SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

37 Review for Final DRAFT

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 19, 2017

McMaster
University ':*ﬁ



Review for Final Exam

@ Administrative details
Design patterns

°
@ Topics on the exam

@ Structure of the exam
°

Advice on exam preparation

» Time management before the exam
» Time management during the exam
» How to study

Questions? Feedback? Comments?

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

2/1



Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng
and on van Vliet (2000)

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

3/1



Model View Controller (MVC)

@ Separate computational elements from |/O elements

@ Three components
1. Model encapsulates the system's data as well as the
operations on the data
2. View displays the data from the model components,
possibly multiple view components
3. Controller handles input actions
@ The controller may or may not depend on the state of the
model
@ The controller depends on model state when menu items
are enabled or disabled depending on the state of the
model

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

4/1



Design Pattern Properties

@ A pattern addresses a recurring design problem that arises
in specific design situations and presents a solution to it

@ A pattern must balance a set of opposing forces

e Patterns document existing, well-proven design experience

e Patterns identify and specify abstractions above the level
of single components (modules)

@ Patterns provide a common vocabulary and understanding
for design principles

@ Patterns are a means of documentation

@ Patterns support the construction of software with
defined properties, including non-functional requirements,
such as flexibility and maintainability

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

5/1



Describing Patterns

@ Context: the situation giving rise to a design pattern

@ Problem: a recurring problem arising in that situation,
and

@ Solution: a proven solution to that problem

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

6/1



The Proxy Pattern (from van Vliet (2000))

@ Context: A client needs services from another

component. Though direct access is possible, this may
not be the best approach

Problem: We do not want to hard-code access to a
component into a client. Sometimes, such direct access is
inefficient; in other cases it may be unsafe. This
inefficiency or insecurity is to be handled by additional
control mechanisms, which should be kept separate from
both the client and the component to which it needs
access.

Solution: The client communicates with a representative
rather than the component itself. This representative, the
proxy, also does and pre- and postprocessing that is
needed.

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

7/1



Command Processor Pattern

@ Context: User interfaces which must be flexible or provide
functionality that goes beyond the direct handling of user
functions. Examples are undo facilities or logging
functions

@ Problem: We want a well-structured solution for mapping
an interface to the internal functionality of a system. All
‘extras’ which have to do with the way user commands
are input, additional commands such as undo and redo,
and any non-application-specific processing of user
commands, such as logging, should be kept separate from
the interface to the internal functionality.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT 8/1



Command Processor Pattern Continued

@ Solution: A separate component, the command processor,
takes care of all commands. The command processor
component schedules the execution of commands, stores
them for later undo, logs them for later analysis, and so
on. The actual execution of the command is delegated to
a supplier component within the application.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

9/1



Topics on the Final Exam

@ All of them

e From “introduction to software engineering” to “design
patterns”

@ Greater emphasis on the material since the midterm, such
as

» Specification
» Verification

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT 10/1



Types of Questions

Short answer

Complete the specification

Write small bits of code (C, OCaml or Java)
Design a module

List the test cases for coverage

Build the control flow graph

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

11/1



Time Management

@ Time management before the exam
» Make a schedule
» Optimize the reward for spending your time and energy
» Work smarter not harder

Schedule time for rest

v

@ Time management during the exam
» Divide time proportional to value of question
» Start with what you know best
» Leave nothing blank

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT 12/1



How to Study?

@ Better if an active, rather than a passive, process
@ Do questions

From midterm, assignments

From the textbook

From other books

Make up your own

MIS for an ADT that you have studied
MIS for 2C03 assignments

Questions from last year's final

Post questions to WebCT

>
>

v

v

vV vy vVvyy

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT 13/1



Questions?

Software quality?
Software principles?
Module decomposition?
MIS?

Parnas tables?

Fault seeding

White box testing?

@ Analysis?

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 37 Review for Final DRAFT

14/1



