
Assignment 3

COMP SCI 2ME3 and SFWR ENG 2AA4

March 16, 2017

The purpose of this software design exercise is to design and implement a portion of
the specification for an autonomous rescue robot. You are given a partial specification
and asked to fill in the specification of the missing semantics. Once the specification is
complete, you will implement a portion of it. However, to have a common interface across
the class, you will implement the instructor provided specification, rather than your own.

The motivation for the current problem is a previous capstone design project. In this
project teams of 5 or 6 students developed Remote Image Guided Autonomous Rescue
Robots (RIGARR). The inspiration for the project is real life rescue robots, which are
used when a disaster occurs and the conditions are too dangerous for human rescuers. To
determine the path for the rescue mission the teams were given a digital image showing the
destinations they had to reach and the obstacles blocking their path. Teams competed to
reach all of the destinations in the shortest time. The hardware used for robot construction
was the Lego Mindstorms.

The focus of the current assignment will only be on the route planning portion of
the above project. The information on obstacles and destinations will be assumed to be
available to the modules designed in this exercise. The modules for this assignment deal
with determining a path from a safe zone back to the safe zone, while passing through all
rescue regions and avoiding all obstacles. Figure 1 shows a map of the area of interest.
The lower left corner of the map is located at the origin of the x-y coordinate system.
The map has length MAX X in the x direction and length MAX Y in the y direction.
Any point outside of the map area is considered to be an invalid point. Within the map
there are rectangles (regions) for the safe zone, the rescue regions (destinations), and for
the obstacles. Each rectangle is defined by the coordinate of its lower left corner, together
with values for its width and its height. This information is identified on Figure 1 for one
of the obstacle regions.

To rescue all of the potential victims, a valid path proceeds from the safe zone back
to the safe zone, visits all of the rescue regions, does not cross any of the obstacles and
respects that stated tolerances. The purpose of the tolerances is to allow for the fact

1

y

x

Safe
Region

Obstacle

M
A

X
_Y

MAX_X
(0,0)

width

he
ig

ht

(lower_left.xcoord(), lower_left.ycoord())

Obstacle
Obstacle

Valid Path

Rescue region

Figure 1: Example map with valid and invalid paths

2

that the robot may not be exactly where you plan it to be. The robot cannot be closer
than TOLERANCE to an obstacle to take this into account. The robot is also allowed to
“miss” the rescue regions and the safezone by the TOLERANCE amount. A path is made
up of a sequence of points, where each point is defined as a tuple of x and y coordinates.
The path is defined as the straight line connecting subsequent points.

The modules specified at the end of this assignment description are as follows: Con-
stants, PointT, RegionT, GenericList(T), PathT, Obstacles, Destinations, SafeZone, Map
and PathCalculation. A portion of the specification is given, but within it there are several
mathematical specifications that you need to complete. Your specifications should not
involve writing algorithms or pseudo-code. The specifications should use discrete math-
ematics to specify the desired properties. That is, you should be writing a descriptive
specification as opposed to an operational specification. Specifications within a module
are free to use access programs defined within the current module or from another module
that is used by the current module.

All of your code should be written in Java. All code files should be documented using
either doxygen or javadoc. Your report should be written using LaTeX. Your code should
follow the given specification exactly. In particular, you should not add public methods
or procedures that are not specified and you should not change the number or order of
parameters for methods or procedures. If you need private methods or procedures, you
can add them by explicitly declaring them as private.

Deadlines

• Part 1 - Specification: due 11:59 pm Mar 8

• Part 2 - Code: due 11:59 pm Mar 20

Step 1

Complete the specification for the RegionT module. You will need to complete the fol-
lowing:

RegionT(p, w, l): Write the mathematical specification for the InvalidRegionException
exception in the constructor for RegionT. This exception should be thrown when
any portion of input region would extend outside of the map area, as defined in
Figure 1.

pointInRegion(p): Write the output portion of the specification. This routine should
return True if the point p is within TOLERANCE of the region. That is, if the

3

distance from the point p to any point within the region is less than or equal to
TOLERANCE, then return True.

Step 2

Complete the specification of the semantics portion of the PathCalculation module. A
description of the behaviour of each of the access programs is as follows:

is validSegment(p1, p2): This routine should return true if the line segment between
p1 and p2 does not come any closer than TOLERANCE to any of the obstacles.

is validPath(p): This routine returns true if the path is valid. A valid path must begin
and end within TOLERANCE of the safe zone region. The path must pass within
TOLERANCE of all of the rescue regions and none of the points in the line segments
connecting subsequent points in the path should come closer than TOLERANCE
to any of the obstacles.

is shortestPath(p): This routine returns true if the path p is the shortest of all valid
paths.

totalDistance(p): This routine returns the sum of the lengths of the piecewise segments
that make up the sequence of points in the path.

totalTurns(p): This routine returns the number of turns in the path p. A turn is any
change of the orientation of the robot.

estimatedTime(p): This routine returns the estimated time for traversing the path p.
The time is calculated as the sum of the times to traverse the straight segments
and the times to do all of the turns. The time for covering a straight segment is
calculated using Constants.VELOCITY LINEAR. The time for turning is calculated
using the angle of the turn (in radians) and Constants.VELOCITY ANGULAR.

Step 3

Write a critique of the interface for the modules in this project. Is there anything missing?
Is there anything you would consider changing? Why?

4

Step 4

Push your report (report.tex and report.pdf) showing the specifications and the design
critique to your GitLab project repo. The report, including the specifications, should
be written in LaTeX. This step should be completed by the deadline for Part 1 of the
assignment.

Step 5

After the report has been submitted, you will be provided with a complete specifi-
cation for all of the modules. Implement the modules in Java. The names of the
modules that need to be implemented are as follows: Constants.java, PointT.java,
InvalidPointException.java, RegionT.java, GenericList.java, InvalidRegionException.java,
PathT.java, Obstacles.java, Destinations.java, SafeZone.java, FullSequenceException.java,
InvalidPositionException.java, Map.java and PathCalculation.java. For the PathCal-
culation.java class, you do not need to implement the methods for is validSegment,
is validPath and is shortestPath.

Please also provide a makefile named Makefile with a rule named doc. This rule will
create all of the documentation, either using javadoc or doxygen.

Step 6

Write a fourth module, named TestPathCalculation.java that tests the implemented
routines of the PathCalculation module. This module should use JUnit for testing. You
can test other routines as well, but you are only required to test the PathCalculation
routines. Each procedure should have at least one test case. For this assignment you
are not required to submit a lab report, but you should still carefully think about your
rationale for test case selection. Please make an effort to test normal cases, boundary
cases, and exception cases.

Please include in your makefile (named Makefile) a rule named test. This rule will
run all of your test cases.

Step 7

Push all of your code files to your GitLab project repo. This step should be completed
by the deadline for Part 2 of the assignment.

5

Notes

1. Your git repo is organized with the following directories at the top level: A1, A2, A3,
and A4.

2. Inside the A3 folder you will start with initial stubs of the files and folders that you
need to use. Please do not change the names or locations of any of these files or
folders. The structure of your project files and folders should look like this:

• A3

∗ doxConfig (if using doxygen)

∗ Makefile

– report

∗ report.tex

∗ report.pdf

– src

∗ Constants.java

∗ PointT.java

∗ InvalidPointException.java

∗ RegionT.java

∗ GenericList.java

∗ InvalidRegionException.java

∗ PathT.java

∗ Obstacles.java

∗ Destinations.java

∗ SafeZone.java

∗ FullSequenceException.java

∗ InvalidPositionException.java

∗ Map.java

∗ PathCalculation.java

∗ TestPathCalculation.java

3. Please put your name and macid at the top of each of your source files.

4. Your program must work in the ITB labs on mills when compiled with its versions
of Java, JUnit (Version 4), LaTeX, doxygen (if used) and make.

5. Java specifics:

6

• Please use double in your implementation of real.

• All exceptions should be RunTimeExceptions and they should have a construc-
tor that takes a string argument. The string provided when the exception is
thrown will be an explanation of the error.

• The JUnit class files are available on mills at /usr/share/java/junit4.jar.

6. The robot is assumed to only move forward, so the specification does not need to
worry about a robot that can drive backwards.

7. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

8. Any changes to the assignment specification will be announced in class.
It is your responsibility to be aware of these changes. Please monitor all
pushes to the course git repo.

7

Constants Module

Module

Constants

Uses

N/A

Syntax

Exported Constants

MAX X = 180 //dimension in the x-direction of the problem area
MAX Y = 160 //dimension in the y-direction of the problem area
TOLERANCE = 5 //space allowance around obstacles
VELOCITY LINEAR = 15 //speed of the robot when driving straight
VELOCITY ANGULAR = 30 //speed of the robot when turing rad

Exported Access Programs

none

Semantics

State Variables

none

State Invariant

none

8

Point ADT Module

Template Module

PointT

Uses

Constants

Syntax

Exported Types

PointT = ?

Exported Access Programs

Routine name In Out Exceptions
PointT real, real PointT InvalidPointException
xcrd real
ycrd real
dist PointT real

Semantics

State Variables

xc: real
yc: real

State Invariant

none

Assumptions

The constructor PointT is called for each abstract object before any other access routine
is called for that object. The constructor cannot be called on an existing object.

9

Access Routine Semantics

PointT(x, y):

• transition: xc, yc := x, y

• output: out := self

• exception exc := ((¬(0 ≤ x ≤ Contants.MAX X)∨¬(0 ≤ y ≤ Constants.MAX Y))⇒
InvalidPointException)

xcrd():

• output: out := xc

• exception: none

ycrd():

• output: out := yc

• exception: none

dist(p):

• output: out :=
√

(self .xc− p.xc)2 + (self .yc− p.yc)2

• exception: none

10

Region Module

Template Module

RegionT

Uses

PointT, Constants

Syntax

Exported Types

RegionT = ?

Exported Access Programs

Routine name In Out Exceptions
RegionT PointT, real, real RegionT InvalidRegionException
pointInRegion PointT boolean

Semantics

State Variables

lower left : PointT //coordinates of the lower left corner of the region
width: real //width of the rectangular region
height : real //height of the rectangular region

State Invariant

None

Assumptions

The RegionT constructor is called for each abstract object before any other access routine
is called for that object. The constructor can only be called once.

11

Access Routine Semantics

RegionT(p, w, h):

• transition: lower left ,width, height := p, w, h

• output: out := self

• exception: exc :=?

pointInRegion(p):

• output: out :=?

• exception: none

12

Generic List Module

Generic Template Module

GenericList(T)

Uses

N/A

Syntax

Exported Types

GenericList(T) = ?

Exported Constants

MAX SIZE = 100

Exported Access Programs

Routine name In Out Exceptions
GenericList GenericList
add integer, T FullSequenceException,

InvalidPositionException
del integer InvalidPositionException
setval integer, T InvalidPositionException
getval integer T InvalidPositionException
size integer

Semantics

State Variables

s: sequence of T

State Invariant

|s| ≤ MAX SIZE

13

Assumptions

The GenericList() constructor is called for each abstract object before any other access
routine is called for that object. The constructor can only be called once.

Access Routine Semantics

GenericList():

• transition: self .s :=<>

• output: out := self

• exception: none

add(i, p):

• transition: s := s[0..i− 1]|| < p > ||s[i..|s| − 1]

• exception: exc := (|s| = MAX SIZE ⇒ FullSequenceException | i /∈ [0..|s|] ⇒
InvalidPositionException)

del(i):

• transition: s := s[0..i− 1]||s[i + 1..|s| − 1]

• exception: exc := (i /∈ [0..|s| − 1]⇒ InvalidPositionException)

setval(i, p):

• transition: s[i] := p

• exception: exc := (i /∈ [0..|s| − 1]⇒ InvalidPositionException)

getval(i):

• output: out := s[i]

• exception: exc := (i /∈ [0..|s| − 1]⇒ InvalidPositionException)

size():

• output: out := |s|

• exception: none

14

Path Module

Template Module

PathT is GenericList(PointT)

Obstacles Module

Template Module

Obstacles is GenericList(RegionT)

Destinations Module

Template Module

Destinations is GenericList(RegionT)

SafeZone Module

Template Module

SafeZone extends GenericList(RegionT)

Exported Constants

MAX SIZE = 1

15

Map Module

Module

Map

Uses

Obstacles, Destinations, SafeZone

Syntax

Exported Access Programs

Routine name In Out Exceptions
init Obstacles, Destinations, SafeZone
get obstacles Obstacles
get destinations Destinations
get safeZone SafeZone

Semantics

State Variables

obstacles : Obstacles
destinations : Destinations
safeZone : SafeZone

State Invariant

none

Assumptions

The access routine init() is called for the abstract object before any other access routine
is called. If the map is changed, init() can be called again to change the map.

Access Routine Semantics

init(o, d, sz):

• transition: obstacles , destinations , safeZone := o, d, sz

16

• exception: none

get obstacles():

• output: out := obstacles

• exception: none

get destinations():

• output: out := destinations

• exception: none

get safeZone():

• output: out := safeZone

• exception: none

17

Path Calculation Module

Module

PathCalculation

Uses

Constants, PointT, RegionT, PathT, Obstacles, Destinations, SafeZone, Map

Syntax

Exported Access Programs

Routine name In Out Exceptions
is validSegment PointT, PointT boolean
is validPath PathT boolean
is shortestPath PathT boolean
totalDistance PathT real
totalTurns PathT integer
estimatedTime PathT real

Semantics

?

18

