
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

23 Finite State Machines (Ch. 5)

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 7, 2018

23 Finite State Machines (Ch. 5)

Administrative details

Classification of specification styles

Continuation on specification qualities

Homework exercise

How to verify a specification

Finite state machines

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 2/24

Administrative Details

Some of today’s slides adapted from Dr. Wassyng’s slides
(and Ghezzi et al)

A3
I Part 1 - Specification: due 11:59 pm Mar 12
I Part 2 - Code: due 11:59 pm Mar 26
I spec.tex moved to se2aa4 cs2me3 repo
I Minor corrections

I LineT len output type better as N (rather than Z)
I LineT strt output should be out := PointT(s.x(), s.y())
I PathT len output the total number of points (grid cells)

on the path, including the beginning and end points
(cells).

A4
I Your own design and specification
I Due April 9 at 11:59 pm

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 3/24

A3

make experiment

make doc

make test (uses catch2)

Version 7 of g++

Strongly recommend testing on mills

On mills, modify .bashrc to include
. /opt/rh/devtoolset-7/enable

Use vectors for Seq2D constructor

No pointers

Follow tutorial approach for implementing templates

t e m p l a t e <c l a s s T>
Seq2D<T> : : Seq2D (v e c t o r<v e c t o r<T>> s , d o u b l e s c a l e)
{ // d e t a i l s
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 4/24

Operational Versus Descriptive Spec

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I What is the corresponding descriptive spec?

I “The result of sorting array a is an array b which is a
permutation of a and is sorted.”

I How can we further specify (formalize) the notion of
sorted?

I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i] ≤ A[i + 1])

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 5/24

Operational Versus Descriptive Spec

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I What is the corresponding descriptive spec?
I “The result of sorting array a is an array b which is a

permutation of a and is sorted.”
I How can we further specify (formalize) the notion of

sorted?

I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i] ≤ A[i + 1])

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 5/24

Operational Versus Descriptive Spec

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I What is the corresponding descriptive spec?
I “The result of sorting array a is an array b which is a

permutation of a and is sorted.”
I How can we further specify (formalize) the notion of

sorted?
I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i] ≤ A[i + 1])

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 5/24

Homework Exercise

Consider the line formatter specification and

1. How well does the specification do with respect to the
following qualities: abstract, correct, unambiguous,
complete, consistent and verifiable?

2. For a requirement specification like that given, what are
the advantages and disadvantages of maintaining both a
formal specification and a natural language specification?

Even spending 5 minutes thinking about will help when
we discuss next week

In repo
I The line formatter specification
I Meyer (1985) “On Formalism in Specification”

Will discuss next day

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 6/24

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Lectures/LineFormatter
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/ReferenceMaterial/Meyer1985.pdf

How to Verify a Specification

How might you verify a specification?

Observe dynamic behaviour of the specified system
I Simulation
I Prototyping
I “testing” the specification

Mathematically analyze properties of the specified system,
including proof

Analogy with traditional engineering
I Physical model of a bridge (prototype)
I Mathematical model of a bridge

We will return to this topic when we cover verification
(Chapter 6)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 7/24

How to Verify a Specification

How might you verify a specification?

Observe dynamic behaviour of the specified system
I Simulation
I Prototyping
I “testing” the specification

Mathematically analyze properties of the specified system,
including proof

Analogy with traditional engineering
I Physical model of a bridge (prototype)
I Mathematical model of a bridge

We will return to this topic when we cover verification
(Chapter 6)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 7/24

Finite State Machines (FSMs)

Can specify control flow aspects
Defined as

I A finite set of states Q
I A finite set of inputs I
I A transition function δ : Q × I → Q (δ can be a partial

function)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 8/24

FSMs Continued

q0 q1 q2 q3

a q1 q2 - -
b - q3 q3 -
c - - - q0

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 9/24

Example: A Lamp

What are the states Q for a typical lamp?

What are the set of inputs I

What is the transition function δ?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 10/24

Example: A Lamp

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 11/24

Example: A Plant Control System

Your plant is either On or Off. If an alarm occurs, what should
be the state transition?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 12/24

Example: A Plant Control System

Your plant is either On or Off. If an alarm occurs, what should
be the state transition?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 12/24

A Refinement

How might your refine the FSM if you have states for
“pressure action” and “temperature action”?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 13/24

A Refinement

How might your refine the FSM if you have states for
“pressure action” and “temperature action”?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 13/24

When to use FSMs for Specification?

When is an FSM a good choice for specification?

What are some examples of things we would specify using
an FSM?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 14/24

When to Potentially use FSMs

Describing control flow

Clear finite set of states (or modes)

Specify acceptable strings for a parser

Specifying hardware design

For synchronous models (at any time a global state must
be defined and a single transition must occur)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 15/24

Classes of FSMs

Deterministic/nondeterministic

FSMs as recognizers - introduce final states

FSMs as transducers - introduce set of output

...

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 16/24

FSMs as Recognizers

What if an invalid character is entered?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 17/24

FSMs as Recognizers Continued

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 18/24

Limitations

Finite memory

State explosion - Given a number of FSMs with
k1, k2, ...km states, their composition is an FSM with
k1 × k2 × ...× kn. This growth is exponential with the
number of FSMs, not linear (we would like it to be
k1 + k2 + ... + kn)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 19/24

State Explosion: An Example

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 20/24

The Resulting FSM

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 21/24

Events Versus Conditions

Events can be viewed as “pulses” in time - they do not
last (retain their values)

Conditions may retain their values indefinitely

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 22/24

FSM Example: Security Alarm

SET

CLEAR

7

2

4

1

5

9

6

8

3

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 23/24

Security Alarm Example Continued

device
off

device
on

error

alarm
&

error

alarm

alarm
&

1 good

alarm
&

2 good

1 good

2 good

m_set

m
_clear

m_clear

m_clear

m_clear

m_clear

m_clear

m_trip

m
_badD

igit

m_badDigit

m_goodDigit

m_goodDigit

m_goodDigit m
_g

oo
dD

ig
it

m_goodDigit

m_goodDigit

m_trip

m_trip

m_badDigit

m_badDigit

m_badDigit

m
_badDigit

m_trip

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 23 Finite State Machines (Ch. 5) 24/24

