
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2017

06 Software Engineering Principles
Continued (Ch. 3)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 16, 2017



Software Engineering Principles

Administrative details

Key principles
I Rigour
I Formality
I Separation of concerns
I Modularity
I Abstraction
I Anticipation of change
I Generality
I Incrementality

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 2/21



Administrative Details

Assignment 1
I Final version now in repo
I Files due by midnight January 28
I E-mail partner files by January 28
I Lab report due February 2
I Using Python 2.7, doxygen, make, LaTeX, git
I Change from moore to mills

Questions on assignment?
I You may have to make assumptions if you find the

description ambiguous
I Feel free to incorporate robustness, but include doxygen

comments to explain what you are doing
I Do not add to the methods exported by the module
I Do not add additional arguments to the method calls
I Constructor versus Selector (Accessor) versus Mutator?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 3/21



Administrative Details Continued

Next week’s tutorial will cover LaTeX and Assignment 1

Following week will cover git and Assignment 1

Strongly suggest installing VirtualBox (or equivalent) with
a Linux VM

Can subscribe to Avenue discussion

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 4/21



Formal Versus Rigourous

Formal Version of Calculus “Textbook”

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 5/21

https://shemesh.larc.nasa.gov/fm/papers/Butler-JFR-FV-Integ.pdf


Separation of Concerns

What are examples of separation of concerns in traditional
engineering?

What are examples of separation of concerns in software
engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 6/21



Separation of Concerns: SE Examples

Separation of requirements from design

Separation of design from implementation

Decomposition of a system into a set of modules

The distinction between a module’s interface and its
implementation

The distinction between syntax and semantics

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 7/21



Modularity

A modular system is a complex system that is divided into
smaller parts called modules
Modularity enables the principle of separation of concerns
to be applied in two ways:

1. Different parts of the system are considered separately
2. The parts of the system are considered separately from

their composition

Modular decomposition is the top-down process of
dividing a system into modules

Modular decomposition is a “divide and conquer”
approach

Modular composition is the bottom-up process of building
a system out of modules

Modular composition is an “interchangeable parts”
approach

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 8/21



Examples of Modularity

What are examples of modularity in traditional engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 9/21



Properties of Good Modules

To achieve the benefits of modularity, a software engineer
must design modules with two properties

1. High cohesion: The components of the module are
closely related

2. Low coupling: The module does not strongly depend on
other modules

This allows the modules to be treated in two ways:

1. As a set of interchangeable parts
2. As individuals

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 10/21



Zero Coupling?

Given that low coupling is desirable, the ideal modularization
has zero coupling. Is this statement True or False?

A. True

B. False

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 11/21



Proposed Modularization for a Car

Suppose you decide to modularize the description of a car by
considering the car as comprising small cubes 15 inches on a
side.

1. Is the cohesion high or low?

2. Is the coupling high or low?

3. Propose a better modularization

4. In general, how should you decompose a complex system
into modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 12/21



Abstraction

Abstraction is the process of focusing on what is
important while ignoring what is irrelevant

Abstraction is a special case of separation of concerns

Abstraction produces a model of an entity in which the
irrelevant details of the entity are left out

I Many different models of the same entity can be
produced by abstraction

I Abstraction models differ from each other by what is
considered important and what is considered irrelevant

I Repeated application of abstraction produces a hierarchy
of models

Refinement is the opposite of abstraction

Over abstraction produces models that are difficult to
understand because they are missing so many details

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 13/21



Abstract Data Type

What makes an Abstract Data Type Abstract?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 14/21



Anticipation of Change

Anticipation of change is the principle that future change
should be anticipated and planned for

Also called design for change

Techniques for dealing with change:

1. Configuration management: Manage the configuration
of the software so that it can be easily modified as the
software evolves

2. Information hiding: Hide the things that are likely to
change inside of modules

3. Little languages: Create little languages that can be
used to solve families of related problems

Since software is constantly changing, anticipation of
change is crucial for the software development process

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 15/21



Anticipation of Change

Change should be anticipated for the development process, as
well as the product. For instance, what can you do to
anticipate changes in staffing?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 16/21



Generality

The principle of generality is to solve a more general
problem than the problem at hand whenever possible

Advantages
I The more general a solution is the more likely that it can

be reused
I Sometimes a general problem is easier to solve than a

specific problem

Disadvantages
I A general solution may be less efficient than a more

specific solution
I A general problem may cost more to solve than a more

specific problem

Abstraction is often used to extract a general solution
from a specific solution

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 17/21



Generality for Computational Geometry

The n-dimensional volume of a Euclidean ball of radius R in
n-dimensional Euclidean space

V2k(R) =
πk

k!
R2k

V2k+1(R) =
2(k!)(4π)k

(2k + 1)!
R2k+1

See Wikipedia page for Volume of an n-ball

CGAL includes specific and general kernels

Domain Specific Languages (DSLs) hold the promise of
generality and performance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 18/21

https://en.wikipedia.org/wiki/Volume_of_an_n-ball
http://doc.cgal.org/latest/Manual/packages.html


Generality of ODE Solver

Control Module 
(M7)

Input Format 
Module (M2)

Temperature 
ODEs Module 

(M5)
Energy Equations 

Module (M6)
ODE Solver 
Module (M9)

Plotting Module 
(M10)

Output Format 
Module (M4)

Input Parameters 
Module (M3)

Sequence Data 
Structure Module 

(M8)

Hardware Hiding 
Module (M1)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 19/21



Incrementality

The principle of incrementality is to attack a problem by
producing successively closer approximations to a solution

Enables the development process to receive feedback and
the requirements to be adjusted accordingly

Techniques for developing software incrementally

1. Rapid prototyping: Produce a prototype that is “thrown
away” later

2. Refinement: A high-level artifact (like a requirements
specification or a higher-level design) is incrementally
refined into a low-level artifact (like a lower-level design
or an implementation)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 20/21



Principles for High Quality Documentation

To achieve external qualities for documentation, there are
some generally agreed on internal qualities

Internal qualities can more likely be directly measured

Following list of qualities based on IEEE guidelines for
requirements (IEEE Std 830-1998)

I Complete
I Consistent
I Modifiable
I Traceable
I Unambiguous
I Correct
I Verifiable
I Abstract

Dr. Smith SE 2AA4, CS 2ME3 Winter 2017: 06 Software Engineering Principles Continued (Ch. 3) 21/21


