SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

34 Black Box Testing (Ch. 6)
DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 19, 2017

McMaster
University %ﬁ

Black Box Testing

@ Administrative details

@ Black Box Testing

» Formal using RegionT
» Function tables

@ Testing boundary conditions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 2/20

Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 3/20

Black Box Testing Example

The program receives as input a record describing an invoice.
(A detailed description of the format of the record is given.)
The invoice must be inserted into a file of invoices that is
sorted by date. The invoice must be inserted in the
appropriate position: If other invoices exist in the file with the
same date, then the invoice should be inserted after the last
one. Also, some consistency checks must be performed: The
program should verify whether the customer is already in a
corresponding file of customers, whether the customers data in
the two files match, etc.

What test cases would satisfy the complete-coverage principle?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 4/20

Invoice Example Test Cases

1. An invoice whose date is the current date

2. An invoice whose date is before the current date (This
might be even forbidden by law) This case, in turn, can
be split into the two following subcases:

2.1 An invoice whose date is the same as that of some
existing invoice

2.2 An invoice whose date does not exist in any previously
recorded invoice

3. Several incorrect invoices, checking different types of
inconsistencies

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT

5/20

Systematic Black-Box Techniques

e Testing driven by logic specifications

@ Function table based testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 6/20

Test Cases from MIS for PointT

Routine name | In Out Exceptions
PointT real, real | PointT | InvalidPointException
xcoord real
ycoord real
dist PointT real
Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 7/20

TestPointT .java |

import org.junit .x;
import static org.junit.Assert.x;
public class TestPointT

{

private static double
ADMISS_ERR_CONSTRUCTOR = 0;
private static double ADMISS ERR.DIST =
le—20;
Q@Test
public void testConstructorForx()
{
assertEquals (23, new PointT (23,
38).xcoord (),
ADMISS_ERR_CONSTRUCTOR) ;

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 8/20

TestPointT .java Il

}
OTest

public void testConstructorFory ()
{
assertEquals (38, new PointT (23,
38).ycoord (),
ADMISS_ERR_CONSTRUCTOR) ;
}
@Test
(expected=InvalidPointException.class)
public void testForExceptionNegx ()

{
}

PointT p = new PointT(—10, 0);

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 9/20

TestPointT .java IlI

@Test
(expected=InvalidPointException.class)
public void testForExceptionNegy ()
{
PointT p = new PointT (0, —10);
}
Q@Test
(expected=InvalidPointException.class)
public void testForExceptionMaxx ()
{
PointT p = new
PointT (Constants . MAXX+1, 0);
}

QTest
(expected=InvalidPointException.class)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT

10/20

TestPointT .java IV

public void testForExceptionMaxy ()
{
PointT p = new PointT (0,
Constants .MAX.Y+1);
}
Q@Test
public void testDistNormal()
{
double x = Constants .MAXX/2.0;
double y = Constants .MAXY /2.0;
PointT p = new PointT(x, y);
assertEquals(Math.sqrt(xxx + yxy),
p.dist (new PointT (0, 0)),
ADMISS_ERR_DIST) ;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 11/20

TestPointT .java V

Q@Test
public void testDistlLargestDiagonal ()
{
double x = Constants.MAXX;
double y = Constants.MAXLY;
PointT p = new PointT(x, y);
assertEquals(Math.sqrt(xxx + yxy),
p.dist (new PointT (0, 0)),
ADMISS_ERR_DIST) ;
}
Q@Test
public void testDistAlongEdge()
{
double x = Constants.MAXX;
double y = Constants.MAXLY;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 12/20

TestPointT .java VI

PointT p = new PointT(x, y);

assertEquals(Constants.MAXX,
p.dist (new PointT (0,
Constants .MAXY)),
ADMISS_ERR_DIST) ;

}

@Test

public void testDistZero ()

{
double x = Constants .MAXX/2.0;
double y = Constants .MAXY/2.0;
PointT p = new PointT(x, y);
assertEquals (0, p.dist(p),

ADMISS_ERR_DIST) ;
}

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT

13/20

TestPointT .java VII
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 14/20

Function Table-Based Testing

@ Boundaries are obvious in table predicates
@ Make test cases that exercise between and on boundaries

@ Coverage already aided by function table “rules”

Hesult . .

) f name
LCandition —

y=35 res 1

x<0

y=35 res 2
x=0 res 3
x>0 res 4

15/20

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT

Testing Boundary Conditions

@ Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

@ Some typical programming errors, however, just happen
to be at the boundary between different classes

» Off by one errors
» < instead of <
» equals zero

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 16/20

Criterion

o After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

@ This applies to both white-box and black-box techniques

@ In practice, use the different testing criteria in
combinations

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 17/20

The Oracle Problem

@ Given input test cases that cover the domain, what are
the expected outputs?

@ Oracles are required at each stage of testing to tell us
what the right answer is

@ Black-box criteria are better than white-box for building
test oracles

@ Automated test oracles are required for running large
amounts of tests

@ Oracles are difficult to design - no universal recipe

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 18/20

The Oracle Problem Continued

@ Determining what the right answer should be is not
always easy

v

Air traffic control system

Scientific computing

Parallel testing can approximate an oracle
Properties of the expected values can be easier than
stating the expected output

v

v

\4

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 19/20

Module Testing
@ Scaffolding needed to create the environment in which
the module should be tested
@ Stubs - a module used by the module under test
@ Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 20/20

