
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

13 Module Decomposition (Ghezzi
Ch. 4, H&S Ch. 7)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

February 2, 2018



13 Module Decomposition (Ghezzi Ch. 4, H&S Ch.

7)

Administrative details

Finish OOD

Exceptions and assumptions

Quality criteria

Module decomposition

Software architecture

Design for change

Relationship between modules

The USES relation

Module decomposition by secrets

The IS COMPONENT OF relation

Techniques for design for change

Module guide
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 2/35



Administrative Details

Assignment 2 (Still in Draft Form)
I Part 1: February 12, 2018
I Partner Files: February 18, 2018
I Part 2: March 2, 2018

Midterm exam
I Wednesday, February 28, 7:00 pm
I 90 minute duration
I Multiple choice - 30–40 questions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 3/35



Bank Account Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 4/35



Class Diagram Versus MIS

What information do the MIS and Class Diagram have in
common?

What information does the MIS add?

What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 5/35



Class Diagram Versus MIS

What information do the MIS and Class Diagram have in
common?

What information does the MIS add?

What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 5/35



Class Diagram Versus MIS

What information do the MIS and Class Diagram have in
common?

What information does the MIS add?

What information does the Class Diagram add?

Class diagrams are closer to code since syntax of methods
closer to actual syntax

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 5/35



Showing Exceptions in UML Class Diagrams

Usually exceptions are not shown

If they are, it is in brackets after the method name

+ findAllInstances(): Vector
{exceptions=NetworkFailure, DatabaseError}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 6/35

http://www.agilemodeling.com/style/classDiagram.htm
http://www.agilemodeling.com/style/classDiagram.htm


UML Associations

Associations are relations that the implementation is
required to support

Can have multiplicity constraints

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 7/35



Flight Example

From IBM

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 8/35

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/


UML Aggregation

Defines a PART OF relation

Differs from IS COMPONENT OF

TRIANGLE has its own methods

TRIANGLE implicitly uses POINT to define its data
attributes

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 9/35



UML Packages

IS COMPONENT OF is represented via the package notation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 10/35



Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

PointT = ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 11/35



Point ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcoord real
ycoord real
dist PointT real

Semantics

State Variables

xc : real
yc : real

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 12/35



Point Mass ADT Module

Template Module

PointMassT inherits PointT

Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 13/35



Point Mass ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointMassT real, real, real PointMassT NegMassExcept
mval real
force PointMassT real
fx PointMassT real

Semantics

State Variables

ms: real

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 14/35



Point Mass ADT Module Semantics

new PointMassT(x , y ,m):

transition: xc , yc ,ms := x , y ,m

output: out := self

exception: exc := (m < 0⇒ NegMassExcept)

force(p):

output:

out := UNIVERAL G
self .ms × p.ms

self .dist(p)2

exception: none

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 15/35



Assumptions versus Exceptions

The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

Assumptions are expressed in prose

Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

Interface design should provide the programmer with a
means to check so that they can avoid exceptions

When an exceptions occurs no state transitions should
take place, any output is don’t care

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 16/35



Exception Signaling

Useful to think about exceptions in the design process

Will need to decide how exception signalling will be done
I A special return value, a special status parameter, a

global variable
I Invoking an exception procedure
I Using built-in language constructs

Caused by errors made by programmers, not by users

Write code so that it avoids exceptions

Exceptions will be particularly useful during testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 17/35



Example Subclass Exception in Python

class Full(Exception):

def __init__(self , value):

self.value = value

def __str__(self):

return str(self.value)

Example of raising the exception

if size == Seq.MAX_SIZE:

raise Full("Maximum size exceeded")

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 18/35



Quality Criteria (H&S Section 7.3.2)

Consistent
I Name conventions
I Ordering of parameters in argument lists
I Exception handling, etc.

Essential - omit unnecessary features

General - cannot always predict how the module will be
used

As implementation independent as possible

Minimal - avoid access routines with two potentially
independent services

High cohesion - components are closely related

Low coupling - not strongly dependent on other modules

Opaque - information hiding

Checks available so programmer can avoid exceptions

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 19/35



Queue Module Syntax (Abstract Object)

What could we remove to make this essential?
MAX SIZE = 100
Exported Access Programs

Routine name In Out Exceptions
q init queueT
add T NOT INIT, FULL
pop NOT INIT, EMPTY
front T NOT INIT, EMPTY
size integer NOT INIT
isempty boolean NOT INIT
isfull boolean NOT INIT

Can replace isempty and isfull by by tests using size and
MAX SIZE

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 20/35



Queue Module Syntax (Abstract Object)

What could we remove to make this essential?
MAX SIZE = 100
Exported Access Programs

Routine name In Out Exceptions
q init queueT
add T NOT INIT, FULL
pop NOT INIT, EMPTY
front T NOT INIT, EMPTY
size integer NOT INIT
isempty boolean NOT INIT
isfull boolean NOT INIT

Can replace isempty and isfull by by tests using size and
MAX SIZE

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 20/35



Queue Module Syntax (Abstract Object)

Is this interface minimal?

Exported Access Programs

Routine name In Out Exceptions
q init queueT
add T NOT INIT, FULL
pop T NOT INIT, EMPTY
size integer NOT INIT
isinit boolean

front has been merged with pop

size replaces isempty and isfull

isinit is added (why?)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 21/35



Modular Decomposition

Until now our focus has been on individual modules, but
how do we decompose a large software system into
modules?

We need to decompose the system into modules, assign
responsibilities to those modules and ensure that they fit
together to achieve our global goals

We need to produce a software architecture

The architecture (modular decomposition) is summarized
in a Software Design Document

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 22/35



Software Architecture

Shows gross structure and organization of the system to
be defined

Its description includes the description of
I Main components of the system
I Relationship among those components
I Rationale for decomposition into its components
I Constraints that must be respected by any design of the

components

Guides the development of the design

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 23/35



Specific Techniques for Design for Change

What technique/tool would you use if you wanted to select at
build time between two implementations of a module, each
distinguished by a different decision for their shared secret?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 24/35



Specific Techniques for Design for Change

Anticipate definition of all family members
Identify what is common to all family members, delay
decisions that differentiate among different members
Configuration constants

I Factor constant values into symbolic constants
I Compile time binding
I MAXSPEED = 5600

Conditional compilation
I Compile time binding
I Works well when there is a preprocessor, like for C
I If performance is not a concern, can often “fake it” at

run time

Make
Software generation

I Compiler generator, like yacc
I Domain Specific Language

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 25/35



Questions

What relationships have we discussed between modules?

Are there desirable properties for these relations?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 26/35



Relations Between Modules

Uses

Inheritance

Association

Aggregation

IS COMPONENT OF

etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 27/35



Relationships Between Modules

Let S be a set of modules

S = {M1,M2, ...,Mn}

A binary relation r on S is a subset of S × S

If Mi and Mj are in S , < Mi ,Mj >∈ r can be written as
Mi rMj

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 28/35



Relations

Transitive closure r+ of r

Mi r
+Mj iff Mi rMj or ∃Mk in S such that Mi rMk and Mkr

+Mj

r is a hierarchy iff there are no two elements Mi , Mj such
that Mi r

+Mj ∧Mj r
+Mi

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 29/35



Relations Continued

Relations can be represented as graphs

A hierarchy is a DAG (directed acyclic graph)

Why do we prefer the uses relation to be a DAG?
Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 30/35



References

Parnas, David L, Software Fundamentals: collected
papers by David L. Parnas, edited by Daniel M. Hoffmann
and David M. Weiss, Lucent Technologies and Daniel M.
Hoffmann, 2001, ISBN 0-201-70369-6

Parnas, D. L., “On a ’Buzzword’: Hierarchical Structure”,
IFIP Congress 74, North Holland Publishing Company,
1974, pp. 336–339

Parnas, D. L., “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, 15, 12, December 1972, pp. 1053–1058.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 31/35



References Continued

Parnas, D. L., “Designing Software for Ease of Extension
and Contraction”, Copyright 1979, IEEE Transaction on
Software Engineering, March 1979, pp. 128–138,

Parnas, D. L., Clements, P. C., Weiss, D. M., “The
Modular Structure of Complex Systems”, IEEE
Transaction on Software Engineering, March 1985, Vol
SE-11, No. 3, pp. 259-266 (special issue on the 7th
International Conference on Software Engineering)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 32/35



References Continued

Parnas, D. L., Clements, P. C., “A Rational Design
Process: How and Why to Fake it”, IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, February 1986,
pp. 251-257.

Parnas, On the design and development of program
families, IEEE Transactions on Software Engineering,
SE-2(1), March 1976.

Hoffmann, Daniel, M., and Paul A. Strooper, Software
Design, Automated Testing, and Maintenance A Practical
Approach, International Thomson Computer Press, 1995,
http://citeseer.ist.psu.edu/428727.html

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 33/35



References Continued

Dahl, Dijkstra and Hoare, Structured Programming,
Academic Press, 1972 (modular decomposition)

ElSheikh, Ahmed, W. Spencer Smith, and Samir E.
Chidiac. (2004) Semi-formal design of reliable mesh
generation systems. Advances in Engineering Software,
Vol 35, Issue 12, pp 827-841.

Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli,
Fundamentals of Software Engineering, 2nd Ed., Prentice
Hall, 2003

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 34/35



References Continued

Dijkstra, The structure of THE multiprogramming system.
Communications of the ACM, 11(5): 341-346, May 1968.

Linger, Mills and Witt. Structured Programming: Theory
and Practice, Addison-Wesley, 1979 (step-wise
refinement)

Wirth, Program development by stepwise refinement,
Communications of the ACM, 14(4):221-227, April 1971.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 13 Module Decomposition (Ghezzi Ch. 4, H&S Ch. 7) 35/35


