SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

14 Mod Decomp Contd (Ghezzi Ch.
4, H&S Ch. 7)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

February 3, 2017

McMaster
University @

Module Decomposition

@ Administrative details

@ Relationship between modules

@ The USES relation

@ Module decomposition by secrets
@ The IS.COMPONENT _OF relation
@ Module guide

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 2/41

Administrative Details

@ Assignment 2
> Files due by 11:59 pm Feb 15
» E-mail partner files by 11:59 pm Feb 16
» Lab report due by 11:59 pm Feb 27

@ Midterm exam

March 1, 7:00 pm, TSH/120

90 minute duration

Multiple choice - 3040 questions?
Open book (any paper)

v

v

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

3/41

Assignment 2

@ Q redefines gravity
@ Redefine gravity in games

F = ﬁmlmz = f(r)m1m2

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 4/41

https://www.youtube.com/watch?v=5xdbPhnfFEI
https://www.youtube.com/watch?v=FFoZeD7S4EU

Syntax Circle ADT Module Continued

Routine name | In Out Exceptions
new CircleT PointT, real | CircleT

cen PointT

rad real

area real

intersect CircleT boolean

connection CircleT LineT

force real — real | CircleT — real

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

5/41

Access Routine Semantics Continued

intersect(ci):

@ output:
3(p : PointT|insideCircle(p, ci) : insideCircle(p, self))

@ exception: none
connection(ci):
@ output: out := new LineT(c, ci.cen())
@ exception: none
force(f):
@ output: out := \c —
self .area() - c.area() - f(self.connection(c).len())

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 6/41

Syntax Deque Of Circles Module

Routine name In Out Exceptions
Deq_init

Deq_pushBack CircleT FULL
Deq_pushFront CircleT FULL
Deq_popBack EMPTY
Deq_popFront EMPTY
Deq_back CircleT | EMPTY
Deq_front CircleT | EMPTY
Deq_size integer

Deq_disjoint boolean | EMPTY
Deq_sumFx real — real | real EMPTY, POS
Deq_totalArea real EMPTY
Deq_averageRadius real EMPTY

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

7/41

Semantics Deque Of Circles Module

State Variables

s: sequence of circleT
State Invariant

|s| < MAX_SIZE
Assumptions

init() is called before any other access program.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 8/41

Access Routine Semantics
Deq_disjoint():
@ output out :=V(i,j : N|i € [0..|s| — 1] Aj €
[0..|s| — 1] A7 # j : —s][i].intersect(s[]))
@ exception: exc := (|s| = 0 = EMPTY)

What happens if s only holds one circle? Does this make
sense?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

9/41

Access Routine Semantics

Deq_sumFx(f):
@ output

out ;= +(i : N|i € ([1..|]s| — 1]) : Fx(f, s[i], s[0]))

@ exception: exc := (|s| = 0 = EMPTY)

Local Functions
Fx: (real — real) x CircleT x CircleT — real
Fx(f, ci, ¢j) = xcomp(ci.force(f)(cj), ci, ¢j)

xcomp: real x CircleT x CircleT — real

ci.cen().xcrd() — ¢j.cen().xcrd()

F,ci,cj)=F
xcomp(F, ci. ¢j) ci.connection(¢j).len()

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 10/41

Access Routine Semantics Continued

Deq_totalArea():
@ output
out :=7?
@ exception: exc := (|s| = 0 = EMPTY)
Deq_averageRadius():
@ output

out =7

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

11/41

Details and Notes

Doxygen, make, LaTeX, Python (2.7) and PyUnit
Do NOT change the interface
Can add __methodName__
Makefile includes rule for doc
Makefile includes rule for test
Tag repo as A2Partl and A2Part2
Trading of code will be done automatically
Python specifics:
» FULL, EMPTY implemented via inheriting from
Exception class
» Exceptions should only be used with one argument, a
string explaining what problem has occurred.
» Dec.accessProg, not Dec_accessProg, as shown in the
specification.
Monitor all changes pushed to our repo

®© 6 6 6 6 66 o o

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 12/41

File and Folder Structure

e A2

» doxConfig
» Makefile
> report
> report.tex
> report.pdf
> src

pointADT .py
lineADT .py
circleADT.py
deque.py
testCircleDeque.py
» srcPartner

> circleADT .py

vV vy VvVvYy

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

13/41

Questions

@ What relationships have we discussed between modules?

@ Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 14/41

The USES Relation

@ A uses B

» A requires the correct operation of B

» A can access the services exported by B through its
interface

This relation is “statically” defined

A depends on B to provide its services

For instance, A calls a routine exported by B

v

\{

v

@ A is a client of B; B is a server

@ Inheritance, Association and Aggregation imply Uses

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 15/41

Relationships Between Modules

@ Let S be a set of modules
5 — {Ml, Mz, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If M; and M; are in S, < M;, M; >€ r can be written as
M,-rMJ-

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 16/41

Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rt M; A M;rtM;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 17/41

Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (directed acyclic graph)

m, M,
a graph ‘/ \M\ ‘/J’\a
/IZ f a DAG /\ /
P S

\./ \./

a) b)

Why do we prefer the uses relation to be a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 18/41

Desirable Properties

@ USES should be a hierarchy
» Hierarchy makes software easier to understand
» We can proceed from the leaf nodes (nodes that do not
use other nodes) upwards
» They make software easier to build
» They make software easier to test

@ Low coupling
@ Fan-in is considered better than Fan-out: WHY?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 19/41

DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 20/41

DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 21/41

Hierarchy

@ Organizes the modular structure through levels of
abstraction

@ Each level defines an abstract (virtual) machine for the
next level
@ Level can be defined precisely

» M; has level 0 if no M; exists such that M;rM;
> Let k be the maximum level of all nodes M; such that
MirM;, then M; has level k + 1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 22/41

Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromModl else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 23/41

Question about Association and DAG

Is the uses relation here a DAG?

TECHNICAL | 1 | PROJECT
_STAFF project member
1 “*
managcs
MANAGER
1
Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 24/41

Module Decomposition (Parnas)

Conceptual | APP

modules
H/W A S/w Behav.
hiding ecision hiding
L
Leaf modules
| — | /contair\l |
71 code| }
Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 25/41

Module Decomposition (Parnas)

For the module decomposition on the previous slide:

@ Does it show a Uses relation?
o Is it a DAG?

@ Is it a tree?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 26/41

IS COMPONENT _OF

@ The Parnas decomposition by secrets gives an
IS_.COMPONENT _OF relationship

@ Used to describe a higher level module as constituted by a
number of lower level modules

e A IS_.COMPONENT_OF B means B consists of several
modules of which one is A

e B COMPRISES A

o Ms; = {M]My € S A My 1S.COMPONENT_OF M;} we
say that Ms; IMPLEMENTS M;

@ How is IS.COMPONENT _OF represented in UML?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 27/41

A Graphical View
M_ M 5 My

W i s N,
\ l/ in\%

My
(IS_COMPONENT_OF) (COMPRISES)

They are a hierarchy

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 28/41

Product Families

o Careful recording of (hierarchical) USES relation and
IS_.COMPONENT _OF supports design of program families

@ Attempt to recognize modules that will differ in
implementation between family members

@ New program family member should start at the
documentation of the design, not with the code

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 29/41

Remember - Information Hiding

@ Basis for design (i.e. module decomposition)
@ Implementation secrets are hidden to clients

@ They can be changed freely if the change does not affect
the interface

@ Try to encapsulate changeable requirements and design
decisions as implementation secrets within module
implementations

@ Decomposition by secrets, not by sequence of steps

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

30/41

Prototyping

@ Once an interface is defined, implementation can be done
» First quickly but inefficiently
» Then progressively turned into the final version

@ Initial version acts as a prototype that evolves into the
final product

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 31/41

Module Guide

@ Part of Parnas’ Rational Design Process (RDP)

@ When decomposing the system into modules, we need to
document the module decomposition so that developers
and other readers can understand and verify the
decomposition

@ Parnas proposed a Module Guide (MG) based on the
decomposition module tree shown earlier

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

32/41

RDP - MG

@ The MG consists of a table that documents each
module’s service and secret

@ Conceptual modules will have broader responsibilities and
secrets

@ Following a particular branch, the secrets at lower levels
“sum up” to the secret at higher levels

@ The leaf modules that represent code will contain much
more precise services and secrets

@ Only the leaf modules are actually implemented

@ The MG should list the likely and unlikely changes on
which the design is based

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 33/41

Example

Link

3. Module Hicrarchy

Tevel T Tevel2 Tewel3 Teveld
Mouse Motion module
X Input Device Reyboard Input module
Hardware Hiding ‘module
RN File Reading module
Ouiput Device Screen Display module
module File Wrting module
Master Control module
Frame Display module
User Command Defect module
Boundary
Specification
Geomery Specification module e
Specification
odule
Function Drivers Material Property
module Specification
Behavior-Hiding Physical Atiibutes module
module module Boundary
Condition

Specification

Save_Load module

["Write Output File |

Save_Load Tnput
le module

Shared Services
module

Frame Geometry module

Error Handle module

Mesh Drawing module

Drawing Tools module

Software Decision
module

Tnput Data module

Mesh Data module

Combinatorial Grid module

Geometric Grid module

Physical Attributes module

Generic Tools
module

Grid Function Vector module
Edge Tterator module
Boundary Tterator module
‘Cell Neighbor Search module

Mesh Generating
Algorithm module

Geometric Mesh Generation module

Physical Attrbutes Assignment
module

179

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

34/41

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Lectures/L13_ModuleDecomposition/DecompBySecretHierarchyExample.png

Module Details

For each module
Module name
Secret (informal description)

Service or responsibility (informal description)

For “leaf” modules add
» Associated requirement
» Anticipated change
» Module prefix

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 35/41

RDP - MIS

@ For each leaf module we need to document its interface
and its implementation

@ In RDP, the interfaces are documented in the Module
Interface Specification (MIS)

@ We have already seen MIS examples specified as Module
State Machines

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7)

36/41

References

@ Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. WEeiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

@ Parnas, D. L., “On a 'Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336-339

@ Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053-1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 37/41

References Continued

@ Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128-138,

@ Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 38/41

References Continued

@ Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it", IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

@ Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

@ Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu /428727 .html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 39/41

References Continued

@ Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

@ EISheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh

generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

@ Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 40/41

References Continued

@ Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

@ Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

e Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 14 Mod Decomp Contd (Ghezzi Ch. 4, H&S Ch. 7) 41/41

