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Administrative Details

Some of today’s slides adapted from Dr. Wassyng’s slides
(and Ghezzi et al)

A3
I Part 1 - Specification: due 11:59 pm Mar 12
I Part 2 - Code: due 11:59 pm Mar 26
I spec.tex moved to se2aa4 cs2me3 repo
I Minor corrections

I LineT len output type better as N (rather than Z)
I LineT strt output should be out := PointT(s.x(), s.y())
I PathT len output the total number of points (grid cells)

on the path, including the beginning and end points
(cells).

A4
I Your own design and specification
I Due April 9 at 11:59 pm
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A3

make experiment

make doc

make test (uses catch2)

Version 7 of g++

Strongly recommend testing on mills

On mills, modify .bashrc to include
. /opt/rh/devtoolset-7/enable

Use vectors for Seq2D constructor

No pointers

Follow tutorial approach for implementing templates

t e m p l a t e <c l a s s T>
Seq2D<T> : : Seq2D ( v e c t o r<v e c t o r<T>> s , d o u b l e s c a l e )
{ // d e t a i l s
}
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Operational Versus Descriptive Spec

Operational specification
I “Let a be an array of n elements. The result of its

sorting is an array b of n elements such that the first
element of b is the minimum of a (if several elements of
a have the same value, any one of them is acceptable);
the second element of b is the minimum of the array of
n − 1 elements obtained from a by removing its
minimum element; and so on until all n elements of a
have been removed.”

Descriptive specification
I What is the corresponding descriptive spec?

I “The result of sorting array a is an array b which is a
permutation of a and is sorted.”

I How can we further specify (formalize) the notion of
sorted?

I sorted(A) ≡ ∀(i : N|0 ≤ i ≤ (|A| − 2) : A[i ] ≤ A[i + 1])
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Homework Exercise

Consider the line formatter specification and

1. How well does the specification do with respect to the
following qualities: abstract, correct, unambiguous,
complete, consistent and verifiable?

2. For a requirement specification like that given, what are
the advantages and disadvantages of maintaining both a
formal specification and a natural language specification?

Even spending 5 minutes thinking about will help when
we discuss next week

In repo
I The line formatter specification
I Meyer (1985) “On Formalism in Specification”

Will discuss next day
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https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Lectures/LineFormatter
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/ReferenceMaterial/Meyer1985.pdf


How to Verify a Specification

How might you verify a specification?

Observe dynamic behaviour of the specified system
I Simulation
I Prototyping
I “testing” the specification

Mathematically analyze properties of the specified system,
including proof

Analogy with traditional engineering
I Physical model of a bridge (prototype)
I Mathematical model of a bridge

We will return to this topic when we cover verification
(Chapter 6)
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Finite State Machines (FSMs)

Can specify control flow aspects
Defined as

I A finite set of states Q
I A finite set of inputs I
I A transition function δ : Q × I → Q (δ can be a partial

function)
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FSMs Continued

q0 q1 q2 q3

a q1 q2 - -
b - q3 q3 -
c - - - q0
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Example: A Lamp

What are the states Q for a typical lamp?

What are the set of inputs I

What is the transition function δ?
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Example: A Lamp
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Example: A Plant Control System

Your plant is either On or Off. If an alarm occurs, what should
be the state transition?
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A Refinement

How might your refine the FSM if you have states for
“pressure action” and “temperature action”?
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When to use FSMs for Specification?

When is an FSM a good choice for specification?

What are some examples of things we would specify using
an FSM?
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When to Potentially use FSMs

Describing control flow

Clear finite set of states (or modes)

Specify acceptable strings for a parser

Specifying hardware design

For synchronous models (at any time a global state must
be defined and a single transition must occur)
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Classes of FSMs

Deterministic/nondeterministic

FSMs as recognizers - introduce final states

FSMs as transducers - introduce set of output

...
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FSMs as Recognizers

What if an invalid character is entered?
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FSMs as Recognizers Continued
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Limitations

Finite memory

State explosion - Given a number of FSMs with
k1, k2, ...km states, their composition is an FSM with
k1 × k2 × ...× kn. This growth is exponential with the
number of FSMs, not linear (we would like it to be
k1 + k2 + ... + kn)
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State Explosion: An Example
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The Resulting FSM
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Events Versus Conditions

Events can be viewed as “pulses” in time - they do not
last (retain their values)

Conditions may retain their values indefinitely
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FSM Example: Security Alarm

SET

CLEAR

7

2

4

1

5

9

6

8

3
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Security Alarm Example Continued
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