SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

30 Introduction to Verification
Continued (Ch. 6)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 19, 2017

McMaster
University %ﬁ



Introduction to Verification Continued

e Partially based on slides by Dr. Wassyng, Ghezzi et al
@ Administrative details

@ Approaches to verification

@ Goals of testing

@ Test plan

@ Types of test - white box, versus black box, manual
versus automated, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 2/23



Administrative Details

@ Investigating 9 academic integrity cases for A2
@ A3 deadlines

» Part 2 - Code: due 11:59 pm Mar 20
» Part 1 spec available in repo

o Ad

» Your own design and specification
» Due April 3 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 3/23



Approaches to Verification

@ What are some approaches to verification?

@ How can we categorize these approaches?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 4/23



Approaches to Verification

@ Experiment with behaviour of product

v

Sample behaviours via testing

Goal is to find “counter examples”

» Dynamic technique

Examples: unit testing, integration testing, acceptance
testing, white box testing, stress testing, etc.

v

v

@ Analyze product to deduce its adequacy
» Analytic study of properties
» Static technique
» Examples: Code walk-throughs, code inspections,
correctness proof, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6)

5/23



Does our Engineering Analogy Fail?

@ If a bridge can hold 500 kN, can it hold 499 kN?

@ If our software works for the input 500, will it work for
4997

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 6/23



Verification in Engineering

@ Example of bridge design
@ One test assures infinite correct situations

@ In software a small change in the input may result in
significantly different behaviour

@ There are also chaotic systems in nature, but products of
engineering design are usually stable and well-behaved

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 7/23



Modified Version Works for 500, but not 499

procedure binary-search (key: in element;
table: in elementTable; found: out Boolean) is
begin
bottom := tablefirst; top := table'last;
while bottom < top loop
if (bottom + top) rem 2 # 0 then - —
middle := (bottom + top - 1) / 2; if we omit this

else the routine
riddle := (bottom + top) / 2; <« works if the else
ena ir; : H
if key!s table (middle) then IS. ne.ver. hit!
top := middle; (i.e. if size of table
else is a power of 2)
bottom := middle + 1;
end if;
end loop;

found := key = table (top);
end binary-search

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 8/23



Testing and Lack of “Continuity”

@ Testing samples behaviours by examining “test cases”

@ Impossible to extrapolate behaviour of software from a
finite set of test cases

@ No continuity of behaviour - it can exhibit correct
behaviour in infinitely many cases, but may still be
incorrect in some cases

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 9/23



Goals of Testing

@ If our code passes all test cases, is it now guaranteed to
be error free?

@ Are 5000 random tests always better than 5 carefully
selected tests?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 10/23



Goals of Testing

@ To show the presence of bugs (Dijkstra, 1972)

o If tests do not detect failures, we cannot conclude that
software is defect-free

@ Still, we need to do testing - driven by sound and
systematic principles

» Random testing is often not a systematic principle to use
» Need a test plan

@ Should help isolate errors - to facilitate debugging

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 11/23



Goals of Testing Continued

@ Should be repeatable

» Repeating the same experiment, we should get the same
results

» Repeatability may not be true because of the effect of
the execution environment on testing

» Repeatability may not occur if there are uninitialized
variables

» Repeatability may not happen when there is
nondeterminism

@ Should be accurate
» Accuracy increases reliability
» Part of the motivation for formal specification

@ |s a successful test case one that passes the test, or one
that shows a failure?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6)

12/23



Test Plan

@ Given that no single verification technique can prove
correctness, the practical approach is to use ALL
verification techniques. Is this statement True or False?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 13/23



Test Plan

@ Testing can uncover errors and build confidence in the

software
Resources of time, people, facilities are limited
Need to plan how the software will be tested

You know in advance that the software is unlikely to be
perfect

You need to put resources into the most important parts
of the project

A risk analysis can determine where to put your limited
resources

A risk is a condition that can result in a loss

Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occurring

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 14/23



Test Plan

@ Risks cannot be eliminated, but the development process
can reduce the probability of loss associated with risks to
an “acceptable” level

@ One approach to risk analysis is FMEA - Failure Mode
Effect Analysis

@ Consider the capstone project of the autonomous rescue
robots

Largest risk, robot fails during final demonstrations

Test to improve reliability

Test results of great interest to IBM judges

Think about test cases, think about testing environment

versus final environment

v

v

v

v

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 15/23



White Box Versus Black Box Testing

@ White box testing is derived from the program’s internal
structure

@ Black box testing is derived from a description of the
program's function

@ Should perform both white box and black box testing
@ Black box testing
» Uncovers errors that occur in implementing requirements
or design specifications
» Not concerned with how processing occurs, but with the
results
» Focuses on functional requirements for the system
» Focuses on normal behaviour of the system

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 16/23



White Box Testing

@ Uncovers errors that occur during implementation of the
program

@ Concerned with how processing occurs
@ Evaluates whether the structure is sound

@ Focuses on abnormal or extreme behaviour of the system

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 17/23



Dynamic Versus Static Testing

@ Another classification of verification techniques, as
previously discussed

@ Use a combination of dynamic and static testing

@ Dynamic analysis

>

>

Requires the program to be executed

Test cases are run and results are checked against
expected behaviour

Exhaustive testing is the only dynamic technique that
guarantees program validity

Exhaustive testing is usually impractical or impossible
Reduce number of test cases by finding criteria for
choosing representative test cases

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 18/23



Static Testing Continued

@ Static analysis

» Does not involve program execution

» Testing techniques simulate the dynamic environment

» Includes syntax checking

» Generally static testing is used in the requirements and
design stage, where there is no code to execute

» Document and code walkthroughs

» Document and code inspections

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 19/23



Manual Versus Automated Testing

@ Manual testing

» Has to be conducted by people
» Includes by-hand test cases, structured walkthroughs,
code inspections

@ Automated testing
» The more automated the development process, the
easier to automate testing
» Less reliance on people
> Necessary for regression testing

» Test tools can assist, such as Junit, Cppunit, CuTest etc.

» Can be challenging to automate GUI tests
» Test suite for Maple has 2 000 000 test cases, run on 14
platforms, every night, automated reporting

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6)

20/23



Automated Testing at MapleSoft

@ Three steps
» Write the problem description

» result := solver(problem)
» assert(result == expected)

@ Assert writes out code to reproduce any failures

e Track failures
» Source code management (like CVS or Subversion)
» Database of test cases, functions called

» Database of source files, functions defined
» Database of 40 days of timings and resources used

@ Automatically sends an e-mail to the programmer and
his/her boss

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6)

21/23



Fault Testing

@ Common analogy involves planting fish in a lake to
estimate the fish population

T = total number of fish in the lake (to be estimated)
N = fish stocked (marked) in the lake

M = total number of fish caught in lake

M’ = number of marked fish caught
T=(M-M)*N/M

Artificially seed faults, discover both seeded and new
faults, estimate the total number of faults

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 22/23



Fault Testing Continued

@ Method assumes that the real and seeded faults have the
same distribution
@ Hard to seed faults

» By hand (not a great idea)
» Independent testing by two groups and obtain the faults
from one group for use by the other

@ Want most of the discovered faults to be seeded faults
o If many faults are found, this is a bad thing

@ The probability of errors is proportional to the number of
errors already found

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 23/23



