SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

07 Introduction to Modules (Ch. 4)

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 31, 2017

McMaster
University ‘1*?:1

Introduction to Modules

Administrative details

Unix command of the day: ps
What is a Software Module?
Components of a Module
The Module Interface

The Module Implementation
Examples of Modules
Example of a vector module

Dr. Smith

SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

2/29

Administrative Details

@ Assignment 1

v

Files due by midnight January 28

E-mail partner files by January 28

Lab report due February 2

Using Python 2.7, doxygen, make, LaTeX, git
Make sure everything runs on mills

v

v

v

\4

@ Combining 2aa and 2me on Avenue

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 3/29

Assignment Submission on GitLab

Each student will have a project in the
se2aa4_cs2me3_assignments group on GitLab. Your project is
named to match your macid.

1. git clone https://gitlab.cas.mcmaster.ca/
se2aa4_cs2me3_assignments/[macid] .git
Make changes to files
git status to see what files have been modified
Add your files using git add [filename]
git commit to commit your changes

ok LN

git push to push your changes to the repo

@ You only need to clone once

@ Rather than work with the files elsewhere and copy over
at the last minute, you should work with the repo versions
@ Frequent commits are a great habit to get into

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 4/29

https://gitlab.cas.mcmaster.ca/se2aa4_cs2me3_assignments

Unix Command of the Day

@ ps displays the currently running processes
@ ps -e -f displays every process in full output format
@ You can use ps to find the process id

@ You can use the process id to kill the process

[smiths@mills] sleep 100 &
[smiths@mills] ps

PID TTY TIME CMD

25493 pts/2 0:00 tcsh

27182 pts/2 0:00 sleep
27184 pts/2 0:00 ps
[smiths@mills] kill 27182

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 5/29

What is Design?

@ Provides structure to any artifact

@ Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal
@ Design refers to
> Activity
> Bridge between requirements and implementation
» Structure to an artifact
» Result of the activity

» System decomposition into modules (module guide)
» Module interface specification (MIS)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 6/29

Two Important Goals

@ Design for change (Parnas)

» Designers tend to concentrate on current needs

Special effort needed to anticipate likely changes

Changes can be in the design or in the requirements

» Too expensive to design for all changes, but should
design for likely changes

v

v

@ Product families (Parnas)

» Think of the current system under design as a member
of a program family

» Analogous to product lines in other engineering
disciplines

» Example product families include automobiles, cell
phones, etc.

» Design the whole family as one system, not each
individual family member separately

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

7/29

Sample Likely Changes

What are some examples of likely changes for software?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 8/29

Sample Likely Changes

@ Algorithms — like replacing inefficient sorting algorithm
with a more efficient one
@ Change of data representation

» From binary tree to threaded tree

» Array implementation to a pointer implementation

» Approx. 17% of maintenance costs attributed to data
representation changes (Lientz and Swanson, 1980)

@ Change of underlying abstract machine

» New release of operating system
» New optimizing compiler

» New version of DBMS

> etc.

@ Change of peripheral devices

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

9/29

Binary Tree to Threaded Tree

(

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 10/29

Sample Likely Changes

@ Change of “social” environment

v

Corresponds to requirements changes
» New tax regime
» EURO versus national currency in EU
» New language for user interface
> y2k
@ Change due to development process (prototype
transformed into product)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 11/29

Product Family Examples

@ What are some examples of product families?
@ What are some examples of program families?

@ Could Mosaic be part of a family of related programs?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

12/29

Product Families

e Different versions of the same system
» A family of mobile phones
» Commonalities include use of communication, interface,
screen, keyboard, etc.
» Variabilities include different network standards, user
interaction language, camera resolution, etc.
» Facility reservation system
» Commonalities include reserve something for a time
period, user interface, etc.
» Variabilities include context (hotel, university, etc),
reserve space versus equipment, fee or not, etc.

@ Design the whole family as one system, not each
individual member of the family separately

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 13/29

Sequential Completion: The Wrong Way

Requirements Requirements Retluirements
intermediate
Qdesign
final
product
Version 1
3 Version 1
3
Version 1

Version

N
Version 3

Version2 | 9

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 14/29

Product Families

e Different versions of the same system
» A family of mobile phones

» Commonalities include use of communication, interface,
screen, keyboard, etc.

» Variabilities include different network standards, user
interaction language, camera resolution, etc.

» Facility reservation system

» Commonalities include reserve something for a time
period, user interface, etc.

» Variabilities include context (hotel, university, etc),
reserve space versus equipment, fee or not, etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 15/29

How to Do Better

@ Anticipate definition of all family members

@ ldentify what is common to all family members, delay
decisions that differentiate among different members
(variabilities)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 16/29

Components of a Module

@ A software modules has two components
1. An interface that enables the module’s clients to use the
service the module provides
2. An implementation of the interface that provides the
services offered by the module

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 17/29

The Module Interface

@ A module’s interface can be viewed in various ways
As a set of services

» As a contract between the module and its clients
» As a language for using the module’s services

v

@ The interface is exported by the module and imported by
the module’s clients

@ An interface describes the data and procedures that
provide access to the services of the module

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

18/29

The Module Implementation

@ A module’s implementation is an implementation of the
module's interface

@ The implementation is hidden from other modules

@ The interface data and procedures are implemented
together and may share data structures

@ The implementation may utilize the services offered by
other modules

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 19/29

Information Hiding

@ Basis for design (that is modular decomposition (Module
Guide))

@ Implementation secrets are hidden to clients
@ Secret can be changed freely if the change does not affect
the interface

@ Try to encapsulate changeable design decisions as
implementation secrets within module implementations

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 20/29

Examples of Modules

@ Record
» Consists of only data
» Has state but no behaviour
@ Collection of related procedures (library)

» Has behaviour but no state
» Procedural abstractions
@ Abstract object
» Consists of data (fields) and procedures (methods)
» Consists of a collection of constructors, selectors, and
mutators
» Has state and behaviour

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

21/29

Examples of Modules Continued
@ Abstract data type (ADT)

» Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

» Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

» Encapsulates the details of the implementation of the
type

@ Generic Modules

» A single abstract description for a family of abstract
objects or ADTs

» Parameterized by type

» Eliminates the need for writing similar specifications for
modules that only differ in their type information

» A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 22/29

Example MIS for a Vector: Syntax

Access Routine Syntax

Routine name | Inputs | Outputs | Exceptions
Vect real, real

xcoord real

ycoord real

mul real

sum real, real

dot real, real | real

mag real

angle real

orthog real, real | boolean

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

23/29

Vector MIS Continued: Semantics

State variables
xc : real
yc : real

State invariant
none

Assumptions
Vect is called before any other access routine

Local Constants
TOLERANCE =1 x 10°

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 24/29

Vector MIS Continued

Access routine semantics
Vect(x, y):

@ transition: xc,yc == x,y

@ exception: none
xcoord():

@ output: out := xc

@ exception: none
ycoord():

@ output: out := yc

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

25/29

Vector MIS Semantics Continued

mul(r):
@ transition: xc,yc :=r-xc,r-yc
@ exception: none
sum(x, y):
@ transition: xc,yc := x+ xc,y + yc
@ exception: none
Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 26/29

Vector MIS Semantics Continued
dot(x, y):
@ output: out :=xc-xX+yc-y
@ exception: none
mag():
@ output: out := \/s_dot(xc, yc)
@ exception: none

angle():

s,dot(o,1)>

@ output: out := cos™! (s,m—ag()

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4)

27/29

Vector MIS Semantics Continued

orthog(x, y):
@ output: out := (|s_dot(x,y)| < TOLERANCE)

@ exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 28/29

Formal Version of Intersect

How would you write the semantics for circle intersection to
make it unambiguous?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 07 Introduction to Modules (Ch. 4) 29/29

