
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

35 Analysis (Ch. 6)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

April 5, 2018



35 Analysis (Ch. 6)

Administrative details

Module testing

Integration testing

Testing OO programs

Testing concurrent and real-time systems

Mutation testing

Analysis
I Code walk throughs and inspections
I Correctness proofs
I Symbolic execution
I Model checking

Debugging

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 2/39



Administrative Details

Today’s slide are partially based on slides by Dr. Wassyng

A4: Due April 9 at 11:59 pm

Final tutorials on Friday, Apr 6

Course evaluations
I https://evals.mcmaster.ca
I Start: Tues, Mar 27, 10:00 am
I Close: Tues, Apr 10, 11:59 pm
I Your participation is highly valued
I Grade bonus for class participation

Provide course feedback in last lecture

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 3/39

https://evals.mcmaster.ca


Unix Command of the Day: grep

Search for the lines in a collection of data that match a
specified pattern

From se2aa4 cs2me3/Lectures

I grep -r Parnas . > parnas.txt
I grep -c L04 parnas.txt
I grep -c ’L0.’ parnas.txt

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 4/39



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output

I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing)
I etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 5/39



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output

I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing)
I etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 5/39



Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 6/39



Module Testing

Scaffolding needed to create the environment in which
the module should be tested

Stubs - a module used by the module under test

Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 7/39



Testing a Functional Module

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 8/39



Integration Testing

Big-bang approach
I First test individual modules in isolation
I Then test integrated system

Incremental approach
I Modules are progressively integrated and tested
I Can proceed both top-down and bottom-up according to

the USES relation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 9/39



Integration Testing and USES relation

If integration and test proceed bottom-up only need
drivers

Otherwise if we proceed top-down only stubs are needed

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 10/39



Example

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
In what order would you test these modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 11/39



Example

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
Case 1

I Test M1 providing a stub for M2 and a driver for M1

I Then provide an implementation for M2,1 and a stub for
M2,2

Case 2
I Implement M2,2 and test it by using a driver
I Implement M2,1 and test the combination of M2,1 and

M2,2 (i.e. M2) by using a driver
I Finally implement M1 and test it with M2 using a driver

for M1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 12/39



Testing OO and Generic Programs

New issues
I Inheritance
I Genericity
I Polymorphism
I Dynamic binding

Open problems still exist

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 13/39



Inheritance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 14/39



How to Test Classes of the Hierarchy

How would you approach testing for a class hierarchy?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 15/39



How to Test Classes of the Hierarchy

“Flattening” the whole hierarchy and considering every
class as totally independent component

This does not exploit incrementality

Finding an ad-hoc way to take advantage of the hierarchy

Think about testing PointT.py and PointMassT.py

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 16/39



A Sample Strategy

A test that does not have to be repeated for any heir

A test that must be performed for heir class X and all of
its further heirs

A test that must be redone by applying the same input
data, but verifying that the output is not (or is) changed

A test that must be modified by adding other input
parameters and verifying that the the output changes
accordingly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 17/39



Testing Concurrent and Real-time Systems

What are the challenges for testing concurrent and real-time
systems?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 18/39



Testing Concurrent and Real-time Systems

Nondeterminism inherent in concurrency affects
repeatability

For real-time systems, a test case consists not only of
input data, but also of the times when such data are
supplied

Many potential time traces for the different inputs

System changes depends on the control actions

Considerable care and detail when testing real-time
systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 19/39



Testing your Tests

How did we estimate the number of errors in our code?

Can any of the ideas from estimating the number of
errors in our code be used to test our tests?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 20/39



Testing your Tests: Mutation Testing

Generate changes to the source code, called mutants,
which become code faults

Mutants include changing an operation, modifying
constants, changing the order of execution, etc.

The adequacy of a set of tests is established by running
the tests on all generated mutants

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 21/39



Analysis Versus Testing

Testing characterizes a single execution

Analysis characterizes a class of executions; it is based on
a model

They have complementary advantages and disadvantages

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 22/39



Informal Analysis Techniques and Code

Walkthroughs

Recommended prescriptions
I Small number of people (three to five)
I Participants receive written documentation from the

designer a few days before the meeting
I Predefined duration of the meeting (a few hours)
I Focus on the discovery of errors, not on fixing them
I Participants: designer, moderator, and a secretary
I Foster cooperation; no evaluation of people
I Experience shows that most errors are discovered by the

designer during the presentation, while trying to explain
the design to other people

Forces looking at the code from a different viewpoint

Can be used for documentation too

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 23/39



Informal Analysis Techniques Code Inspection

A reading technique aiming at error discovery

Based on checklists
I Use of uninitialized variables
I Jumps into loops
I Nonterminating loops
I Array indexes out of bounds

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 24/39



Correctness Proofs

Formal program analysis is a verification aid that may
enhance program reliability

Mathematically prove that the program’s semantics
implies its specification

Can use pre and post conditions

We can prove correctness of operations (like those on an
abstract data type)

Use the proof of operations to prove fragments that
operate on the objects of an ADT

Tabular expressions can be proven to match between
specification of requirements and a specification of the
design

In many cases verification can be automated, at least
partially

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 25/39



Assessment of Correctness Proofs

Not often used in practice

However
I May be used for very critical portions
I Assertions may be the basis for a systematic way of

inserting runtime checks
I Proofs may become more practical as more powerful

support tools are developed
I Knowledge of correctness theory helps programmers

being rigorous

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 26/39



Symbolic Execution

Can be viewed as a middle way between testing and
analysis

Executes the program on symbolic values

One symbolic execution corresponds to many actual
executions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 27/39



Model Checking

Correctness verification, in general, is an undecidable
problem

Model checking is a recent verification technique based
on the fact that most interesting system properties
become decidable (algorithmically verifiable) when the
system is modelled as a finite state machine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 28/39



Model Checking Continued

Describe a given system - software or otherwise - as an
FSM

Express a given property of interest as a suitable formula
I Does a computation exist that allows a process to enter

a critical region?
I Is there a guarantee that a process can access shared

resources?

Verify whether the system’s behaviour does indeed satisfy
the desired property

I This step can be performed automatically
I The model checker either provides a proof that the

property holds or gives a counter example in the form of
a test case that exposes the system’s failure to behave
according to the property

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 29/39



Why so Many Approaches to Testing and Analysis?

Testing versus (correctness) analysis

Formal versus informal techniques

White-box versus black-box techniques

Techniques in the small/large

Fully automatic versus semi-automatic techniques (for
undecidable problems)

...

View all of these as complementary

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 30/39



Debugging

What approaches do you use for debugging?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 31/39



Debugging

The activity of locating and correcting errors

It can start once a failure has been detected

The goal is closing the gap between a fault and a failure
I Memory dumps, watch points
I Intermediate assertions can help
I Tools like gdb, valgrind, etc.

Incremental integration tests helps

Incrementally add complexity to test cases

Like investigating an experiment - one controlled variable
at a time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 32/39



Verifying Performance

How might you measure/assess performance?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 33/39



Verifying Performance

Worst case analysis versus average behaviour

For worst case focus on proving that the system response
time is bounded by some function of the external requests

Standard deviation

Analytical versus experimental approaches

Consider verifying the performance of a pacemaker

Visualize performance via
I Identify a measure of performance (time, storage,

FLOPS, accuracy, etc.)
I Identify an independent variable (problem size, number

of processors, condition number, etc.)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 34/39



Verifying Reliability

There are approaches to measuring reliability on a
probabilistic basis, as in other engineering fields

Unfortunately there are some difficulties with this
approach

Independence of failures does not hold for software

Reliability is concerned with measuring the probability of
the occurrence of failure

Meaningful parameters include
I Average total number of failures observed at time t:

AF (t)
I Failure intensity: FI (T ) = AF ′(t)
I Mean time to failure at time t: MTTF (t) = 1/FI (t)

Time in the model can be execution or clock or calendar
time

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 35/39



Verifying Subjective Qualities

What do you think is meant by empirical software
engineering?

What problems might be studied by empirical software
engineering?

Does the usual engineering analogy hold for empirical
software engineering?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 36/39



Verifying Subjective Qualities

Consider notions like simplicity, reusability,
understandability

Software science (due to Halstead) has been an attempt

Tries to measure some software qualities, such as
abstraction level, effort,
by measuring some quantities on code, such as

I η1, number of distinct operators in the program
I η2, number of distinct operands in the program
I N1, number of occurrences of operators in the program
I N2, number of occurrences of operands in the program

Extract information from repo, including number of
commits, issues etc.

Empirical software engineering

Appropriate analogy switches from engineering to
medicine

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 37/39



Source Code Metric

What are the consequences of complex code?

How might you measure code complexity?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 38/39



McCabe’s Source Code Metric

Cyclomatic complexity of the control graph
I C = e − n + 2p
I e is number of edges, n is number of nodes, and p is

number of connected components

McCabe contends that well-structured modules have C in
range 3..7, and C = 10 is a reasonable upper limit for the
complexity of a single module

Confirmed by empirical evidence

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 35 Analysis (Ch. 6) 39/39


