is this
statement True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 4/22



Performance

The performance of a computer product is the efficiency
with which the product uses its resources (memory, time,
communication)

Performance can be evaluated in three ways
I Empirical measurement
I Analysis of an analytic model
I Analysis of a simulation model

Poor performance often adversely affects the usability and
scalability of the product

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 5/22



Usability

What are some examples of excellent usability?

When you go to a friend’s house, you can likely operate their
microwave without reading the manual. What did human
factors engineers do to make this possible?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 6/22



Usability

The usability of a software product is the ease with which
a typical human user can use the product

Usability depends strongly on the capabilities and
preferences of the user

The user interface of a software product is usually the
principle factor affecting the product’s usability

Human computer interaction (HCI) is a major
interdisciplinary subject concerned with understanding and
improving interaction between humans and computers

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 7/22



Verifiability

The verifiability of a software product is the ease with
which the product’s properties (such as correctness and
performance) can be verified

Verifiability can be both an internal and an external
quality

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 8/22



Maintainability

The maintainability of a software product is the ease with
which the product can be modified after its initial release
Maintenance costs can exceed 60% of the total cost of
the software product
There are three main categories of software maintenance

1. Corrective: Modifications to fix residual and introduced
errors

2. Adaptive: Modifications to handle changes in the
environment in which the product is used

3. Perfective: Modifications to improve the qualities of the
software

Software maintenance can be divided into two separate
qualities

1. Repairability: The ability to correct defects
2. Evolvability: The ability to improve the software and to

keep it current

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 9/22



Maintainability

What do software developers do to promote maintainability?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 10/22



Reusability

What are the advantages of reusing code?

Why doesn’t it happen more often?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 11/22



Reusability

A software product or component is reusable if it can be
used to create a new product

Reuse comes in two forms

1. Standardized, interchangeable parts
2. Generic, instantiable components

Reusability is a bigger challenge in software engineering
than in other areas of engineering

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 12/22



Portability

A software product is portable if it can run in different
environments

The environment for a software product includes the
hardware platform, the operating system, the supporting
software and the user base

Since environments are constantly changing, portability is
often crucial to the success of a software product

Some software such as operating systems and compilers,
is inherently machine specific

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 13/22



Understandability

The understandability of a software product is the ease
with which the requirements, design, implementation,
documentation, etc. can be understood

Understandability is an internal quality that has an impact
on other qualities such as verifiability, maintainability, and
reusability

There is often a tension between understandability and
the performance of a software product

Some useful software products completely lack
understandability (e.g. those for which the source code is
lost)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 14/22



Interoperability

A software system is interoperable if it can work with
other systems

A software product is an open system if parts of the
system - such as interface specifications, protocols, and
source code - are available to the public

Open systems tend to be more interoperable than
nonopen systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 15/22



Productivity

The productivity of a software development process is the
measure of how efficiently the process produces software

Productivity highly depends on the skills and organization
of the development team

Productivity is very hard to measure

The number of lines of code per unit time is a terrible
metric for measuring software productivity

Productivity can be greatly increased by the use of
development tools, environments, and methods

Software reuse decreases productivity in the short term,
but increases productivity in the long term

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 16/22



Timeliness

The timeliness of a software development process is the
ability to deliver a product on time

Timeliness is difficult to achieve in software development

Important trade-off: Should a software product with flaws
be delivered on time or should it be delivered late without
flaws?

Standard project management techniques are difficult to
apply to software engineering because

I It is difficult to define the requirements for software
I It is difficult to quantify software
I Requirements for software tend to continuously change

as the project progresses

Incremental delivery is one technique for achieving
timeliness

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 17/22



Visibility

A software development process is visible if the steps of
the process and the product itself are documented

The documentation should be accessible to the whole
development team as well as to management

Benefits of visibility
I Promotes communication
I Facilitates planning
I Protects against personnel changes

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 18/22



Relationship between Qualities

Draw a diagram showing the relationships between the various
software qualities

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 19/22



Software Systems requiring Special Qualities
Information systems store and retrieve data

I Information security (privacy, integrity, and availability)
is a key quality

Real-time systems respond to external events within a
strict time-frame

I Safety is often an important quality

Distributed systems consist of independent subsystems
connected by communication networks

I Important qualities include concurrency control,
parallelizability, fault tolerance, code mobility

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 20/22



Software Systems requiring Special Qualities

Continued
Embedded systems control physical devices

I usability and other human-oriented qualities are not as
important as for other software systems

Scientific computing
I Accuracy important – how close the output is to the

true solution (not explicitly in Ghezzi et al.)
I Reliability is very important, but verifiability is difficult

to achieve
I Sometimes sacrifice maintainability and portability for

performance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 21/22



Measurement of Quality

A software quality is only important if it can be measured
- without measurement there is no basis for claiming
improvement

A software quality must be precisely defined before it can
be measured

Most software qualities do not have universally accepted

Can you directly measure maintainability?

How might you measure maintainability?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 4 Software Quality Continued (Ch. 2) 22/22


