
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

35 Analysis (Ch. 6) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 19, 2017



Analysis

Administrative details

The Oracle problem

Module testing

Integration testing

Testing OO programs

Testing concurrent and real-time systems

Analysis
I Code walk throughs and inspections

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 2/23



Administrative Details

Today’s slide are partially based on slides by Dr. Wassyng

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 3/23



The Oracle Problem

Given input test cases that cover the domain, what are
the expected outputs?

Oracles are required at each stage of testing to tell us
what the right answer is

Black-box criteria are better than white-box for building
test oracles

Automated test oracles are required for running large
amounts of tests

Oracles are difficult to design - no universal recipe

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 4/23



The Oracle Problem Continued
Determining what the right answer should be is not
always easy

I Air traffic control system
I Scientific computing
I Parallel testing can approximate an oracle
I Properties of the expected values can be easier than

stating the expected output

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 5/23



Module Testing

Scaffolding needed to create the environment in which
the module should be tested

Stubs - a module used by the module under test

Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 6/23



Testing a Functional Module

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 7/23



Integration Testing
Big-bang approach

I First test individual modules in isolation
I Then test integrated system

Incremental approach
I Modules are progressively integrated and tested
I Can proceed both top-down and bottom-up according to

the USES relation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 8/23



Integration Testing and USES relation

If integration and test proceed bottom-up only need
drivers

Otherwise if we proceed top-down only stubs are needed

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 9/23



Example

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
Case 1

I Test M1 providing a stub for M2 and a driver for M1

I Then provide an implementation for M2,1 and a stub for
M2,2

Case 2
I Implement M2,2 and test it by using a driver
I Implement M2,1 and test the combination of M2,1 and

M2,2 (i.e. M2) by using a driver
I Finally implement M1 and test it with M2 using a driver

for M1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 10/23



Testing OO Programs
New issues

I Inheritance
I Genericity
I Polymorphism
I Dynamic binding

Open problems still exist

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 11/23



Inheritance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 12/23



How to Test Classes of the Hierarchy

“Flattening” the whole hierarchy and considering every
class as totally independent component

This does not exploit incrementality

Finding an ad-hoc way to take advantage of the hierarchy

Think about testing PointT.java and PointMassT.java

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 13/23



A Sample Strategy

A test that does not have to be repeated for any heir

A test that must be performed for heir class X and all of
its further heirs

A test that must be redone by applying the same input
data, but verifying that the output is not (or is) changed

A test that must be modified by adding other input
parameters and verifying that the the output changes
accordingly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 14/23



Testing Concurrent and Real-time Systems

Nondeterminism inherent in concurrency affects
repeatability

For real-time systems, a test case consists not only of
input data, but also of the times when such data are
supplied

Considerable care and detail when testing real-time
systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 15/23



Analysis Versus Testing

Testing characterizes a single execution

Analysis characterizes a class of executions; it is based on
a model

They have complementary advantages and disadvantages

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 16/23



Informal Analysis Techniques and Code

Walkthroughs
Recommended prescriptions

I Small number of people (three to five)
I Participants receive written documentation from the

designer a few days before the meeting
I Predefined duration of the meeting (a few hours)
I Focus on the discovery of errors, not on fixing them
I Participants: designer, moderator, and a secretary
I Foster cooperation; no evaluation of people
I Experience shows that most errors are discovered by the

designer during the presentation, while trying to explain
the design to other people

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 17/23



Informal Analysis Techniques Code Inspection

A reading technique aiming at error discovery

Based on checklists
I Use of uninitialized variables
I Jumps into loops
I Nonterminating loops
I Array indexes out of bounds

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 18/23



Correctness Proofs

Formal program analysis is a verification aid that may
enhance program reliability

Mathematically prove that the program’s semantics
implies its specification

Can use pre and post conditions

Tabular expressions can be proven to match between
specification of requirements and a specification of the
design

In many cases verification can be automated, at least
partially

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 19/23



Model Checking

Correctness verification, in general, is an undecidable
problem

Model checking is a rather recent verification technique
based on the fact that most interesting system properties
become decidable (algorithmically verifiable) when the
system is modelled as a finite state machine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 20/23



Model Checking Continued

Describe a given system - software or otherwise - as an
FSM

Express a given property of interest as a suitable formula
I Does a computation exist that allows a process to enter

a critical region?
I Is there a guarantee that a process can access shared

resources?

Verify whether the system’s behaviour does indeed satisfy
the desired property

I This step can be performed automatically
I The model checker either provides a proof that the

property holds or gives a counter example in the form of
a test case that exposes the system’s failure to behave
according to the property

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 21/23



Why so Many Approaches to Testing and Analysis?

Testing versus (correctness) analysis

Formal versus informal techniques

White-box versus black-box techniques

Techniques in the small/large

Fully automatic versus semi-automatic techniques (for
undecidable problems)

...

View all of these as complementary

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 22/23



Debugging

The activity of locating and correcting errors

It can start once a failure has been detected

The goal is closing the gap between a fault and a failure
I Memory dumps, watch points
I Intermediate assertions can help
I Tools like gdb, valgrind, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 35 Analysis (Ch. 6) DRAFT 23/23


