SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

February 3, 2017

McMaster
University @

Module Decomposition

@ Administrative details

Module decomposition

Software architecture

Design for change

Relationship between modules
The USES relation

Module decomposition by secrets
The IS_.COMPONENT _OF relation

Techniques for design for change

Module guide

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 2/20

Administrative Details

@ Assignment 1
» E-mail the instructor if you haven't received your
partner's code
» Lab report due by 11:59 pm February 2
@ Assignment 2
> Files due by 11:59 pm Feb 15
» E-mail partner files by 11:59 pm Feb 16
» Lab report due by 11:59 pm Feb 27
e Midterm exam
March 1, 7:00 pm, TSH/120
90 minute duration
Multiple choice - 3040 questions?
Open book (any paper)

v v v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

3/20

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

4/20

QueueADT Module Syntax (Abstract Object)

What is missing from this interface?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
size integer | NOT_INIT

isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

If MAX_SIZE is exported, what could you replace isempty and
isfull by? (This new interface will move some work to the

programmer.)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

5/20

Quality Criteria

@ Consistent

» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features (only one way to
access each service)

@ General - cannot always predict how the module will be
used

As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related

@ Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 6/20

QueueADT Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop T NOT_INIT, EMPTY
size integer | NOT_INIT

isinit boolean

@ front has been merged with pop
@ size replaces isempty and isfull

@ isinit is added

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

7/20

Modular Decomposition

@ Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

@ We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

@ We need to produce a software architecture

@ The architecture (modular decomposition) is summarized
in a Software Design Document

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 8/20

Software Architecture

@ Shows gross structure and organization of the system to
be defined
@ Its description includes the description of

» Main components of the system

» Relationship among those components

» Rationale for decomposition into its components

» Constraints that must be respected by any design of the
components

@ Guides the development of the design

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 9/20

Specific Techniques for Design for Change

What software tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

10/20

Specific Techniques for Design for Change

@ Anticipate definition of all family members
@ ldentify what is common to all family members, delay
decisions that differentiate among different members
e Configuration constants
» Factor constant values into symbolic constants
» Compile time binding
» MAXSPEED = 5600
e Conditional compilation
» Compile time binding
» Works well when there is a preprocessor, like for C
» If performance is not a concern, can often “fake it” at
run time
e Make
e Software generation
» Compiler generator, like yacc
» Domain Specific Language

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7)

11/20

Questions

@ What relationships have we discussed between modules?

@ Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 12/20

Relationships Between Modules

@ Let S be a set of modules
S - {Ml, MQ, ceey Mn}

@ A binary relation r on S is a subset of S x S

o If M and M are in S, < M;, M; >¢€ r can be written as
M,'I’/\/Ij

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 13/20

Relations

@ Transitive closure r* of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rtM; A M;rtM;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 14/20

Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (directed acyclic graph)

N2 S o

M M2 1,3
M \
A a DAG /
l ‘/ l My 2,1 M2
M M M M

5 1,2,1,1

3 2
N
M

4
a) b)

Why do we prefer the uses relation to be a DAG?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 15/20

References

@ Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. Weiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

@ Parnas, D. L., “On a 'Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336-339

@ Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053-1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 16/20

References Continued

e Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128-138,

@ Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 17/20

References Continued

e Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it", IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

@ Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

@ Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu /428727 html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 18/20

References Continued

@ Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

@ EISheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh

generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

@ Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 19/20

References Continued

@ Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

@ Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

e Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 20/20

