
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

30 Introduction to Verification
Continued (Ch. 6)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 19, 2017



Introduction to Verification Continued

Partially based on slides by Dr. Wassyng, Ghezzi et al

Administrative details

Approaches to verification

Goals of testing

Test plan

Types of test - white box, versus black box, manual
versus automated, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 2/23



Administrative Details

Investigating 9 academic integrity cases for A2

A3 deadlines
I Part 2 - Code: due 11:59 pm Mar 20
I Part 1 spec available in repo

A4
I Your own design and specification
I Due April 3 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 3/23



Approaches to Verification

What are some approaches to verification?

How can we categorize these approaches?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 4/23



Approaches to Verification
Experiment with behaviour of product

I Sample behaviours via testing
I Goal is to find “counter examples”
I Dynamic technique
I Examples: unit testing, integration testing, acceptance

testing, white box testing, stress testing, etc.

Analyze product to deduce its adequacy
I Analytic study of properties
I Static technique
I Examples: Code walk-throughs, code inspections,

correctness proof, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 5/23



Does our Engineering Analogy Fail?

If a bridge can hold 500 kN, can it hold 499 kN?

If our software works for the input 500, will it work for
499?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 6/23



Verification in Engineering

Example of bridge design

One test assures infinite correct situations

In software a small change in the input may result in
significantly different behaviour

There are also chaotic systems in nature, but products of
engineering design are usually stable and well-behaved

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 7/23



Modified Version Works for 500, but not 499

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 8/23



Testing and Lack of “Continuity”

Testing samples behaviours by examining “test cases”

Impossible to extrapolate behaviour of software from a
finite set of test cases

No continuity of behaviour - it can exhibit correct
behaviour in infinitely many cases, but may still be
incorrect in some cases

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 9/23



Goals of Testing

If our code passes all test cases, is it now guaranteed to
be error free?

Are 5000 random tests always better than 5 carefully
selected tests?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 10/23



Goals of Testing

To show the presence of bugs (Dijkstra, 1972)

If tests do not detect failures, we cannot conclude that
software is defect-free

Still, we need to do testing - driven by sound and
systematic principles

I Random testing is often not a systematic principle to use
I Need a test plan

Should help isolate errors - to facilitate debugging

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 11/23



Goals of Testing Continued
Should be repeatable

I Repeating the same experiment, we should get the same
results

I Repeatability may not be true because of the effect of
the execution environment on testing

I Repeatability may not occur if there are uninitialized
variables

I Repeatability may not happen when there is
nondeterminism

Should be accurate
I Accuracy increases reliability
I Part of the motivation for formal specification

Is a successful test case one that passes the test, or one
that shows a failure?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 12/23



Test Plan

Given that no single verification technique can prove
correctness, the practical approach is to use ALL
verification techniques. Is this statement True or False?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 13/23



Test Plan

Testing can uncover errors and build confidence in the
software

Resources of time, people, facilities are limited

Need to plan how the software will be tested

You know in advance that the software is unlikely to be
perfect

You need to put resources into the most important parts
of the project

A risk analysis can determine where to put your limited
resources

A risk is a condition that can result in a loss

Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occurring

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 14/23



Test Plan

Risks cannot be eliminated, but the development process
can reduce the probability of loss associated with risks to
an “acceptable” level

One approach to risk analysis is FMEA - Failure Mode
Effect Analysis

Consider the capstone project of the autonomous rescue
robots

I Largest risk, robot fails during final demonstrations
I Test to improve reliability
I Test results of great interest to IBM judges
I Think about test cases, think about testing environment

versus final environment

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 15/23



White Box Versus Black Box Testing

White box testing is derived from the program’s internal
structure

Black box testing is derived from a description of the
program’s function

Should perform both white box and black box testing

Black box testing
I Uncovers errors that occur in implementing requirements

or design specifications
I Not concerned with how processing occurs, but with the

results
I Focuses on functional requirements for the system
I Focuses on normal behaviour of the system

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 16/23



White Box Testing

Uncovers errors that occur during implementation of the
program

Concerned with how processing occurs

Evaluates whether the structure is sound

Focuses on abnormal or extreme behaviour of the system

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 17/23



Dynamic Versus Static Testing

Another classification of verification techniques, as
previously discussed

Use a combination of dynamic and static testing

Dynamic analysis
I Requires the program to be executed
I Test cases are run and results are checked against

expected behaviour
I Exhaustive testing is the only dynamic technique that

guarantees program validity
I Exhaustive testing is usually impractical or impossible
I Reduce number of test cases by finding criteria for

choosing representative test cases

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 18/23



Static Testing Continued
Static analysis

I Does not involve program execution
I Testing techniques simulate the dynamic environment
I Includes syntax checking
I Generally static testing is used in the requirements and

design stage, where there is no code to execute
I Document and code walkthroughs
I Document and code inspections

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 19/23



Manual Versus Automated Testing
Manual testing

I Has to be conducted by people
I Includes by-hand test cases, structured walkthroughs,

code inspections

Automated testing
I The more automated the development process, the

easier to automate testing
I Less reliance on people
I Necessary for regression testing
I Test tools can assist, such as Junit, Cppunit, CuTest etc.
I Can be challenging to automate GUI tests
I Test suite for Maple has 2 000 000 test cases, run on 14

platforms, every night, automated reporting

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 20/23



Automated Testing at MapleSoft
Three steps

I Write the problem description
I result := solver(problem)
I assert(result == expected)

Assert writes out code to reproduce any failures

Track failures
I Source code management (like CVS or Subversion)
I Database of test cases, functions called
I Database of source files, functions defined
I Database of 40 days of timings and resources used

Automatically sends an e-mail to the programmer and
his/her boss

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 21/23



Fault Testing

Common analogy involves planting fish in a lake to
estimate the fish population

T = total number of fish in the lake (to be estimated)

N = fish stocked (marked) in the lake

M = total number of fish caught in lake

M’ = number of marked fish caught

T = (M - M’)*N/M’

Artificially seed faults, discover both seeded and new
faults, estimate the total number of faults

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 22/23



Fault Testing Continued

Method assumes that the real and seeded faults have the
same distribution

Hard to seed faults
I By hand (not a great idea)
I Independent testing by two groups and obtain the faults

from one group for use by the other

Want most of the discovered faults to be seeded faults

If many faults are found, this is a bad thing

The probability of errors is proportional to the number of
errors already found

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 30 Introduction to Verification Continued (Ch. 6) 23/23


