SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

26 Specification Quality

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 10, 2017

McMaster
University %ﬁ

Specification Quality

@ Administrative details

@ Abstract class versus interface
@ Use cases with UML

@ Sequence diagrams in UML

@ Line Formatter Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 2/43

Administrative Details

@ A3 deadlines

» Part 1 - Specification: due 11:59 pm Mar 11
» Part 2 - Code: due 11:59 pm Mar 20

o A4

» Your own design and specification
» Due April 3 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 3/43

A3 Hints

@ Take advantage of what descriptive mathematical

specification has to offer

@ You do not need to worry about how to calculate values,

only how to describe them

pointInRegion(p): A point p is considered to be in the
Region if there exists a point q, where q is in the Region,
and the distance between the two points is less than the
allowed tolerance.

-1 u-v
[ul[[]v]]

A valid segment is valid if it is valid with respect to all
obstacles

» How would you say: For all obstacles the segment is
valid?

6 = cos

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 4/43

A3 Hints

@ Take advantage of what descriptive mathematical

specification has to offer

@ You do not need to worry about how to calculate values,

only how to describe them

pointInRegion(p): A point p is considered to be in the
Region if there exists a point q, where q is in the Region,
and the distance between the two points is less than the
allowed tolerance.

-1 u-v
[ul[[]v]]

A valid segment is valid if it is valid with respect to all
obstacles
» How would you say: For all obstacles the segment is
valid?
» V(i : N|0 </ < Map.get_obstacles.size() :
is_valid_segment_for_region(p1, p2, /)

6 = cos

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 4/43

A3 Hints Continued

@ What makes a segment valid wrt a given region?

@ What has to be true for a valid path?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 5/43

A3 Hints Continued

@ What makes a segment valid wrt a given region?
» None of the points on the segment lie within the region

@ What has to be true for a valid path?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 5/43

A3 Hints Continued

@ What makes a segment valid wrt a given region?

» None of the points on the segment lie within the region
» For all points along the line NOT pointInRegion()

@ What has to be true for a valid path?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 5/43

A3 Hints Continued

@ What makes a segment valid wrt a given region?

» None of the points on the segment lie within the region
» For all points along the line NOT pointInRegion()
» All the points using the parametric rep of a line.

@ What has to be true for a valid path?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 5/43

A3 Hints Continued

@ What makes a segment valid wrt a given region?
» None of the points on the segment lie within the region
» For all points along the line NOT pointInRegion()
» All the points using the parametric rep of a line.
@ What has to be true for a valid path?
» First point in the region for the safe zone
» Last point in the region for the safe zone
» For all destination there is a point on the path that is in
the region
» For all segments the segments are valid

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 5/43

@ Interface

v

>

Methods are implicitly abstract and public

Methods can have default implementation (JDK 8)
Cannot have constructors

Variables are final

Can only extend interfaces

Classes can extend multiple instances

Appropriate for unrelated classes

@ Abstract class

At least one method is declared as abstract

Some methods can implement a default behaviour
Cannot instantiate them, but can have constructors
Variables are not necessarily final

Can extend other class

Can implement multiple interfaces

Classes can extend only one abstract class

Sharing code between closely related classes

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 6/43

UML Diagram for Generic Classes

—=——=n

RS

Set

template olass ++" insert(T)
remove(T}

«bind»

<T::Employee>
¥

. binding for parameter
R EmployeeSet

Lt
o
W

bound element.

UML Class Diagram Template

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 7/43

https://coderanch.com/t/626984/a/5041/UML_class_diagram_template.png

Grade Admistrator
Print Teaching
Sehedule

Cbtain Student
Grant

Obtain Student
Loan
Reoimburse
Course Feos

Fi ial
Institution

Instructar

<<@xtend=; Post OHice

oy Distribute Fea
Schadulo

Registrar
o
Researches
UML 2 Use Case Diagrams: An Agile Introduction
Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 8/43

http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

Use Cases

Often used for capturing requirements

From user's (actor's) viewpoint
» Person

Other system

» Hardware

» etc. (anything external)

v

Each circle is a use case

Lines represent possible interactions

An actor represents a role, individuals can take on
different roles

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 9/43

cul cul aProduct aCartitem
<<aciom>
B Product aspx login aspx. ‘ Product ‘ ‘ShoppingGart ‘ Caritern ‘ ‘ Ortler ‘ ‘ Shippinginfo

| I | | | | | |
I] 1 1 1 1 1 1
| select{productName) | 1 1 | | 1 1
getProduciDefaisiproductid) | :] ;]
i i i I
e [Produc] Details) : : : :
o= e | 1 | 1
Cart 1 1 1 1
addCariitemiproductid, carld] : 1 ; q
I 1 1
H 1 rew(productid) | | |
| i i I
1 i Ao i i
| | | |
| | | | |
! ! addCartitem(productd, carfld)]

! i
| 1 I 1 1
i 1 i i i i
i | i i i I
i 1 i i i i
} : : calcUnitPrice(quantity, unitCost) :

| |
] 1 1 1 i 1
] 1 1 I 1 1
i | 1 1 I 1 1
i 1 i i i i i
1 checkoutoartid) i 1] i]
+ + t | | |
I | | ; | | |

| ! If customer nof Idgged in

Place Login request ! ! ! !
Order J\] : : : :
loginuserid, password) | H H H H
i i i I
i i i i
| | | |
I | | | |
! o 1 1 1
¥ . shipping Typ I l I

t +

i i

[Shipping details updated]
,,,,,,,, i

1
I
|
+
I
4
I
1
1
I
I
I
I
+
I
1

Order Confirmatibn Notification
T

http://people.cs.ksu.edu/~reshma/buying_3.JPG

Sequence Diagrams

@ Represents a specific use case scenario
@ How objects interact by exchanging messages
@ Time progresses in the vertical direction

@ The vertically oriented boxes show the object’s lifeline

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 11/43

Sequence Diagram Question

@ Is a sequence diagram an operational or a descriptive
specification?

@ If objects exchange a message, should there be an
association between their classes?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

12/43

Line Formatter

Input stream signalled with ET

Exactly one ET character in each input stream
Character classifications:

» Break character - BL (blank) and NL (new line)
» Non Break Character - all others except ET
» End of text indicator ET

Word is a non-empty sequence of non break characters

Break is a sequence of one or more break characters

Output same sequence of words, except if there is an
oversize word
» Oversize means more than MAXPOS characters, where

MAXPOS is a positive integer
» |f there is an oversize word

» Set Alarm to TRUE
» Exit the program

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 13/43

Line Formatter

@ Up to the point of an error, the program’s output should
have the following properties

» A new line should start only between words and at the
beginning of the output text, if any

» A break in the input is reduced to a single break
character in the output

» As many words as possible should be placed on each line
(i.e. between successive NL characters)

» No line may contain more than MAXPOS characters
(words and BLs)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 14/43

Abstract?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 15/43

Abstract?

Not abstract!

Specifies an implementation for error handling (variable
named Alarm)

Do not have to name the variable Alarm

Could use exception handling (or another approach)
instead

ET is a machine dependent (program domain) concept

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 15/43

Correct?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 16/43

Correct?

@ The definition of line is incorrect!

@ A line is defined as being between NLs, which ignores text
before the first NL and after the last NL

@ The output file does not contain ET, which is either a
bug in the spec or a significant non-uniformity

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 16/43

Unambiguous?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 17/43

Unambiguous?

@ Ambiguous!
@ “point of error” is not defined

@ Output matches input to the last acceptable word, or the
last acceptable character?

@ “trailing blanks ending with ET" is ambiguous

@ The program'’s output should be the same sequence of
words as in the input

» But the input is not a sequence of words
» If the input were a sequence of words, what about
leading or trailing breaks?
» “As many words as possible should be placed on each
line”
» WHO WHAT “NL" WHEN
» WHO “NL" WHAT WHEN

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 17/43

Complete?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 18/43

Complete?

@ Not complete!

@ Meaning of NL and its relation to the concept of line is
left implicit

@ Alarm is not specified if MAXPOS is never exceeded

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 18/43

Consistent?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 19/43

Consistent?

Not consistent!
“non-empty” and “one or more” (synonyms)

“stream” and “sequence” (synonyms)

Is the input a “stream of characters” or a “sequence of
words separated by breaks”? — sequence of T is not the
same as sequence of sequence of T

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 19/43

Verifiable?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 20/43

Verifiable?

@ The specification cannot be verified, since it is ambiguous
and incorrect

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 20/43

Advantages and Disadvantages?

@ Advantages and disadvantages of maintaining both formal
and a natural language spec?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 21/43

Advantages and Disadvantages?

@ Advantages and disadvantages of maintaining both formal
and a natural language spec?

@ Advantage of natural language - understandability
@ Advantage of formal spec

» Unambiguous

» Highlights difficult to informally detect cases
» Checking for completeness and consistency
» Amenable to tool support

@ Advantage of both - all of the above advantages
@ Disadvantages - have to maintain two specs
@ Automatic translation

» Formal spec to natural language has been researched
» Natural language to formal spec has received more
attention

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 21/43

English and Mathematics as Languages

e English is a language
@ So is Mathematics
@ Both have
» Rules of grammar (syntax)
» Semantics
@ When writing in any language, pay attention to grammar
and semantics. Get both right.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 22/43

English and Mathematics: A Difference

@ In English and other natural languages
» Ambiguity desired, intentionally possible
» Unambiguous statements almost impossible
@ In Mathematics
» Ambiguity not desired, intentionally prevented
» Ambiguous statements almost impossible (even in
probability theory, fuzzy logic)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 23/43

Mathematics and Engineering

@ Therefore, mathematics is the language of engineering

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 24/43

Correct Syntax for Mathematics

@ Make sure the syntax of your mathematical expressions is
correct

@ Correct syntax does not guarantee correct semantics
@ Incorrect syntax makes the mathematics ambiguous

@ Example problems to watch for
» Mismatch of types

(p-xcoord() + width) A p.xcoord()

» —(integer)

» Set of sequences accessed by [i]

» V(i:NAj:N.)

» Use of programming language notation in mathematics
> Integer values instead of boolean
> length == MAX_SIZE

» (x > 7) = true instead of (x > 7) (bad form)

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 25/43

Different World Views

@ English and other natural languages

» Express both static and dynamic views
» States and actions (verbs of being and action)

Imperative programming languages
» Primarily dynamic world view (changes)

Functional programming languages
» Static world view

@ Mathematics

» Static world view only

Fundamental conceptual differences

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 26/43

Static Versus Dynamic Views

@ These very different world views pose a conceptual hurdle

for the translator
@ The translator must bridge the gap between
» Dynamic and static view of problem statement
» Dynamic world view of programming and
» Purely static world view of mathematics

@ Not hard, but requires conscious attention

27/43

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

Translating Between Languages

e Translating a statement from one language to another is
a multistep (not single) process

1. Statement in source language to a mental understanding
of the meaning of the statement

2. Reformulate mental understanding into target language
view, concepts, culture

3. Mental understanding of the meaning of the statement
to a statement in the target language

@ The first and last statement must mean the same

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 28/43

Translators

@ Knowing two languages: not enough to translate
@ A good translator knows well

» The two languages
» AND the subject being translated
» AND how to translate

@ These three things are different

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 29/43

Organization and Style

@ When writing in English or any other natural language,
one pays careful attention to

» Organization of the essay, report, etc.
» Style of expression

@ When writing in Mathematics, to do the same:

v

Clear, complete, conscise

KISSS (Keep it Simple Sharp and Straightforward)
Understandable

Interesting

v

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 30/43

Strategies

@ Understand the meaning of the original
@ Obtain all needed information
@ Close the gap between the English text and mathematics

@ Divide and conquer (complexity)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 31/43

Strategy: Understand the Original

Describe specific instance of general problem
Distinguish essentials from background

Draw a diagram

Express in intermediate or mixed language
Identify object referred to

Identify implicit (but false) “information”
Identify missing information

Identify relationships between essential objects

Identify special cases

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 32/43

Strategy: Obtain all Needed Information

@ Ask the author of the task description

o Identify gaps in the description of the task

@ ldentify implicit “information”

@ Ask if implicit “information” may be assumed

@ Identify data present and ask about related details
@ Ask if missing information is really needed

@ Read carefully, thoroughly, precisely

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 33/43

Strategy: Close Gap English — Mathematics

@ Express implicit information explicitly
@ Reduce vagueness and ambiguity

@ Reword English text to be closer to mathematics (express
in an intermediate, mixed language)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 34/43

Strategy: Divide and Conquer

Construct a table

Distinguish

Introduce an auxiliary mathematics function

Modularize

between specific cases

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

35/43

Strategy: Draw Diagrams, Describe Specific
Instances of the Given Problem

@ Graphical representations help understand the meaning of
the message

@ For specific instances, think of extreme cases first to

simplify
» n=20
> N =
» n=inf

@ Think of a normal sized problem, usually something like
n>3

@ You might want to write down truth tables

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 36/43

A Small Translator's Glossary

English ‘ Mathematics
and, but A
or V

for all, each, every, any

V, A series, universal quantification

for no, none

V, A series, universal quantification,
with a negated assertion

there is (are), there ex-
ist(s), for some, at least
one

d, V series, existential quantifica-
tion

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

37/43

A Small Translator’s Glossary Continued

English ‘ Mathematics
integer . €L
sorted NZEA[] < Ali + 1],

Vi : N0 <i<n—-1:A}]<

Ali +1])

if (when, whenever) ...
then ...

. — ..., sometimes A

search, find, equal, | =
present
exchange, rearrange, | permutation

different order, differ-
ent sequence, merge,
copy, sort

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

38/43

Your Translator’'s Glossary

@ A professional translator compiles his/her own translation
glossary

» Over time
» Based on own accumulated experience

@ You should too!

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 39/43

Exercise

Consider an array D with index values ranging from 1 to n.
The subject of this example is part of a specification for a
subprogram that will count how many times a particular given
value occurs in the array D.

The goal of this exercise is to write a postcondition for the
subprogram, relating the various relevant variables values when
the search is complete.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 40/43

Exercise Continued

Understand the task in the original language

@ Identify objects referred to (look for nouns in the original
English text)

@ Identify missing information

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 41/43

Exercise Continued

Understand the task in the original language
@ Identify objects referred to (look for nouns in the original
English text)

@ Array D, index value, times (count), particular given
value, relevant variables’s value

@ Identify missing information

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

41/43

Exercise Continued

Understand the task in the original language

@ Identify objects referred to (look for nouns in the original
English text)

@ Array D, index value, times (count), particular given
value, relevant variables’s value

@ Identify missing information

@ Names of variable for: index, times (count), particular
given value

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality

41/43

Exercise Continued

Understand the task in the original language
@ Identify objects referred to (look for nouns in the original
English text)

@ Array D, index value, times (count), particular given
value, relevant variables’s value

@ Identify missing information

@ Names of variable for: index, times (count), particular
given value

@ Are there any other relevant variables?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 41/43

Exercise

@ Identify missing information

@ Names of variable for
> Index: assume i
» Times (count): ask the author of the task, assume count
» Particular given value: Ask the author of the task,

assume key
» Are there any other relevant variables? (no?)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 42/43

Reference

@ Baber, Robert L., Translating English to Mathematics,
2002

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 26 Specification Quality 43/43

