SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

36 Design Patterns DRAFT

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 19, 2017

McMaster
University %ﬁ



Design Patterns

@ Administrative details
@ Debugging
o Verifying other qualities

@ Design patterns

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT

2/15



Administrative Details

@ Today's slide are partially based on slides by Dr. Wassyng
and on van Vliet (2000)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 3/15



Debugging
@ The activity of locating and correcting errors
@ It can start once a failure has been detected
@ The goal is closing the gap between a fault and a failure

» Memory dumps, watch points
» Intermediate assertions can help
» Tools like gdb, valgrind, etc.

4/15

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT



Verifying Performance

@ Worst case analysis versus average behaviour

@ For worst case focus on proving that the system response
time is bounded by some function of the external requests

e Standard deviation
@ Analytical versus experimental approaches

@ Consider verifying the performance of a pacemaker

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 5/15



Veritying Reliability

@ There are approaches to measuring reliability on a

probabilistic basis, as in other engineering fields

Unfortunately there are some difficulties with this
approach

Independence of failures does not hold for software
Reliability is concerned with measuring the probability of
the occurrence of failure
Meaningful parameters include

» Average total number of failures observed at time t:

AF(t)

» Failure intensity: FI(T) = AF'(t)

» Mean time to failure at time t: MTTF(t) = 1/FI(t)
Time in the model can be execution or clock or calendar
time

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT

6/15



Design Patterns

@ Christopher Alexander (1977, buildings/towns):

» “Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way.”

@ Design reuse (intended for OO)

@ Solution for recurring problems found in design of many
systems

@ Transferring knowledge from experienced to novice
designers

@ A design pattern is a recurring structure of
communicating components that solves a general design
problem within a particular context

@ Design patterns consist of multiple modules, but they do
not constitute an entire system architecture

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 7/15



UML Diagram of Measurable Interface

BankAccount

PointT

DataSet

<<interface>>
Measurable

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT

8/15



UML Diagram of Measurer Interface

Rectangle
Measurer

v

DataSet

<<interface>>
Measurer

v

- =

Rectangle

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT

9/15




Model View Controller (MVC)

@ Separate computational elements from |/O elements

@ Three components
1. Model encapsulates the system's data as well as the
operations on the data
2. View displays the data from the model components,
possibly multiple view components
3. Controller handles input actions
@ The controller may or may not depend on the state of the
model
@ The controller depends on model state when menu items
are enabled or disabled depending on the state of the
model

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 10/15



Design Pattern Properties

@ A pattern addresses a recurring design problem that arises
in specific design situations and presents a solution to it

@ A pattern must balance a set of opposing forces

e Patterns document existing, well-proven design experience

e Patterns identify and specify abstractions above the level
of single components (modules)

@ Patterns provide a common vocabulary and understanding
for design principles

@ Patterns are a means of documentation

@ Patterns support the construction of software with
defined properties, including non-functional requirements,
such as flexibility and maintainability

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT

11/15



Describing Patterns

@ Context: the situation giving rise to a design pattern

@ Problem: a recurring problem arising in that situation,
and

@ Solution: a proven solution to that problem

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 12/15



The Proxy Pattern (from van Vliet (2000))

@ Context: A client needs services from another

component. Though direct access is possible, this may
not be the best approach

Problem: We do not want to hard-code access to a
component into a client. Sometimes, such direct access is
inefficient; in other cases it may be unsafe. This
inefficiency or insecurity is to be handled by additional
control mechanisms, which should be kept separate from
both the client and the component to which it needs
access.

Solution: The client communicates with a representative
rather than the component itself. This representative, the
proxy, also does and pre- and postprocessing that is
needed.

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT

13/15



Command Processor Pattern

@ Context: User interfaces which must be flexible or provide
functionality that goes beyond the direct handling of user
functions. Examples are undo facilities or logging
functions

@ Problem: We want a well-structured solution for mapping
an interface to the internal functionality of a system. All
‘extras’ which have to do with the way user commands
are input, additional commands such as undo and redo,
and any non-application-specific processing of user
commands, such as logging, should be kept separate from
the interface to the internal functionality.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 14/15



Command Processor Pattern Continued

@ Solution: A separate component, the command processor,
takes care of all commands. The command processor
component schedules the execution of commands, stores
them for later undo, logs them for later analysis, and so
on. The actual execution of the command is delegated to
a supplier component within the application.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 36 Design Patterns DRAFT 15/15



