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Module Decomposition

@ Administrative details

Module decomposition

Software architecture

Design for change

Relationship between modules
The USES relation

Module decomposition by secrets
The IS_.COMPONENT _OF relation

Techniques for design for change

Module guide
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Administrative Details

@ Assignment 1
» E-mail the instructor if you haven't received your
partner's code
» Lab report due by 11:59 pm February 2
@ Assignment 2
> Files due by 11:59 pm Feb 15
» E-mail partner files by 11:59 pm Feb 16
» Lab report due by 11:59 pm Feb 27
e Midterm exam
March 1, 7:00 pm, TSH/120
90 minute duration
Multiple choice - 3040 questions?
Open book (any paper)

v v v

v
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Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith
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QueueADT Module Syntax (Abstract Object)

What is missing from this interface?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop NOT_INIT, EMPTY
front T NOT_INIT, EMPTY
size integer | NOT_INIT

isempty boolean | NOT_INIT

isfull boolean | NOT_INIT

If MAX_SIZE is exported, what could you replace isempty and
isfull by? (This new interface will move some work to the

programmer.)
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Quality Criteria

@ Consistent

» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features (only one way to
access each service)

@ General - cannot always predict how the module will be
used

As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related

@ Low coupling - not strongly dependent on other modules

Opaque - information hiding
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QueueADT Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name | In | Out Exceptions

g-init queueT

add T NOT_INIT, FULL
pop T NOT_INIT, EMPTY
size integer | NOT_INIT

isinit boolean

@ front has been merged with pop
@ size replaces isempty and isfull

@ isinit is added
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Modular Decomposition

@ Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

@ We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

@ We need to produce a software architecture

@ The architecture (modular decomposition) is summarized
in a Software Design Document
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Software Architecture

@ Shows gross structure and organization of the system to
be defined
@ Its description includes the description of

» Main components of the system

» Relationship among those components

» Rationale for decomposition into its components

» Constraints that must be respected by any design of the
components

@ Guides the development of the design
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Specific Techniques for Design for Change

What software tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?
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Specific Techniques for Design for Change

@ Anticipate definition of all family members
@ ldentify what is common to all family members, delay
decisions that differentiate among different members
e Configuration constants
» Factor constant values into symbolic constants
» Compile time binding
» MAXSPEED = 5600
e Conditional compilation
» Compile time binding
» Works well when there is a preprocessor, like for C
» If performance is not a concern, can often “fake it” at
run time
e Make
e Software generation
» Compiler generator, like yacc
» Domain Specific Language
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Questions

@ What relationships have we discussed between modules?

@ Are there desirable properties for these relations?
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Relationships Between Modules

@ Let S be a set of modules
S - {Ml, MQ, ceey Mn}

@ A binary relation r on S is a subset of S x S

o If M and M are in S, < M;, M; >¢€ r can be written as
M,'I’/\/Ij
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Relations

@ Transitive closure r* of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rtM; A M;rtM;
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Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (directed acyclic graph)

N2 S o

M M2 1,3
M \
A a DAG /
l ‘/ l My 2,1 M2
M M M M

5 1,2,1,1

3 2
N
M

4
a) b)

Why do we prefer the uses relation to be a DAG?
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