
Assignment 4

SFWR ENG 2AA4

Files due Mar 11, E-mail partner due Mar 12, Lab report due Mar 16

The purpose of this software design exercise is to create, use and test a Java program
that stores a map of a hallway network, together with the location of eggs, blockages and
openings.

Step 1

Write a module that creates a point ADT. It should consist of a Java code file named
PointT.java. The specification for this module is given at the end of the assignment.

Step 2

Write a module that creates a node ADT. It should consist of an Java file named
NodeT.java. The new module should follow the specification given at the end of the
assignment.

Step 3

Write a module that creates an edge ADT. It should consist of an Java file named
EdgeT.java. The new module should follow the specification given at the end of the
assignment.

Step 4

Write a module that implements an abstract object (not an abstract data type) to store
the map. It should consist of Java files named Map.java. The new module should follow
the specification given at the end of the assignment. Although efficient use of computing

1

resources is always a good goal, your implementation will be judged on correctness and
not on performance.

Step 5

Write a module that uses JUnit to tests all of the other modules together. It should be
an Java file named AllTests.java that tests all of the other modules. AllTests.java

should use unit testing files to test the other classes. That is, there should be a separate
file to test each of the other modules. The names of these JUnit testing files should be as
follows: TestPointT.java, TestNodeT.java, TestEdgeT.java, and TestMap.java. You
do not need to write a makefile for this assignment.

The test sets should have at least one test case. Record your rationale for test case
selection and the results of using this module to test the procedures in your modules.
(You will submit your rationale with your lab report.) Please make an effort to test
normal cases, boundary cases, and exception cases. Your grade will depend in part on
the correctness of your program, which can in part be improved by careful consideration
of the test cases.

Step 6

Submit the files PointT.java, NodeT.java, EdgeT.java, Map.java,TestPointT.java,
TestNodeT.java, TestEdgeT.java, TestMap.java and AllTests.java using subversion.
In addition submit any Java code that you need to write for the exceptions required by
the specification. This must be completed no later than midnight of the deadline for file
submission.

E-mail the EdgeT.java file to your assigned partner. (Partner assignments will be
posted on WebCT, on the day after the initial submission.) Your partner will likewise e-
mail you his or her files. These e-mails should be traded by midnight of the day following
the file submission.

Step 7

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not make any modifications to any of the code. Run your test module and
record the results. Your evaluation for this step does not depend on the quality of your
partner’s code, but only on your discussion of the testing results.

2

Step 8

Write a report that includes the following:

1. Your userid on the first page.

2. Your name and student number.

3. Your partner’s EdgeT.java file.

4. The results of testing your files (along with the rational for test case selection).

5. The results of testing your files combined with your partner’s files.

6. A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules.

7. A comparison between Java and OCaml.

8. A copy of the part of your log book relevant to this lab exercise.

A physical copy of the lab report is due at the beginning of the lecture on the assigned
due date.

Notes

1. Place all submitted files in your svn repository in the folder Assig4.

2. Please put your name and student number at the top of each of your source files.
(You should remove the student number before e-mailing any files to your partner.)

3. Your program must work in the ITB labs on moore when compiled by javac.

4. If your partner fails to provide you with a copy of his or her files by the deadline,
please tell the instructor via e-mail as soon as possible.

5. If you do not send your files to your partner by the deadline, you will be assessed a
10% penalty to your assignment grade.

6. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

7. Any changes to the assignment specification will be announced in class. It is your
responsibility to be aware of these changes.

3

Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Constants

TOLERANCE = 1× 10−4

Exported Types

PointT = ?

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcoord real
ycoord real
dist PointT real
equal PointT boolean

Semantics

State Variables

xc: real
yc: real

State Invariant

None

4

Assumptions

None

Access Routine Semantics

new PointT (x, y):

• transition: xc, yc := x, y

• output: out := self

• exception: none

xcoord:

• output: out := xc

• exception: none

ycoord:

• output: out := yc

• exception: none

dist(p):

• output: out :=
√

(xc− p.xcoord)2 + (yc− p.ycoord)2

• exception: none

equal(p):

• output: out := self.dist(p) ≤ TOLERANCE

• exception: none

5

Node Module

Template Module

NodeT inherits PointT

Uses

PointT

Syntax

Exported Types

NodeT = ?

nodeTypeT = { JUNCTION, EGG, BLOCKAGE, OPENING }

Exported Access Programs

Routine name In Out Exceptions
new NodeT real, real, nodeTypeT NodeT
ntype nodeTypeT

Semantics

State Variables

nt: nodeTypeT

State Invariant

None

Assumptions

None

6

Access Routine Semantics

new NodeT (x, y, n):

• transition: xc, yc, nt := x, y, n

• output: out := self

• exception: none

ntype():

• output: out := nt

• exception: none

7

Edge Module

Template Module

EdgeT

Uses

PointT, NodeT

Syntax

Exported Types

EdgeT = ?

Exported Constants

TOLERANCE = 1× 10−5

Exported Access Programs

Routine name In Out Exceptions
new EdgeT NodeT, NodeT EdgeT
node1 NodeT
node2 NodeT
length real
is horizontal boolean
equal EdgeT boolean

Semantics

State Variables

n1: NodeT
n2: NodeT

State Invariant

None

8

Assumptions

None

Access Routine Semantics

new EdgeT (nod1 , nod2):

• transition: n1, n2 := nod1 , nod2

• output: out := self

• exception: none

node1():

• output: out := n1

• exception: none

node2():

• output: out := n2

• exception: none

length():

• output: out := n1.dist(n2)

• exception: none

is horizontal():

• output: out := |n1.ycoord()− n2.ycoord()| ≤ TOLERANCE

• exception: none

equal(e):

• output:

out := (n1.equal(e.node1)∧n2.equal(e.node2))∨(n1.equal(e.node2)∧n2.equal(e.node1))

• exception: none

9

Map Module

Module

Map

Uses

EdgeT

Syntax

Exported Access Programs

Routine name In Out Exceptions
init
add EdgeT ALREADY IN MAP
del EdgeT NOT IN MAP
contains EdgeT boolean

Semantics

State Variables

s: set of EdgeT

State Invariant

None

Assumptions

init() is called before any other access program.

Access Routine Semantics

init():

• transition: s := {}

• exception: none

add(e):

10

• transition: s := s ∪ e

• exception: exc := ∃(f : EdgeT|f ∈ s ∧ f.equal(e)) ⇒ ALREADY IN MAP

del(e):

• transition: s := s− e

• exception: exc := (¬∃(f : EdgeT|f ∈ s ∧ f.equal(e))) ⇒ NOT IN MAP

contains(e):

• output: out := ∃(f : EdgeT|f ∈ s ∧ f.equal(e))

• exception: none

11

