
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

31 Overview of Testing (Ch. 6)
DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 19, 2017



Overview of Testing

Administrative details

Test plan

Types of test
I White box versus black box
I Manual versus automated
I Static versus dynamic
I etc.

Testing phases

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 2/13



Administrative Details

Today’s slide are partially based on slides by Dr. Wassyng

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 3/13



Test Plan

Testing can uncover errors and build confidence in the
software

Resources of time, people, facilities are limited

Need to plan how the software will be tested

You know in advance that the software is unlikely to be
perfect

You need to put resources into the most important parts
of the project

A risk analysis can determine where to put your limited
resources

A risk is a condition that can result in a loss

Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occuring

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 4/13



Test Plan

Risks cannot be eliminated, but the development process
can reduce the probability of loss associated with risks to
an “acceptable” level

One approach to risk analysis is FMEA - Failure Mode
Effect Analysis

Consider the capstone project of the autonomous rescue
robots

I Largest risk, robot fails during final demonstrations
I Test to improve reliability
I Test results of great interest to IBM judges
I Think about test cases, think about testing environment

versus final environment

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 5/13



White Box Versus Black Box Testing

White box testing is derived from the program’s internal
structure

Black box testing is derived from a description of the
program’s function

Should perform both white box and black box testing

Black box testing
I Uncovers errors that occur in implementing requirements

or design specifications
I Not concerned with how processing occurs, but with the

results
I Focuses on functional requirements for the system
I Focuses on normal behaviour of the system

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 6/13



White Box Testing

Uncovers errors that occur during implementation of the
program

Concerned with how processing occurs

Evaluates whether the structure is sound

Focuses on abnormal or extreme behaviour of the system

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 7/13



Dynamic Versus Static Testing

Another classification of verification techniques, as
previously discussed

Use a combination of dynamic and static testing

Dynamic analysis
I Requires the program to be executed
I Test cases are run and results are checked against

expected behaviour
I Exhaustive testing is the only dynamic technique that

guarantees program validity
I Exhaustive testing is usually impractical or impossible
I Reduce number of test cases by finding criteria for

choosing representative test cases

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 8/13



Static Testing Continued
Static analysis

I Does not involve program execution
I Testing techniques simulate the dynamic environment
I Includes syntax checking
I Generally static testing is used in the requirements and

design stage, where there is no code to execute
I Document and code walkthroughs
I Document and code inspections

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 9/13



Manual Versus Automated Testing
Manual testing

I Has to be conducted by people
I Includes by-hand test cases, structured walkthroughs,

code inspections

Automated testing
I The more automated the development process, the

easier to automate testing
I Less reliance on people
I Necessary for regression testing
I Test tools can assist, such as Junit, Cppunit, CuTest etc.
I Can be challenging to automate GUI tests
I Test suite for Maple has 2 000 000 test cases, run on 14

platforms, every night, automated reporting

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 10/13



Automated Testing at Maple
Three steps

I Write the problem description
I result := solver(problem)
I assert(result == expected)

Assert writes out code to reproduce any failures

Track failures
I Source code management (like CVS or Subversion)
I Database of test cases, functions called
I Database of source files, functions defined
I Database of 40 days of timings and resources used

Automatically sends an e-mail to the programmer and
his/her boss

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 11/13



Fault Testing

Common analogy involves planting fish in a lake to
estimate the fish population

T = total number of fish in the lake (to be estimated)

N = fish stocked (marked) in the lake

M = total number of fish caught in lake

M’ = number of marked fish caught

T = (M - M’)*N/M’

Artificially seed faults, discover both seeded and new
faults, estimate the total number of faults

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 12/13



Fault Testing Continued

Method assumes that the real and seeded faults have the
same distribution

Hard to seed faults
I By hand (not a great idea)
I Independent testing by two groups and obtain the faults

from one group for use by the other

Want most of the discovered faults to be seeded faults

If many faults are found, this is a bad thing

The probability of errors is proportional to the number of
errors already found

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 31 Overview of Testing (Ch. 6) DRAFT 13/13


