SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

32 White Box Testing (Ch. 6)
DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 19, 2017

McMaster
University %ﬁ



White Box Testing

@ Administrative details
Nonfunctional testing
Functional testing
Testing phases
Theoretical foundations of testing

°
°

°

°

@ Complete coverage principle
@ Statement coverage

e Edge coverage

e Condition coverage

°

Path coverage

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

2/22



Administrative Details

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 3/22



Fault Testing

@ Common analogy involves planting fish in a lake to
estimate the fish population

T = total number of fish in the lake (to be estimated)
N = fish stocked (marked) in the lake

M = total number of fish caught in lake

M’ = number of marked fish caught
T=(M-M)*N/M

Artificially seed faults, discover both seeded and new
faults, estimate the total number of faults

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 4/22



Fault Testing Continued

@ Method assumes that the real and seeded faults have the
same distribution
@ Hard to seed faults

» By hand (not a great idea)
» Independent testing by two groups and obtain the faults
from one group for use by the other

@ Want most of the discovered faults to be seeded faults
o If many faults are found, this is a bad thing

@ The probability of errors is proportional to the number of
errors already found

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 5/22



Nonfunctional System Testing

@ Stress testing: Determines if the system can function

when subject to large volumes

Execution: Determines if the system achieves the desired
level of proficiency in production status (performance)
Recovery: Determines if the system has the ability to
restart operations after integrity has been lost
Operations: Determines if the operating procedures and
staff can properly execute the system (documentation)
Compliance (to process): Determines if the system has
been developed in accordance with information
technology standards, procedures and guidelines
Security: Determines if the system can protect
confidential information

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

6/22



Functional System Testing

@ Requirements: Determines if the system can perform its
function correctly and that the correctness can be
sustained over a continuous period of time

@ Error Handling: Determines the ability of the system to
properly process incorrect transactions

@ Manual Support: Determines that the manual support
procedures are documented and complete, where manual
support involves procedures, interfaces between people
and the system, and training procedures

@ Inter-systems: Determines the that interconnections
between systems function correctly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 7/22



Functional System Testing Continued

@ Control: Determines if the processing is performed in
accordance with the intents of management
» Includes data validation, file integrity, audit trail, backup
and recovery, documentation and other aspects related
to integrity
» Controls are designed to reduce risks
@ Parallel: Determines the results of the new application are
consistent with the processing of the previous application
or version of the application

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

8/22



Testing Phases

1. Unit testing

2. Integration testing
3. System testing

4. Acceptance testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 9/22



Theoretical Foundations of Testing

P (program), D (input domain), R (output domain)
P: D — R (may be partial)
Correctness defined by OR C D x R

» P(d) correct if < d, P(d) > OR

» P correct if all P(d) are correct

@ Desire a test set T that is a finite subset of D that will
uncover all errors

@ Determining and ideal T leads to several undecideable
problems

@ No algorithm exists to state if a test set will uncover all
possible errors

@ No algorithm exists to derive a test set that would prove
program correctness

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 10/22



Empirical Testing

@ Need to introduce empirical testing principles and
heuristics as a compromise between the impossible and
the inadequate

e Find a strategy to select significant test cases

@ Significant means the test cases have a high potential of
uncovering the presence of errors

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 11/22



Complete-Coverage Principle

@ Try to group elements of D into subdomains Dy, Ds, ...,
D, where any element of each D; is likely to have similar
behaviour

e D=D,UD,U...UD,

@ Select one test as a representative of the subdomain

o If D;N Dy =0 for all j # k, (partition), any element can
be chosen from each subdomain

@ Otherwise choose representatives to minimize number of
tests, yet fulfilling the principle

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 12/22



Complete-Coverage Principle

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 13/22



White-box Coverage Testing

@ (In)adequacy criteria - if significant parts of the program
structure are not tested, testing is inadequate
@ Control flow coverage criteria
» Statement coverage
» Edge coverage
» Condition coverage
» Path coverage

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 14/22



Statement-Coverage Criterion

@ Select a test set T such that every elementary statement
in P is executed at least once by some d in T

@ An input datum executes many statements - try to
minimize the number of test cases still preserving the
desired coverage

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

15/22



Example

read (x); read (y);
if x>0 then

write ("1");
else

write ("2");
end if;
if y >0 then

write ("3");
else

write ("4");
end if;

{x=2,y=-3><x=-13,y =515,
<X=97,y=17>,<x=-1,y=- 15}
covers all statements

{<x=-13,y=51I>,<x=2,y=- 3>}
is minimal

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

16/22



Weakness of the Criterion

if X <0 then
X = -X;

end if;

Z =X,

{<x=-3} covers all
statements

it does not exercise the
case when X is positive
and the then branch is
not entered

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

17/22



Edge-Coverage Criterion

@ Select a test set T such that every edge (branch) of the
control flow is exercised at least once by some d in T
@ This requires formalizing the concept of the control graph
and how to construct it
» Edges represent statements
» Nodes at the ends of an edge represent entry into the
statement and exit

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 18/22



Control Graph Construction Rules

I/0, assignment,

or procedure call if-then-else if-then

two sequential
statements

while loop

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT

19/22



Simplification

A sequence of edges can be collapsed into just one edge

n1 n

Ny 3 -1 Ty
oO—0O0—0 ... O—=0O

Vb

k

Ny

O =0

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 20/22



Example: Euclid’s Algorithm

_ O
begin
read (x); read (y); v
while x #y loop g)
if x>y then
X=X-Y; \
else O
y =Yy -X; ¥ SN
end if; O o D
end loop;

end; godi=x (5 K@ b
’/

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 21/22



Weakness

found := false; counter := 1;
while (not found) and counter < number_of_items loop
if table (counter) = desired_element then

found := true;
end if;
counter := counter + 1;
end loop;

if found then

write ("the desired element is in the table");
else

write ("the desired element is not in the table");
end if;

test cases: (1) empty table, (2) table with 3 items, second of
which is the item to look for

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 22/22



Weakness

found := false; counter := 1;
while (not found) and counter < number_of_items loop
if table (counter) = desired_element then

found := true;
end if;
counter := counter + 1;
end loop;

if found then

write ("the desired element is in the table");
else

write ("the desired element is not in the table");
end if;

test cases: (1) empty table, (2) table with 3 items, second of
which is the item to look for

Do not discover the error (< instead of <)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 32 White Box Testing (Ch. 6) DRAFT 22/22



