SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

12 Object Oriented Design (Ghezzi
Ch. 4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 30, 2017

McMaster
University @

Object Oriented Design

Administrative details
00D

Inheritance
Polymorphism
Dynamic binding
Introduction to UML

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

2/23

Administrative Details

@ NSERC Undergraduate Student Research Award
@ Assignment 1
» E-mail your partner if you haven't already done so
» E-mail the instructor if you haven't received your
partner's code
» Lab report due by 11:59 pm February 2
@ Assignment 2
> Files due by 11:59 pm Feb 15

» E-mail partner files by 11:59 pm Feb 16
» Lab report due by 11:59 pm Feb 27

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 3/23

Reviewing Changes

@ Use GitLab to review changes between commits
@ Review before committing: git difftool

@ To better deal with changes, use a “hard wrap” at an 80
column width, even for LaTeX documents

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 4/23

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/commit/1d1465c864cc29117ed5fd2c31af50e426537a91

Object Oriented Design

@ One kind of module, ADT, called class

@ A class exports operations (procedures) to manipulate
instance objects (often called methods)

@ Instance objects accessible via references

@ Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a

type)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 5/23

Inheritance

@ Another relation between modules (in addition to USES
and IS.COMPONENT_OF)

@ ADTs may be organized in a hierarchy
@ Class B may specialize class A

» B inherits from A
» Conversely, A generalizes B

@ A is a superclass of B

@ B is a subclass of A

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 6/23

Template Module Employee

Routine name | In Out Except
Employee string, string, money T | Employee
first_Name string

last_Name string

where siteT

salary money T

fire

assign siteT

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

7/23

Inheritance Examples

Template Module Administrative_Staff inherits Employee

Routine name

In

Out

Exception

do_this

folderT

Template Module Technical_Staff inherits Employee

Routine name | In Out | Exception
get_skill skill T
def_skill skill T

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

8/23

Inheritance Continued

A way of building software incrementally
Useful for long lived applications because new features
can be added without breaking the old applications

@ A subclass defines a subtype
@ A subtype is substitutable for the parent type
@ Polymorphism - a variable referring to type A can refer to

an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative_Staff and Technical_Staff
are instances of Employee

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 9/23

Inheritance Continued

empl, emp2: Employee

emp3: Technical _Staff

empl = Administrative_Staff()
emp2 = Technical _Staff()

emp3 = empl

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23

Inheritance Continued

empl, emp2: Employee

emp3: Technical _Staff

empl = Administrative_Staff() /
emp2 = Technical _Staff()

emp3 = empl

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23

Inheritance Continued

empl, emp2: Employee

emp3: Technical _Staff

empl = Administrative_Staff() /
emp2 = Technical_Staff() /
emp3 = empl

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23

Inheritance Continued

empl, emp2: Employee

emp3: Technical _Staff

empl = Administrative_Staff() /
emp2 = Technical_Staff() /
emp3 = empl x

emp3 = (Technical_Staff) empl

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23

Inheritance Continued

empl, emp2: Employee

emp3: Technical _Staff

empl = Administrative_Staff() /
emp2 = Technical_Staff() /

emp3 = empl x

emp3 = (Technical_Staff) empl /

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23

Inheritance Continued

empl, emp2: Employee

emp3: Technical _Staff

empl = Administrative_Staff() /
emp2 = Technical_Staff() /

emp3 = empl x

emp3 = (Technical_Staff) empl /

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23

Dynamic Binding

e Many languages, like C, use static type checking
@ OO languages use dynamic type checking as the default

@ There is a difference between a type and a class once we
know this
» Types are known at compile time
» The class of an object may be known only at run time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 11/23

How can Inheritance be Represented?

@ We start introducing the UML notation

e UML (Unified Modelling Language) is a widely adopted
standard notation for representing OO designs

@ We introduce the UML class diagram

@ Classes are described by boxes

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 12/23

UML Representation of Inheritance

EMPLOYEE

A

ADMINISTRATIVE_STAFF

TECHNICAL STAFF

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

13/23

Bank Account Example

BarkAccount

owner | String
balance ! Dollars

deposit { amount ; Dollars)
witharawa! (smowit | Dodses)

CheckingAccount

insufficientFundsFee : Dollars

SavingsAccount

processCheck { checkToProcess ¢

withdrawal (amount © Dollars)

annualinterestRate | Parcentage

Check) depositMonthlyInterest {)

withdrawal {amount : Dollars)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

14/23

UML Associations

@ Associations are relations that the implementation is
required to support

@ Can have multiplicity constraints

TECHNICAL | | | PROJECT
STAFF

project member

managcs

MANAGER

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 15/23

Flight Example

Flight
5 arPlan=Type : Stri
FWW:W 0.* assignedPlane mms’“,;m:%
m;aéu ah:ﬁm' assignedFlghts 6.1 mlazlrrum}ew:m[as
departingAirport : String e

arrivingéirpart : String

delayFlight (numberOMIntes : Minutes)

getarrivalTime () @ Date

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 16/23

UML Aggregation

@ Defines a PART_OF relation
o Differs from IS_.COMPONENT_OF
@ TRIANGLE has its own methods

@ TRIANGLE implicitly uses POINT to define its data
attributes

TRIANGLE
1

3

POINT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 17/23

UML Packages

IS.COMPONENT _OF is represented via the package notation

package name

Class 1

Class 3

Class 2

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

18/23

Point ADT Module

Template Module
PointT

Uses

N/A

Syntax

Exported Types

PointT =7

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 19/23

Point ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointT real, real | PointT

xcoord real

ycoord real

dist PointT real
Semantics

State Variables

xc: real
yc: real

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

20/23

Point Mass ADT Module

Template Module
PointMassT inherits PointT
Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4)

21/23

Point Mass ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions

new PointMassT | real, real, real | PointMassT | NegMassExceptio
mval real

force PointMassT real

fx PointMassT real
Semantics

State Variables

ms: real

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 22/23

Point Mass ADT Module Semantics

new PointMassT(x, y, m):
@ transition: xc,yc, ms == x,y, m
@ output: out := self

@ exception: exc := (m < 0 = NegativeMassException)

force(p):
@ output:

self.ms x p.ms

t :== UNIVERAL_G
ou self .dist(p)?

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 23/23

