
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

34 Black Box Testing (Ch. 6)
DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 19, 2017

Black Box Testing

Administrative details

Black Box Testing
I Formal using RegionT
I Function tables

Testing boundary conditions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 2/20

Administrative Details

Today’s slide are partially based on slides by Dr. Wassyng

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 3/20

Black Box Testing Example

The program receives as input a record describing an invoice.
(A detailed description of the format of the record is given.)
The invoice must be inserted into a file of invoices that is
sorted by date. The invoice must be inserted in the
appropriate position: If other invoices exist in the file with the
same date, then the invoice should be inserted after the last
one. Also, some consistency checks must be performed: The
program should verify whether the customer is already in a
corresponding file of customers, whether the customers data in
the two files match, etc.

What test cases would satisfy the complete-coverage principle?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 4/20

Invoice Example Test Cases

1. An invoice whose date is the current date

2. An invoice whose date is before the current date (This
might be even forbidden by law) This case, in turn, can
be split into the two following subcases:

2.1 An invoice whose date is the same as that of some
existing invoice

2.2 An invoice whose date does not exist in any previously
recorded invoice

3. Several incorrect invoices, checking different types of
inconsistencies

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 5/20

Systematic Black-Box Techniques

Testing driven by logic specifications

Function table based testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 6/20

Test Cases from MIS for PointT
Routine name In Out Exceptions
PointT real, real PointT InvalidPointException
xcoord real
ycoord real
dist PointT real

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 7/20

TestPointT.java I

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . A s s e r t . ∗ ;
publ ic c l a s s TestPointT
{

pr ivate s t a t i c double
ADMISS ERR CONSTRUCTOR = 0 ;

pr ivate s t a t i c double ADMISS ERR DIST =
1e−20;

@Test
publ ic void t e s t C o n s t r u c t o r F o r x ()
{

a s s e r t E q u a l s (2 3 , new PointT (2 3 ,
38) . x c o o r d () ,
ADMISS ERR CONSTRUCTOR) ;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 8/20

TestPointT.java II
}
@Test
publ ic void t e s t C o n s t r u c t o r F o r y ()
{

a s s e r t E q u a l s (3 8 , new PointT (2 3 ,
38) . y c o o r d () ,
ADMISS ERR CONSTRUCTOR) ;

}
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)
publ ic void t e s t F o r E x c e p t i o n N e g x ()
{

PointT p = new PointT (−10 , 0) ;
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 9/20

TestPointT.java III
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)
publ ic void t e s t F o r E x c e p t i o n N e g y ()
{

PointT p = new PointT (0 , −10) ;
}
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)
publ ic void t e s t F o r E x c e p t i o n M a x x ()
{

PointT p = new
PointT (C o n s t a n t s . MAX X+1, 0) ;

}
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 10/20

TestPointT.java IV
publ ic void t e s t F o r E x c e p t i o n M a x y ()
{

PointT p = new PointT (0 ,
C o n s t a n t s . MAX Y+1) ;

}
@Test
publ ic void t e s t D i s t N o r m a l ()
{

double x = C o n s t a n t s . MAX X / 2 . 0 ;
double y = C o n s t a n t s . MAX Y / 2 . 0 ;
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (Math . s q r t (x∗x + y∗y) ,

p . d i s t (new PointT (0 , 0)) ,
ADMISS ERR DIST) ;

}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 11/20

TestPointT.java V
@Test
publ ic void t e s t D i s t L a r g e s t D i a g o n a l ()
{

double x = C o n s t a n t s . MAX X ;
double y = C o n s t a n t s . MAX Y ;
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (Math . s q r t (x∗x + y∗y) ,

p . d i s t (new PointT (0 , 0)) ,
ADMISS ERR DIST) ;

}
@Test
publ ic void t e s t D i s t A l o n g E d g e ()
{

double x = C o n s t a n t s . MAX X ;
double y = C o n s t a n t s . MAX Y ;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 12/20

TestPointT.java VI
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (C o n s t a n t s . MAX X,

p . d i s t (new PointT (0 ,
C o n s t a n t s . MAX Y)) ,
ADMISS ERR DIST) ;

}
@Test
publ ic void t e s t D i s t Z e r o ()
{

double x = C o n s t a n t s . MAX X / 2 . 0 ;
double y = C o n s t a n t s . MAX Y / 2 . 0 ;
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (0 , p . d i s t (p) ,

ADMISS ERR DIST) ;
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 13/20

TestPointT.java VII
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 14/20

Function Table-Based Testing

Boundaries are obvious in table predicates

Make test cases that exercise between and on boundaries

Coverage already aided by function table “rules”

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 15/20

Testing Boundary Conditions

Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

Some typical programming errors, however, just happen
to be at the boundary between different classes

I Off by one errors
I < instead of ≤
I equals zero

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 16/20

Criterion

After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

This applies to both white-box and black-box techniques

In practice, use the different testing criteria in
combinations

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 17/20

The Oracle Problem

Given input test cases that cover the domain, what are
the expected outputs?

Oracles are required at each stage of testing to tell us
what the right answer is

Black-box criteria are better than white-box for building
test oracles

Automated test oracles are required for running large
amounts of tests

Oracles are difficult to design - no universal recipe

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 18/20

The Oracle Problem Continued
Determining what the right answer should be is not
always easy

I Air traffic control system
I Scientific computing
I Parallel testing can approximate an oracle
I Properties of the expected values can be easier than

stating the expected output

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 19/20

Module Testing

Scaffolding needed to create the environment in which
the module should be tested

Stubs - a module used by the module under test

Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 34 Black Box Testing (Ch. 6) DRAFT 20/20

