SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

35 Analysis (Ch. 6) DRAFT

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 19, 2017

McMaster
University F:*ﬁ



Analysis

Administrative details

The Oracle problem
Module testing
Integration testing

Testing OO programs

Testing concurrent and real-time systems
@ Analysis
» Code walk throughs and inspections

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 2/23



Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 3/23



The Oracle Problem

@ Given input test cases that cover the domain, what are
the expected outputs?

@ Oracles are required at each stage of testing to tell us
what the right answer is

@ Black-box criteria are better than white-box for building
test oracles

@ Automated test oracles are required for running large
amounts of tests

@ Oracles are difficult to design - no universal recipe

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 4/23



The Oracle Problem Continued

@ Determining what the right answer should be is not
always easy
» Air traffic control system
» Scientific computing
» Parallel testing can approximate an oracle
» Properties of the expected values can be easier than
stating the expected output

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 5/23



Module Testing
@ Scaffolding needed to create the environment in which
the module should be tested
@ Stubs - a module used by the module under test
@ Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 6/23



Testing a Functional Module

PROCEDURE )
STUB - UNDER TEST - DRIVER
CALL CALL

ACCESS TO NONLOCAL VARIABLES

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 7/23



Integration Testing

@ Big-bang approach
» First test individual modules in isolation
» Then test integrated system

@ Incremental approach

» Modules are progressively integrated and tested
» Can proceed both top-down and bottom-up according to
the USES relation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

8/23



Integration Testing and USES relation

e If integration and test proceed bottom-up only need
drivers

@ Otherwise if we proceed top-down only stubs are needed

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 9/23



Example

My Mo

Mo Mo

- -0

o Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M272}
o Casel
» Test M; providing a stub for My and a driver for M;
» Then provide an implementation for M> 1 and a stub for
M »
o Case 2
» Implement M5 and test it by using a driver
» Implement M, 1 and test the combination of M, and
My 5 (i.e. M>) by using a driver
» Finally implement M; and test it with M> using a driver
for My

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

10/23



Testing OO Programs

@ New issues
» Inheritance
» Genericity
» Polymorphism
» Dynamic binding

@ Open problems still exist

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 11/23



Inheritance

Personnel

AN

Consultant

Employee

Manager

Administrative_Staff

Technical _Staff

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

12/23



How to Test Classes of the Hierarchy

I\
\/\

e “Flattening” the whole hierarchy and considering every
class as totally independent component

@ This does not exploit incrementality
e Finding an ad-hoc way to take advantage of the hierarchy

@ Think about testing PointT.java and PointMassT .java

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 13/23



A Sample Strategy

@ A test that does not have to be repeated for any heir

@ A test that must be performed for heir class X and all of
its further heirs

@ A test that must be redone by applying the same input
data, but verifying that the output is not (or is) changed

@ A test that must be modified by adding other input
parameters and verifying that the the output changes
accordingly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 14/23



Testing Concurrent and Real-time Systems

@ Nondeterminism inherent in concurrency affects
repeatability

@ For real-time systems, a test case consists not only of
input data, but also of the times when such data are
supplied

@ Considerable care and detail when testing real-time
systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

15/23



Analysis Versus Testing

@ Testing characterizes a single execution

@ Analysis characterizes a class of executions; it is based on
a model

@ They have complementary advantages and disadvantages

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

16/23



Informal Analysis Techniques and Code
Walkthroughs

@ Recommended prescriptions

>

>

v vV VvV VY

v

Small number of people (three to five)

Participants receive written documentation from the
designer a few days before the meeting

Predefined duration of the meeting (a few hours)

Focus on the discovery of errors, not on fixing them
Participants: designer, moderator, and a secretary
Foster cooperation; no evaluation of people

Experience shows that most errors are discovered by the
designer during the presentation, while trying to explain
the design to other people

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

17/23



Informal Analysis Techniques Code Inspection

@ A reading technique aiming at error discovery

@ Based on checklists

Use of uninitialized variables
Jumps into loops
Nonterminating loops

Array indexes out of bounds

v vV VvV VY

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 18/23



Correctness Proofs

Formal program analysis is a verification aid that may
enhance program reliability

Mathematically prove that the program’s semantics
implies its specification

Can use pre and post conditions

Tabular expressions can be proven to match between
specification of requirements and a specification of the
design

In many cases verification can be automated, at least
partially

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 19/23



Model Checking

e Correctness verification, in general, is an undecidable
problem

@ Model checking is a rather recent verification technique
based on the fact that most interesting system properties
become decidable (algorithmically verifiable) when the
system is modelled as a finite state machine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT

20/23



Model Checking Continued

@ Describe a given system - software or otherwise - as an
FSM

@ Express a given property of interest as a suitable formula
» Does a computation exist that allows a process to enter
a critical region?
» s there a guarantee that a process can access shared
resources?

@ Verify whether the system'’s behaviour does indeed satisfy
the desired property
» This step can be performed automatically
» The model checker either provides a proof that the
property holds or gives a counter example in the form of
a test case that exposes the system’s failure to behave
according to the property

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 21/23



Why so Many Approaches to Testing and Analysis?

@ Testing versus (correctness) analysis

e Formal versus informal techniques

@ White-box versus black-box techniques
@ Techniques in the small/large

e Fully automatic versus semi-automatic techniques (for
undecidable problems)

View all of these as complementary

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 22/23



Debugging
@ The activity of locating and correcting errors
@ It can start once a failure has been detected
@ The goal is closing the gap between a fault and a failure

» Memory dumps, watch points
» Intermediate assertions can help
» Tools like gdb, valgrind, etc.

23/23

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT



