
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

12 Object Oriented Design (Ghezzi
Ch. 4)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 30, 2017



Object Oriented Design

Administrative details

OOD

Inheritance

Polymorphism

Dynamic binding

Introduction to UML

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 2/23



Administrative Details

NSERC Undergraduate Student Research Award

Assignment 1
I E-mail your partner if you haven’t already done so
I E-mail the instructor if you haven’t received your

partner’s code
I Lab report due by 11:59 pm February 2

Assignment 2
I Files due by 11:59 pm Feb 15
I E-mail partner files by 11:59 pm Feb 16
I Lab report due by 11:59 pm Feb 27

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 3/23



Reviewing Changes

Use GitLab to review changes between commits

Review before committing: git difftool

To better deal with changes, use a “hard wrap” at an 80
column width, even for LaTeX documents

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 4/23

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/commit/1d1465c864cc29117ed5fd2c31af50e426537a91


Object Oriented Design

One kind of module, ADT, called class

A class exports operations (procedures) to manipulate
instance objects (often called methods)

Instance objects accessible via references

Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a
type)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 5/23



Inheritance

Another relation between modules (in addition to USES
and IS COMPONENT OF)

ADTs may be organized in a hierarchy

Class B may specialize class A
I B inherits from A
I Conversely, A generalizes B

A is a superclass of B

B is a subclass of A

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 6/23



Template Module Employee
Routine name In Out Except
Employee string, string, moneyT Employee
first Name string
last Name string
where siteT
salary moneyT
fire
assign siteT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 7/23



Inheritance Examples

Template Module Administrative Staff inherits Employee

Routine name In Out Exception
do this folderT

Template Module Technical Staff inherits Employee

Routine name In Out Exception
get skill skillT
def skill skillT

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 8/23



Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

A subclass defines a subtype

A subtype is substitutable for the parent type

Polymorphism - a variable referring to type A can refer to
an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative Staff and Technical Staff
are instances of Employee

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 9/23



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff
emp1 = Administrative Staff()

√

emp2 = Technical Staff()

√

emp3 = emp1

×

emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff
emp1 = Administrative Staff()

√

emp2 = Technical Staff()

√

emp3 = emp1

×

emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff
emp1 = Administrative Staff()

√

emp2 = Technical Staff()
√

emp3 = emp1

×

emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff
emp1 = Administrative Staff()

√

emp2 = Technical Staff()
√

emp3 = emp1 ×
emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff
emp1 = Administrative Staff()

√

emp2 = Technical Staff()
√

emp3 = emp1 ×
emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23



Inheritance Continued

emp1, emp2: Employee
emp3: Technical Staff
emp1 = Administrative Staff()

√

emp2 = Technical Staff()
√

emp3 = emp1 ×
emp3 = (Technical Staff) emp1

√

Polymorphism: type of RHS must be a subtype of the LHS

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 10/23



Dynamic Binding

Many languages, like C, use static type checking

OO languages use dynamic type checking as the default

There is a difference between a type and a class once we
know this

I Types are known at compile time
I The class of an object may be known only at run time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 11/23



How can Inheritance be Represented?

We start introducing the UML notation

UML (Unified Modelling Language) is a widely adopted
standard notation for representing OO designs

We introduce the UML class diagram

Classes are described by boxes

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 12/23



UML Representation of Inheritance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 13/23



Bank Account Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 14/23



UML Associations

Associations are relations that the implementation is
required to support

Can have multiplicity constraints

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 15/23



Flight Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 16/23



UML Aggregation

Defines a PART OF relation

Differs from IS COMPONENT OF

TRIANGLE has its own methods

TRIANGLE implicitly uses POINT to define its data
attributes

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 17/23



UML Packages

IS COMPONENT OF is represented via the package notation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 18/23



Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

PointT = ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 19/23



Point ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcoord real
ycoord real
dist PointT real

Semantics

State Variables

xc : real
yc : real

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 20/23



Point Mass ADT Module

Template Module

PointMassT inherits PointT

Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 21/23



Point Mass ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointMassT real, real, real PointMassT NegMassException
mval real
force PointMassT real
fx PointMassT real

Semantics

State Variables

ms: real

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 22/23



Point Mass ADT Module Semantics

new PointMassT(x , y ,m):

transition: xc , yc ,ms := x , y ,m

output: out := self

exception: exc := (m < 0⇒ NegativeMassException)

force(p):

output:

out := UNIVERAL G
self .ms × p.ms

self .dist(p)2

exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 12 Object Oriented Design (Ghezzi Ch. 4) 23/23


