The Maze Tracing Robot
A Sample Specification

©Dr. M. v. Mohrenschildt

200,2002,2003,2005

Chapter 1

The Requirements

1.1 Requirements Specification

By convention, identifiers are italicized, type names end in T and constants are
in capital letters. The names of variables are prefixed with either i_, for inputs,
or o_, for outputs or s_, for internal state representations.

The software is intended to find the shortest path through a 2-dimensional
maze and control the ‘draw-bot’ (a robot that is capable of moving a pen to
mark on paper), such that it traces that path on a picture of the maze.

1.1.1 Pen Position

We represent the location of the draw-bot pen tip using a Boolean, namely
o_penDown, to indicate if the pen is touching the maze surface or not, and a
pair, (o_penPos.x, o_penPos.y) of reals, representing the location in the horizontal
plane where the pen tip is touching the maze (if o_penDown is true) or would
touch the maze if lowered (if o_penDown is false). The location is specified
by the distance, in millimeters, from the respective axis, which are parallel (x
= 0) and perpendicular (y = 0) to the front edge of the robot arm base. The
extent of the region of interest is defined by the constants MIN _X, MAX_X,
MIN_Y and MAX_Y. The origin is the center of the robot base post. The
‘home’ location of the pen-tip (to which it is returned on initialization of the
draw-bot), is (HOME_X, HOME_Y).

1.1.2 Maze

As illustrated in Figure 1.1, the maze is contained within a
M_WIDTH mm x M_HEIGHT mm

region of the horizontal plane bounded by the lines = —M_X_OFFSET, y =
M_Y _OFFSET,z=—-M_X_OFFSET+M _WIDTH andy = M_Y _OFFSET+

(© M. v. Mohrenschildt 2

Figure 1.1: Robot and Maze Parameters

M_HEIGHT, which are the external walls of the maze. The ‘internal walls’ of
the maze are segments of the lines t = —M _X_OFFSET +n x M_CELL_SIZE
mm and y = M_Y_OFFSET +n x M_CELL_SIZE mm, where n is an integer
(i-e., a square grid with line spacing M_CFELL_SIZE mm). The endpoints of the
walls lie at intersections of these grid lines. Figure 1.2 is a sample maze with
dashed lines indicating the possible wall locations.

1.1.3 Computer System

The draw-bot is controlled using a 80386 based PC running MS-DOS 6.0. The
computer is equipped with Borland C compiler (version 3.1) and libraries for
controlling the robot (robots.lib, robotm.1ib and robotl.lib). The maze-
tracer software will be expected to compile and run in this environment.

1.1.4 Draw-Bot

The draw-bot is constructed using a Robix”™™ RCS-6 construction set. It con-
sists of three arms, each of which is controlled by a motor. The first two arms
move in the horizontal plane to position the pen and the third arm is used to
raise or lower the pen.

1.2 Environment Variables

This section gives the quantities in the environment to be monitored and/or
controlled by the system. Note that all environment variables are functions of
time.

1.2.1 Inputs

i_mazeWalls : set of positionT
The set of points that make up the walls of the maze. Note that the
exterior walls (i.e., the perimeter) are included.

i_mazeStart : positionT
Start position for the maze.

i_mazeEnd : positionT
Finish position for the maze.

i_stopButton : buttonT
The status of the button labeled “stop”.

i_homeButton : buttonT
The status of the button labeled “home”.

(© M. v. Mohrenschildt

B R ittt S AP

B R ittt S AP

B it ettt B B e Sl

B e i Bl Rttt eI SR A

R I et e B I ittt SRR S

R it S e T B it Attt I B e ittt

i
I
I
1
I

+
I
I
I
I

+
1
I
I
I

+
I
I
I
1

-+
I
I
I
1

-+
I
1
I
I

+
I
1
I
I

+
I
I
I
I

-+
I
I
I
I

-+
I
I
1
I

+
I
I
I
I

—— e e m e = — = —

A

: Sample Maze

Figure 1.2

Spencer Smith

Spencer Smith

Spencer Smith

Spencer Smith

Spencer Smith

Spencer Smith

Spencer Smith

Spencer Smith

© M. v. Mohrenschildt 4

i_backButton : buttonT
The status of the button labeled “back”.

i_mazeFile : string
The file name passed on the command line.

1.2.2 Qutputs

o_penPos : positionT
The position of the pen relative to the ‘origin’ (0,0), which is the center
of the robot base post.

o_penDown : Boolean
true iff the pen is touching the plane containing the maze. Assumed to
be initially false.

o_powerOn : Boolean
true iff the robot power is on. Assumed to be initially false.

o_message : string
The message displayed on the operator console.

1.3 Behavioral Requirements

This section describes the required behavior of the Maze-Tracing Robot in terms
of the environmental quantities described in Section 1.2. To aid in understand-
ing, and to help expose students to a variety of formats, the requirements are
presented in two forms: Informal and State Machine. These descriptions are
intended to describe the same behavior and are in some sense complimentary,
since each method has its own strengths and weaknesses.

1.3.1 Informal Description
Safety Requirements

If at any time the stop button is pressed (i_stopButton = Down) the robot must
stop moving within RESPONSE_TIME seconds and must remain stationary
until the stop button is released (i_stopButton = Up).

When the pen is down (o_penDown = true) the pen tip must never come
within WALL_SPACE mm of a wall point (wall(o_penPos) = true).

Messages

Whenever a significant event occurs (i.e., a button is pressed or released, the pen
reaches a significant point in its journey, or an error is detected) the software
must output a diagnostic message describing the event and the system’s response
to it.

(© M. v. Mohrenschildt 5

Performance

The goal of the program should be to minimize the time between the pen first
touching the paper and it being returned to its home position.

Initialization

When the program is started i_mazeFile is read. If an error occurs (e.g. file read
failure) or if there is no path through the maze, then an appropriate diagnostic
message must be output and the control program must exit without turning on
the robot power (o_powerOn = false).

Starting

After i_mazeFile has been read, and it has been determined that there is a path
through the maze, the robot power must be turned on (which meanso_powerOn =
true), which initializes the pen to the home position

o_penPos = (HOME_X, HOME_Y)

with the pen up (o_penDown = false). The pen must then be moved to the
start position of the maze

o_penPos € tol(i_mazeStart).

Forward

Once the starting position has been reached (o_penPos € tol(i_mazeStart)) the
pen must be lowered (o_penDown = true) and a path traced through the maze
to the end (o_penPos € tol(i-mazeEnd)). When the pen reaches the end of the
maze (o_penPos € tol(i_mazeEnd)) it must be raised (o_penDown = false) and
returned to the home position.

Reverse

If at any time while the path is being traced the “back” button is pressed
(i-backButton = Down) the Draw-bot is required to reverse the direction of its
tracing within RESPONSE_TIME seconds and begin to re-trace its path back
to the beginning (o_penPos € tol(i_mazeStart)). It should continue to re-trace
its path only as long as the “back” button is held down—when it is released
the Draw-bot should continue in the forward direction. If, while reversing, it
reaches the start position it should stop there until either the “back” button is
released or the “home” button is pressed.

Home

If at any time while the path is being traced (in either direction) the “home”
button is pressed (i_homeButton = Down) the Draw-bot is required to stop
tracing within RESPONSE _TIME seconds, raise the pen (o_penDown = false)
and return to the home position, without making any further marks.

(© M. v. Mohrenschildt 6

Done

When the pen has been returned to the home position, the power must be
turned off (o_powerOn = false) and the system must exit.

1.3.2 State Machine

This section gives an alternate presentation of the the Maze-tracer requirements
by defining a Finite State Machine using the notation found in Section 3.7 of

7).

State variables

s_mode : { Init, Starting, Forward, Holding, Reverse, Home, Done }
The system mode.

s_holdRet : { Starting, Forward, Reverse, Home }
The system mode to return to when the “stop” button is released.

s_holdPos : positionT
The position in which the pen is to be held.

s_holdDown : Boolean
The value of o_penDown when the stop button was pressed.

Initial State

s_mode := Init

Transitions and Outputs

Table 1.1 describes the state transition function, Table 1.2 describes the o_message
event-output relation and Table 1.3 describes the o_penPos, o_penDown and
o_powerOn condition-output relation. The performance goal, which does not
appear in this description, is to minimize the time between the transition to
s_-mode = Forward and s_mode = Done.

The predicate reverse is true if the pen back-traces the path to the start
which it came. We do not give a formal definition for the predicate reverse.

1.4 Definitions

This section defines types, functions and constants used in the requirements
specification.

© M. v. Mohrenschildt 7
Table 1.1: Transition Function
Condition
s.mode | Input New state
Init Error opening or reading i_mazeFile s_mode := Done
—connected(i_-mazeStart, i_mazeEnd) s_mode := Done
connected (i_mazeStart, i_mazeEnd) s_mode := Starting
Starting | o_penPos € tol(i_mazeStart) s_-mode := Forward
s_mode := Holding
. s_holdRet := Starting
i-stopButton = Down s_holdPos := o_penPos
s_holdDown := o_penDown
Forward | o_penPos € tol(i_mazeEnd) s_-mode := Home
s_mode := Holding
i_stopButton = Down s_holdRet := Forward
s_holdPos := o_penPos
s_holdDown := o_penDown
i_homeButton = Down A i_stopButton = Up s_.mode := Home
i_backButton = Down A i_stopButton = Up A
. s_mode := Rewverse
i_homeButton = Up
Holding | i_stopButton = Up s_mode := s_holdRet
s_mode := Holding
Reverse | o_penPos € tol(i_mazeStart) z:ES:SEZZ ; ff);::ggs
s_holdDown := o_penDown
s_mode := Holding
i_stopButton — Down s_holdRet := Reverse
s_holdPos := o_penPos
s_holdDown := o_penDown
i_homeButton = Down A i_stopButton = Up s_mode := Home
!,backButton = Up A i_stopButton = UpA < mode := Forward
i_homeButton = Up
Home o_penPos = (HOME_X, HOME_Y') s_mode := Done
s_mode := Holding
i_stopButton = Down s-holdRet := Home
s_holdPos := o_penPos
s_holdDown := o_penDown
Done true system exit

(© M. v. Mohrenschildt 8
Table 1.2: o_message Event-Output Function
Condition
s_mode \ Input 0_message
Init Error opening or reading i_mazeFile appropriate diagnos-

tics

—connected(i_-mazeStart, i_mazeEnd)

“No path found,
nothing to do.”

connected (i-mazeStart, i_mazeEnd)

“Path found, starting
tracing.”

Holding | i_stopButton = Up

“Stop button re-
leased, resuming.”

Forward | o_penPos € tol(i_mazeEnd)

“FEnd of maze
reached, returning to
home position.”

i_homeButton = Down A i_stopButton = Up

“Home button
pressed, returning to
home position.”

i_backButton = Down A i_stopButton = Up A

i_homeButton = Up “Back butt.on
pressed, reversing
direction.”
Reverse | o_penPos € tol(i_mazeStart)
i_homeButton = Down A i_stopButton = Up “Home button

pressed, returning to
home position.”

i_homeButton = Up

i_backButton = Up A i_stopButton = Up A

“Back button re-

leased, resuming
forward tracing.”

Home o_penPos = (HOME_X, HOME_Y) “Home position
reached, terminat-
ing.”

- i_stopButton = Down

“Stop button pressed,
holding.”

(© M. v. Mohrenschildt 9

Table 1.3: o_penPos, o_penDown and o_powerOn Condition-Output Function

] s_mode \ o_penPos | \ o_penDown = \ o_powerOn = ‘
Init o_penPos = (HOME_X, HOME_Y) | false false
Starting | true false true
Forward | —wall(o_penPos) true true
Reverse | —wall(o_penPos) A reverse(o_penPos) | true true
Holding | o_penPos = s_holdPos s_holdDown true
Home true false true
Done o_penPos = (HOME_X, HOME_Y) | false false

1.4.1 Types
pathT = sequence of tuples of (s, f : positionT)

positionT = tuple of (z : [MIN_X ... MAX X],y:[MIN_.Y ... MAX_Y])

buttonT = { Up, Down }

1.4.2 Functions

connected : positionT X positionT — Boolean
connected(b, €)
= {Elpi € postitionT po=bAp, =eAVt 0<t<1 —wall(tp; + (1 — t)pi.H)l}

tol : positionT — set of positionT
tol(p)

= {q € postitionT ’ (\/(qm — p.x)2 + (qy — p.y)2 < POS_TOL mm) }

wall : positionT — Boolean
wall(p)
= (3q1, g2 € i_-mazeWalls) (||t ¢1 — (1 — t)g2|| < WALL_SPACE mm)

1.4.3 Constants

Table 1.4 lists the constants used in this specification, their informal interpreta-
tion and their range of values. Your software should be able to be easily changed
to accommodate changes in these values within the specified ranges. The actual
values of these constants will be provided late in the term.

Yp; + (1 —t)pi+1 0 <t <1 is the line connecting p; and p;4+1

(© M. v. Mohrenschildt

Table 1.4: Constants

10

’ Name \ Possible Values \ Interpretation

MAX_X [0...500] Maximum valid x co-ordinate,
millimeters.

MIN_X [-500. .. 0] Minimum valid x co-ordinate,
millimeters.

MAX'Y [0...500] Maximum valid y co-ordinate,
millimeters.

MIN_.Y [-500...0] Minimum valid y co-ordinate,
millimeters.

HOME_X [MIN_X... MAX _X] x location of pen ‘home’ position,
millimeters.

HOME'_Y [MIN_Y... MAX_Y] y location of pen ‘home’ position,
millimeters.

M_X_OFFSET [1... MAX X — M_WIDTH] | x distance of maze from origin,
millimeters.

M_Y _OFFSET [1... MAX_Y — M_HEIGHT)] | y distance of maze from origin,
millimeters.

M_WIDTH (M_CELL_SIZE... MAX_X] | Width of maze, millimeters.

M_HEIGHT [M_CELL_SIZE... MAX_Y] | Height of maze, millimeters.

M_CELL_SIZE [4...25] Width/Height of a maze cell, mil-

limeters.

RESPONSE_TIME | 2 ...15] Maximum delay before respond-
ing to a button, seconds.
MAX_TIME [60 . ..300] Maximum time allowed to trace
the maze, seconds.
WALL_SPACE [L ... M-CELL-SIZE] Minimum distance between the
pen and walls, millimeters.
POS_TOL [1.. M-CELLSIZE] Maximum tolerance on locating

2

the start and end positions, mil-
limeters.

M. v. Mohrenschildt 11
©

1.5 Software Interface

This section describes how the Maze-tracer control software interfaces with the
operator and the robot by giving the relationship between the variables de-
scribed in Section 1.2 and quantities available to the software.

1.5.1 Inputs
Maze

The values of the i_mazeStart, i_mazeEnd and i_mazeWalls are read from the text
file whose name is given by i_mazeFile. Since the maze is constructed from lines
in a grid as described in Section 1.1.2, points are represented by the index of
the grid lines (integers). The first two lines of the file contain pairs that give
the location of i_mazeStart and i_mazeEnd, respectively, which are taken to be
the middle of the ‘cell’” with the given point as its lower left corner, i.e., if the
first line of the file contains “1 3” then i_mazeStart is located at

M_CELL_SIZE

<M,X,OFFSET + M_CELL_SIZE + 5

M_Y _OFFSET +3M_CELL_SIZE + w> .
The remaining lines each contain four integers representing the endpoints of
a wall. For example a line containing “0 8 7 8” indicates that all the points
from

(M_X_OFFSET , M_Y _OFFSET + 8M _CELL_SIZE)

to
(M_X_OFFSET +7M_CELL_SIZE

, M_X_OFFSET + 8M _CELL_SIZE), inclusive, are in i_mazeWalls. The bound-
aries of the maze region are also considered to be ‘walls’. The following is a
sample input file describing the maze appearing in Figure 1.2, with start point
in the lower left corner, and end point in the upper right.

00

14 14

1017
3035
4144
4161
6164
4464
7071
7115 1
7 210 2
11 2 15 2
7278

10 2 10 9

M. v. Mohrenschildt 12
©

11 2 11 11

N OO,
0 N N O»

5
5
7
8
9 10 9
10 3 10
10 10 10
10 3 15
10 4 15
10 10 15
11 15 11
12 14 12

12 11 15
12 14 15

> Wbk OO OO0 W

e e
N e)

Note that there are several possible files to represent the same maze. Not
only can the walls be listed in any order, but it is possible to describe a segment
as one continuous segment or several shorter ones. Also note that in any line of
the file the endpoints can appear in either order.

Buttons

The values of the buttons are read using the following access programs of the
appropriate robot.1ib library.

short i_homeButton(); /* Return 1 if Home button pressed 0 else */
short i_stopButton(); /* Return 1 if Stop button pressed 0 else */
short i_reverseButton(); /% Return 1 if Reverse button pressed 0 else */

1.5.2 Outputs
Pen Position

The pen position is controlled by manipulating the Draw-bot arms using the
routines in the appropriate robot library to set pen position. The following
access program controls the pen position.

short o_penPos(int x,int y); /* Move Pen to position x, y
Returns 0 if 0K, <>0 if ERROR */

short o_penDown(int pen); /* Move Pen down pen=1, move Pen up pen=0
Returns 0 if 0K, <>0 if ERROR */

Power

The motor power is turned on or off using the following access program.

M. v. Mohrenschildt 13
©

short o_power (int pow); /* Turn Power on pow=1, turn Power off pow=0
Returns 0 if 0K, <>0 if ERROR */

Before the Draw-bot can be used it must be initialized using the following
access program.

short o_init(void); /* Call at the Beginning to initialize
returns 0 if status 0K, 1 if error */

Message

Status and diagnostic messages are output using the o_message function of the
library!

1.6 Expected Changes

The software should be designed to make it relatively easy to accommodate any
of the following classes of changes.

e Changes to the geometry of the robot such that the mapping from a po-
sition (i.e., (x,y) pair) to the robot inputs is different.

e Changes to the interface to the robot.
e Changes to the format of the maze input file.

e Changes to any constant value within the given ranges.

Chapter 2

The Design

2.1 Module Guide : Maze Tracing Robot

In the following we propose a modularization for our robot project. The mod-
ularization is illustrated in 2.1

Module Name: maze_storage

Prefix: - ms_

Service: - stores the maze

Secret: - how the maze is stored

Module Name: path_storage

Prefix: - ps-

Service: - stores the shortest path

Secret: - how the path is stored

Module Name: load _maze

Prefix: - lm_

Service: - loads the maze

Secret: - where and how the maze file is read in

Module Name: find_path

Prefix: - fp

Service: - finds the shortest path through the maze

Secret: - the algorithm for finding the shortest path

Module Name: control

Prefix: - cno

Service: - controls the movement of the arm

Secret: - how the arm moves from position to position
and how the buttons are checked

Module Name: geometry

Prefix: - gm_

Service: - handles geometric positioning of the arm

Secret: - how the calculations from cell coords to
robot coords are performed

Module Name: hardware

14

M. v. Mohrenschildt 15
©

Prefix: - hw_

Service: - handles hardware aspects of arm (movement
and button checking)

Secret: - how it interfaces with the robot

Module Name: types_constants

Service: - provides standard variable types and con-
stants to modules

Secret: - how the data structures are defined and con-

stants defined and calculated

2.2 maze storage : MIS

Imported Data Types: cell
Boolean
Imported Constants: NUM_X_CELLS
NUM_Y_CELLS
Exported Functions
NAME INPUT | OUTPUT | EXCEPTION
ms_init
ms_set_maze_start cell ms_not_initialized
ms_cell_out_of_range
ms_set_maze_end cell ms_not_initialized
ms_cell_out_of range
ms_get_maze_start cell ms_not_initialzed
ms_no_start
ms_get_maze_end cell ms_not_initialized
ms_no_end
ms_set_wall cell,cell ms_not_initialized
ms_not_valid_wall
ms_is_connected cell,cell | Boolean | ms_not_initialized
ms_cell_out_of_range
ms_not_neighbours

State Variables
maze : set of tuple < cell, cell >
start : cell
end : cell

. is_init : Boolean
Access Function Semantics

ms_init ()
Transition: maze :=<>
start :=<>
end :=<>

is_init := true

ms_set_maze_start(c:cell)

SOINPOJN 10q0Y :T'g 231

arrow means USES
-

everything

global types_constants

path_storage

Input

read_maze

'

maze_storage

f

find_path

S

control

'

geometry

'

hardware

IPITYRSTRITON “A IV ()

Output

91

(© M. v. Mohrenschildt 17

Exception: —is_init = ms.not_initialized
—(cell_in range(c)) = ms_cell out_of _range
Transition: start:=c

ms_set_maze_end(c:cell)
Exception: —is_init = ms not_initialized
—(cell_in range(c)) = ms_cell out_of _range
Transition: end:=c

cell ms_get maze start()
Exception: —is_init = ms.not_initialized

—ms_set_maze_start = ms_no_start
Output: start

cell ms_get maze_end()
Exception: —is_init = ms.not_initialized

—ms_set_maze_end = ms_no_end
Output: end

ms_set_wall(cl,c2:cell)
Exception: -is_init = ms_not_initialized
(wall is point) V (wall is diagonal) V (wall is out of range)

. = ms_not_valid wall
Transition: maze :=maze || < c1,c2 >

Booleanms_is_connected(cl,c2:cell)
Exception: —is_init = ms.not_initialized
—(cell_in range(cl)) = ms_cell_out_of_range
—(cell_in range(c2)) = ms_cell_out_of range
—(neighbour(cl,c2)) = ms_not_neighbours
Output: J(wall between cl and c2)

2.3 path_storage : MIS

Imported Data Types: cell
Boolean

Imported Constants: NUM_X_CELLS
NUM_Y_CELLS

MAX_NUM_CELLS

Exported Functions

NAME INPUT | OUTPUT | EXCEPTION

ps-init

ps-add_to_path cell ps-_not_initialized

ps-get_next Integer cell ps-not_initialized
ps-index_out_of_range

ps_get_prev Integer cell ps-_not_initialized
ps-index_out_of range

ps-get_curr Integer cell ps_not_initialized
ps-index_out_of_range

M. v. Mohrenschildt 18
©

State Variables
path : sequence of cell
index : Boolean
is_init : Boolean
Access Function Semantics
ps-init ()
Transition: path:=<>
index := —1
is_init := true
ps-add_to_path(c:cell)
Exception: -is_init = ps_not_initialized
Transition: path := path||c
index := index + 1
cell ps_get_next(pos:Integer)
Exception: —is_init = ps_not_initialized
(pos < 0 V pos > index — 2) = ps_index_out_of range

Output: path[pos + 1]

cell ps_get_prev(pos:Integer)
Exception: -is_init = ps_not_initialized
(pos < 1 V pos > index — 1) = ps_index_ out_of _range

Transition: pos:=pos —1
Output: path[pos — 1]

cell ps_get_curr(pos:Integer)
Exception: -is_init = ps_not_initialized
(pos < 0 V pos > index — 1) = ps_index_out_of range

Output: path[pos]

2.4 load_maze : MIS

Imported Data Types: cell
String
Imported Access Functions: ms_init
ms_set_start
ms_set_end
ms_set_wall /* from maze_storage */

X read_cell
Exported Functions

NAME INPUT TYPE | OUTPUT TYPE | EXCEPTION
Im_load_maze String lm_file_error
State Variables

f . file
Access Function Semantics

M. v. Mohrenschildt 19
©

1m_load maze(filename : String)
Exception: error opening, reading, file format = lm file_ error

Transition: f := open(filename)
ms_set_maze_start(read_cell)
ms_set_maze_end(read_cell)
until end of f do

ms_set_wall(read cell, read cell)

od
2.5 find_path : MIS
Imported Data Types: cell
Boolean
Imported Constants: NUM_X_CELLS
NUM_Y_CELLS

Imported Access Functions: ms_get maze start
ms_get_maze_end
ms_is_connected
ps-add_to_path

Exported Functions

NAME INPUT | OUTPUT | EXCEPTION

fp_find_path Boolean

State Variables

path:sequence of cell

Access Functions

Boolean fp_find_path()

Output: Jpath, path|[0] = ms_get maze _start() A

path[|path| — 1] = ms_get _maze_end() A

(Vi,0 < i < |path| — 2,ms_is_connected(path[i], path[i + 1])) A
(Vi,0 < i < |path| — 2, ps_add_to_path(path[i]))

2.6 hardware : MIS

Imported Data Types: Boolean
button

Imported Access Functions: o_init
o_power
o_penDown
o_penPos
i_stopButton
i_homeButton

X i_backButton
Exported Functions

(© M. v. Mohrenschildt 20
NAME INPUT TYPE OUTPUT TYPE | EXCEPTION
hw _init hw_init_error
hw_power Integer hw_not_initialized
hw_power_error
hw_pen Integer hw_not_initialized

hw_power_not_on
hw_pen_error

hw_move | Integer,Integer hw _not_initialized
hw_power_not_on
hw_move_error

hw_check button hw_not_initialized
hw_power_not_on
hw_button_error

State Variables
stop_flag : Boolean
pwr_flag : Boolean
is_init : Boolean
Access Function Semantics
hw_init ()
Exception: o_init() # 0 = hw_init_error
Transition: is_init := true

hw_power (power: Integer)
Exception: -—is_init = hwnot_initialized
o_power(power) #* 0 = hw_power_error
Transition: if (power)
then pwr_flag := true
else pwr_flag := false

hw_pen(pen:Integer)
Exception: —is_init = hwnot_initialized
—pwr_flag = hw_power_not_on

o_penDown(pen) # 0 = hw_pen_error
Transition: o_penDown(pen)

hw_move (x,y:Integer)
Exception: —is_init = hwnot_initialized
—pwr_flag = hw_power_not_on

o_penPos(x,y) # 0 = hw.move_error
Transition: o_penPos(x,7y)

button hw_check(x,y:Integer)
Exception: —is_init = hw.not_initialized

—pwr_flag = hw_power_not_on
Transition: if i_stopButton

stop_flag := true

M. v. Mohrenschildt 21
©

Output: STOP if i_stopButton
HOME if i _homeButton
BACK if i_backButton

2.7 geometry : MIS

Imported Data Types: cell
Boolean
button

Imported Access Functions: hw_check
hw_move

Exported Functions

NAME | INPUT TYPE | OUTPUT TYPE | EXCEPTION
gm_go cell
Access Function Semantics

gm_go(c:cell)
Transition: if hw_check # STOP, hw_move(convert(dest))

2.8 control : MIS

Used External Data Types: Boolean, button, cell
Used External Modules &

. hardware, path_storage, maze_storage,
Functions:

geometry
Exported Functions
NAME INPUT TYPE | OUTPUT TYPE | EXCEPTION
cn_execute
State Variables

mode : {init, start, forward, reverse, home, done}
back_flag : Boolean
pos : Integer

State Transformations

(© M. v. Mohrenschildt 22
MODE | CONDITION ACTION NEW MODE
init Im_file_error mode := done
—fp_find_path mode := done
fp_find_path hw_init() mode := starting
hw_power(ON) pos :=0
hw_pen(UP) back flag := FALSE
starting | hw_check() = NONE gm_go(ps_get_curr(pos)) | mode := forward
hw_pen(down)
hw_check() = STOP mode := starting
forward | back_flag = TRUE back_flag := false
hw_check() = NONE gm_go(get_next(pos)) pos := pos + 1
mode := forward
hw_check() = STOP mode := forward
hw_check() = BACK gm_go(ps_get_prev(pos)) | pos := pos - 1
back flag := TRUE
mode := reverse
hw_check() = HOME mode := home
o_penPos = ms_get_end mode := home
A back_flag = FALSE
reverse | back flag = TRUE
hw_check() = NONE gm_go(ps_get_next(pos)) | pos := pos + 1
mode := forward
hw_check() = STOP mode := reverse
hw_check() = BACK gm_go(ps_get_prev(pos)) | pos := pos - 1
mode := reverse
hw_check() = HOME mode := home
home | hw_check() # STOP hw_pen(UP) mode := home
hw_check() = STOP mode := home
o_penPos = HOME mode := done
done hw_power(OFF) quit program
2.9 types_constants : MIS

Exported Types:

Exported Constants:

cell = tuple (x:Integer,y:Integer)
Boolean= {TRUE,FALSE}

String= sequence of char

button = set of {STOP,HOME,BACK,NONE}
Up

DOWN

