SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

06 Software Engineering Principles
Continued (Ch. 3)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 16, 2017

McMaster
University @



Software Engineering Principles

@ Administrative details
e Key principles
» Rigour
» Formality
» Separation of concerns
» Modularity
» Abstraction
» Anticipation of change
» Generality
» Incrementality

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 2/21



Administrative Details

@ Assignment 1

» Final version now in repo

» Files due by midnight January 28

» E-mail partner files by January 28

» Lab report due February 2

» Using Python 2.7, doxygen, make, LaTeX, git

» Change from moore to mills

@ Questions on assignment?

» You may have to make assumptions if you find the
description ambiguous

» Feel free to incorporate robustness, but include doxygen
comments to explain what you are doing

» Do not add to the methods exported by the module

» Do not add additional arguments to the method calls

» Constructor versus Selector (Accessor) versus Mutator?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 3/21



Administrative Details Continued

@ Next week's tutorial will cover LaTeX and Assignment 1
e Following week will cover git and Assignment 1

@ Strongly suggest installing VirtualBox (or equivalent) with
a Linux VM

@ Can subscribe to Avenue discussion

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 4/21



Formal Versus Rigourous

Formal Version of Calculus “Textbook”

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 5/21


https://shemesh.larc.nasa.gov/fm/papers/Butler-JFR-FV-Integ.pdf

Separation of Concerns

What are examples of separation of concerns in traditional
engineering?

What are examples of separation of concerns in software
engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 6/21



Separation of Concerns: SE Examples

@ Separation of requirements from design
@ Separation of design from implementation
@ Decomposition of a system into a set of modules

@ The distinction between a module’s interface and its
implementation
@ The distinction between syntax and semantics

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 7/21



Modularity

A modular system is a complex system that is divided into
smaller parts called modules
Modularity enables the principle of separation of concerns
to be applied in two ways:

1. Different parts of the system are considered separately

2. The parts of the system are considered separately from

their composition

Modular decomposition is the top-down process of
dividing a system into modules
Modular decomposition is a “divide and conquer”
approach
Modular composition is the bottom-up process of building
a system out of modules
Modular composition is an “interchangeable parts”
approach

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3)

8/21



Examples of Modularity

What are examples of modularity in traditional engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 9/21



Properties of Good Modules

@ To achieve the benefits of modularity, a software engineer
must design modules with two properties
1. High cohesion: The components of the module are
closely related
2. Low coupling: The module does not strongly depend on
other modules

@ This allows the modules to be treated in two ways:

1. As a set of interchangeable parts
2. As individuals

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 10/21



Zero Coupling?

Given that low coupling is desirable, the ideal modularization
has zero coupling. Is this statement True or False?

A. True
B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 11/21



Proposed Modularization for a Car

Suppose you decide to modularize the description of a car by
considering the car as comprising small cubes 15 inches on a
side.

1. Is the cohesion high or low?

2. Is the coupling high or low?

3. Propose a better modularization
4

. In general, how should you decompose a complex system
into modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 12/21



Abstraction

@ Abstraction is the process of focusing on what is
important while ignoring what is irrelevant
@ Abstraction is a special case of separation of concerns
@ Abstraction produces a model of an entity in which the
irrelevant details of the entity are left out
» Many different models of the same entity can be
produced by abstraction
» Abstraction models differ from each other by what is
considered important and what is considered irrelevant
» Repeated application of abstraction produces a hierarchy
of models

@ Refinement is the opposite of abstraction

@ Over abstraction produces models that are difficult to
understand because they are missing so many details

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 13/21



Abstract Data Type

What makes an Abstract Data Type Abstract?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 14/21



Anticipation of Change

@ Anticipation of change is the principle that future change
should be anticipated and planned for

@ Also called design for change

@ Techniques for dealing with change:

1. Configuration management: Manage the configuration
of the software so that it can be easily modified as the
software evolves

2. Information hiding: Hide the things that are likely to
change inside of modules

3. Little languages: Create little languages that can be
used to solve families of related problems

@ Since software is constantly changing, anticipation of
change is crucial for the software development process

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 15/21



Anticipation of Change

Change should be anticipated for the development process, as
well as the product. For instance, what can you do to
anticipate changes in staffing?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 16/21



Generality

@ The principle of generality is to solve a more general
problem than the problem at hand whenever possible
@ Advantages
» The more general a solution is the more likely that it can
be reused
» Sometimes a general problem is easier to solve than a
specific problem
@ Disadvantages
» A general solution may be less efficient than a more
specific solution
» A general problem may cost more to solve than a more
specific problem
@ Abstraction is often used to extract a general solution
from a specific solution

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 17/21



Generality for Computational Geometry

The n-dimensional volume of a Euclidean ball of radius R in
n-dimensional Euclidean space

k
s
Var(R) = 7 R*
2(k!)(4m) R2k+1

Vo (R) = (2k +1)!

@ See Wikipedia page for Volume of an n-ball
@ CGAL includes specific and general kernels

@ Domain Specific Languages (DSLs) hold the promise of
generality and performance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 18/21


https://en.wikipedia.org/wiki/Volume_of_an_n-ball
http://doc.cgal.org/latest/Manual/packages.html

Generality of ODE Solver

Control Module

ODE Solver gggse,\;aot:‘:?e Energy Equations Plotting Module Input Format Output Format
Module (M9) (M5) Module (M6) (M10) Module (M2) Module (M4)

Input Parameters Hardware Hiding
Module (M3) Module (M1)

oy

Sequence Data
Structure Module
(M8)

19/21

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3)



Incrementality

@ The principle of incrementality is to attack a problem by
producing successively closer approximations to a solution

@ Enables the development process to receive feedback and
the requirements to be adjusted accordingly
@ Techniques for developing software incrementally
1. Rapid prototyping: Produce a prototype that is “thrown
away” later
2. Refinement: A high-level artifact (like a requirements
specification or a higher-level design) is incrementally
refined into a low-level artifact (like a lower-level design
or an implementation)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 20/21



Principles for High Quality Documentation

@ To achieve external qualities for documentation, there are
some generally agreed on internal qualities

@ Internal qualities can more likely be directly measured

@ Following list of qualities based on IEEE guidelines for
requirements (IEEE Std 830-1998)
» Complete
» Consistent
» Modifiable
» Traceable
Unambiguous
Correct
Verifiable
» Abstract

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 21/21



