Assignment 2
COMP SCI 2ME3 and SFWR ENG 2AA4

Rober Boshra
April 10, 2017

Specifications of battleship are split across three modules: ShipADT, BoardADT, and
GameModule. GameModule provides basic access to starting a game, making a move, and
checking whether the game is over. BoardADT contains the BoardT type, specifying a
single board pertaining to one player and including both ship placements and hits/misses.
BoardT was designed to have a sequence of ShipTs and a sequence of already hit gridcells;
this is opposed to a complete two-dimensional grid. Each ship in the game is represented
as an instance of ShipT with its predefined size and position on the board. A ShipT also
tracks how many of its parts have been hit; however, there is no explicit tracking of which
part is hit, as that is already covered by BoardT’s list of hit cells.

ShipADT Module

Template Module
ShipADT

Uses
N/A

Syntax
Exported Constants

MISSID = -1
EMPTY_ID =0

HITID =1

SHIPDESTROYED_ID = 2

Exported Types

Gridcell = tuple of (xpos : integer, ypos : integer)

ShipT = ?

Exported Access Programs

Routine name | In Out Exceptions
new ShipT integer, integer, integer, boolean | ShipT SHIPERROR
hit integer

span sequence of Gridcell

posx integer

posy integer

size integer

hor boolean

partsdestroyed integer
Semantics

State Variables

BT 2R R

State Invariant

None

Assumptions

None

. integer //X-position of leftmost part of the ship
integer //Y-position of the topmost part of the ship
integer //Size of the ship
: boolean //True if the ship is placed horizontally, false otherwise
integer //Number of ship parts hit

Access Routine Semantics

new ShipT (zin, yin, s, hin):

e transition: xz,vy, s, h,d := xin, yin, s, ¢, hin,0
e output: out := self
e exception: exc:= (s < 1V posx <0V posy <0= SHIPERROR)
span ()
e output:
out := ||(Vab,yb : N|(yb =y Axb € [x.x 4+ s] A h)
V(zb=x Ayb € [y..y + s] A =h) :< (zb, yb) >)
hit ()
e transition: d:=d+1
e output: out := (d = s = SHIPDESTROYED_ID|d < s = HIT_ID)
posx ():
e output: out :=x
posy ():
e output: out : =y
hor ():
e output: out :=h
size ():
e output: out :=s
partsdestroyed ():

e output: out :=d

BoardADT Module

Template Module
BoardADT

Uses
ShipADT

Syntax
Exported Constants

SIZEX =11
SIZE.Y =9
SHIP SIZES = < 2,3,3,4,5 >

Exported Types
BoardT =7

Exported Access Programs

Routine name | In Out Exceptions
new BoardT sequence of ShipT | BoardT | SETUPERROR
hit integer, integer integer | HITERROR
checkCell integer, integer integer | LOCATIONERROR
lose boolean

Semantics

State Variables

ss: sequence of ShipT //All ships that are part of the board
hits: set of Gridcell //Tracks all actions taken against this board
State Invariant

None

Assumptions

Ships are passed to the constructor in the same order, in terms of size/type, as in
SHIP_SIZES.

Access Routine Semantics

new BoardT (ships):

e transition: ss, hits := ships, {}

e output: out := self

e cxception: exec := (—correctsetup(ships) = SETUPERROR)
hit (z,y)

e transition: hits := hits||{(z,y)}

e output: out := (3s : ShipT|s € ss A {(z,y) € s.span() = s.hit()|Ps : ShipT|s €
ss A {(x,y) € s.span() = —1)

e exception: exec := (x,y) € hitsVzx ¢ [1..SIZE X]Vy ¢ [1..SIZE_Y] = HITERROR)
checkCell (z,y)

e output:

out := (s : ShipT|s € ss A (z,y) € s.span()
Mz, y) € hits = ShipADT.HIT_ID|(z,y) ¢ hits = ShipADT.EMPTY _ID
|Bs : ShipT|s € ss A (x,y) € s.span() A {z,y) € hits = ShipADT.MISS_ID)

e cxception: evec:=x ¢ [1.SIZE_X]| V y ¢ [1..SIZE_Y] = LOCATIONERROR)

lose ()

e output: out := (Vs : ShipT'|s € ships A s.size() = s.partsdestroyed())

Local Functions

correctsetup: sequence of ShipT — boolean
correctsetup(ships) =

(Vi : N|ships[i|.size() = SHIP_SIZES[i] Ni < |SHIP_SIZES])

A(Vxp,yp, s : N, N, ShipT'|s € ships A (zp,yp) € s.span() A xp € [1..SIZE X]

Vyp € [1.SIZE_Y]) A (Bcell, s1, 52 : Grideell, ShipT, ShipT|s1 € ships A s2 € ships
Ncell € sl.span() A cell € s2.span A s1 # s2)

Battleship Game Module

Module
GameModule

Uses
BoardADT

Syntax

Exported Access Programs

Routine name | In Out Exceptions
Game_init BoardT, BoardT
Game_p2turn boolean
Game_hit integer, integer integer
Game_won integer
Game_view integer, integer integer

Semantics
State Variables

pl: BoardT //First player’s board (2nd player attacks it)
p2: BoardT //Second player’s board
turn: boolean //Set to true if it is the second player’s turn, the first player’s if false

Assumptions
Game_init is called before any other access program.
Game_won is called after every Game_hit. Game ends if the output is not 0 (a player
won)
Access Routine Semantics
Game_init(zx, y):
e transition: pl,p2,turn = x,y, false

Game_hit(z,y):

e transition: turn := —turn

e output: out := currenttargetboard().hit(z,y)
Game_p2turn():

e output: out := turn
Game_won():

e output: out := pl.lose() = 2|p2.lose() = 1|=(pl.lose V p2.lose) = 0
Game_view(x,y):

e output: out := currenttargetboard().checkCell(x,y)

Local Functions

currenttargetboard: () — BoardT
currenttargetboard() = (turn = pl)|(—turn = p2)

