
Assignment 2

COMP SCI 2ME3 and SFWR ENG 2AA4

Rober Boshra

April 10, 2017

Specifications of battleship are split across three modules: ShipADT, BoardADT, and
GameModule. GameModule provides basic access to starting a game, making a move, and
checking whether the game is over. BoardADT contains the BoardT type, specifying a
single board pertaining to one player and including both ship placements and hits/misses.
BoardT was designed to have a sequence of ShipTs and a sequence of already hit gridcells;
this is opposed to a complete two-dimensional grid. Each ship in the game is represented
as an instance of ShipT with its predefined size and position on the board. A ShipT also
tracks how many of its parts have been hit; however, there is no explicit tracking of which
part is hit, as that is already covered by BoardT’s list of hit cells.

ShipADT Module

Template Module

ShipADT

Uses

N/A

Syntax

Exported Constants

MISS ID = −1
EMPTY ID = 0

1

HIT ID = 1
SHIPDESTROYED ID = 2

Exported Types

Gridcell = tuple of (xpos : integer, ypos : integer)
ShipT = ?

Exported Access Programs

Routine name In Out Exceptions
new ShipT integer, integer, integer, boolean ShipT SHIPERROR
hit integer
span sequence of Gridcell
posx integer
posy integer
size integer
hor boolean
partsdestroyed integer

Semantics

State Variables

x: integer //X-position of leftmost part of the ship
y: integer //Y-position of the topmost part of the ship
s: integer //Size of the ship
h: boolean //True if the ship is placed horizontally, false otherwise
d: integer //Number of ship parts hit

State Invariant

None

Assumptions

None

Access Routine Semantics

new ShipT (xin, yin, s , hin):

2

• transition: x, y, s, h, d := xin, yin, s , i , hin, 0

• output: out := self

• exception: exc := (s < 1 ∨ posx < 0 ∨ posy < 0⇒ SHIPERROR)

span ()

• output:

out := ||(∀xb, yb : N|(yb = y ∧ xb ∈ [x..x + s] ∧ h)

∨(xb = x ∧ yb ∈ [y..y + s] ∧ ¬h) :< 〈xb, yb〉 >)

hit ()

• transition: d := d + 1

• output: out := (d = s⇒ SHIPDESTROYED ID|d < s⇒ HIT ID)

posx ():

• output: out := x

posy ():

• output: out := y

hor ():

• output: out := h

size ():

• output: out := s

partsdestroyed ():

• output: out := d

BoardADT Module

Template Module

BoardADT

3

Uses

ShipADT

Syntax

Exported Constants

SIZE X = 11
SIZE Y = 9
SHIP SIZES = < 2, 3, 3, 4, 5 >

Exported Types

BoardT = ?

Exported Access Programs

Routine name In Out Exceptions
new BoardT sequence of ShipT BoardT SETUPERROR
hit integer, integer integer HITERROR
checkCell integer, integer integer LOCATIONERROR
lose boolean

Semantics

State Variables

ss: sequence of ShipT //All ships that are part of the board
hits: set of Gridcell //Tracks all actions taken against this board

State Invariant

None

Assumptions

Ships are passed to the constructor in the same order, in terms of size/type, as in
SHIP SIZES.

4

Access Routine Semantics

new BoardT (ships):

• transition: ss, hits := ships, {}

• output: out := self

• exception: exec := (¬correctsetup(ships)⇒ SETUPERROR)

hit (x , y)

• transition: hits := hits||{〈x, y〉}

• output: out := (∃s : ShipT |s ∈ ss ∧ 〈x, y〉 ∈ s.span() ⇒ s.hit()|@s : ShipT |s ∈
ss ∧ 〈x, y〉 ∈ s.span()⇒ −1)

• exception: exec := 〈x, y〉 ∈ hits∨x /∈ [1..SIZE X]∨y /∈ [1..SIZE Y]⇒ HITERROR)

checkCell (x , y)

• output:

out := (∃s : ShipT |s ∈ ss ∧ 〈x, y〉 ∈ s.span()

∧〈x, y〉 ∈ hits⇒ ShipADT.HIT ID|〈x, y〉 /∈ hits⇒ ShipADT.EMPTY ID

|@s : ShipT |s ∈ ss ∧ 〈x, y〉 ∈ s.span() ∧ 〈x, y〉 ∈ hits⇒ ShipADT.MISS ID)

• exception: exec := x /∈ [1..SIZE X] ∨ y /∈ [1..SIZE Y]⇒ LOCATIONERROR)

lose ()

• output: out := (∀s : ShipT |s ∈ ships ∧ s.size() = s.partsdestroyed())

Local Functions

correctsetup: sequence of ShipT → boolean
correctsetup(ships) ≡

(∀i : N|ships[i].size() = SHIP SIZES[i] ∧ i < |SHIP SIZES|)
∧(∀xp, yp, s : N,N, ShipT |s ∈ ships ∧ 〈xp, yp〉 ∈ s.span() ∧ xp ∈ [1..SIZE X]

∨yp ∈ [1..SIZE Y]) ∧ (@cell, s1, s2 : Gridcell, ShipT, ShipT |s1 ∈ ships ∧ s2 ∈ ships

∧cell ∈ s1.span() ∧ cell ∈ s2.span ∧ s1 6= s2)

5

Battleship Game Module

Module

GameModule

Uses

BoardADT

Syntax

Exported Access Programs

Routine name In Out Exceptions
Game init BoardT, BoardT
Game p2turn boolean
Game hit integer, integer integer
Game won integer
Game view integer, integer integer

Semantics

State Variables

p1: BoardT //First player’s board (2nd player attacks it)
p2: BoardT //Second player’s board
turn: boolean //Set to true if it is the second player’s turn, the first player’s if false

Assumptions

Game init is called before any other access program.
Game won is called after every Game hit. Game ends if the output is not 0 (a player
won)

Access Routine Semantics

Game init(x, y):

• transition: p1, p2, turn := x, y, false

Game hit(x, y):

6

• transition: turn := ¬turn

• output: out := currenttargetboard().hit(x, y)

Game p2turn():

• output: out := turn

Game won():

• output: out := p1.lose()⇒ 2|p2.lose()⇒ 1|¬(p1.lose ∨ p2.lose)⇒ 0

Game view(x,y):

• output: out := currenttargetboard().checkCell(x, y)

Local Functions

currenttargetboard: () → BoardT
currenttargetboard() ≡ (turn⇒ p1)|(¬turn⇒ p2)

7

