
SE 2AA4, CS 2ME3 (Introduction to Software
Development)

Winter 2018

34 Black Box Testing (Ch.
6) DRAFT

Dr. Spencer Smith

Faculty of Engineering, McMaster University

December 15, 2017

34 Black Box Testing (Ch. 6) DRAFT

Administrative details

Black Box Testing
I Formal using PointT
I Function tables

Testing boundary conditions

The oracle problem

Module testing

Integration testing

Testing OO and generic programs

Testing concurrent and real-time systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 2/35

Administrative Details

TBD

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 3/35

Black Box Testing Example

The program receives as input a record describing an invoice.
(A detailed description of the format of the record is given.)
The invoice must be inserted into a file of invoices that is
sorted by date. The invoice must be inserted in the
appropriate position: If other invoices exist in the file with the
same date, then the invoice should be inserted after the last
one. Also, some consistency checks must be performed: The
program should verify whether the customer is already in a
corresponding file of customers, whether the customer’s data
in the two files match, etc.

What test cases would satisfy the complete-coverage principle?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 4/35

Invoice Example Test Cases

1. An invoice whose date is the current date

2. An invoice whose date is before the current date (This
might be even forbidden by law) This case, in turn, can
be split into the two following subcases:

2.1 An invoice whose date is the same as that of some
existing invoice

2.2 An invoice whose date does not exist in any previously
recorded invoice

3. Several incorrect invoices, checking different types of
inconsistencies

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 5/35

Systematic Black-Box Techniques

Testing driven by logic specifications

Function table based testing

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 6/35

Test Cases from MIS for PointT
Routine name In Out Exceptions
PointT real, real PointT InvalidPointException
xcoord real
ycoord real
dist PointT real

exc := ((¬(0 ≤ x ≤ Contants.MAX X) ∨ ¬(0 ≤ y ≤
Constants.MAX Y))⇒ InvalidPointException)

dist(p):

output: out :=
√

(self .xc − p.xc)2 + (self .yc − p.yc)2

exception: none

What test cases do you recommend?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 7/35

TestPointT.java I

import org . j u n i t . ∗ ;
import s t a t i c org . j u n i t . A s s e r t . ∗ ;
publ ic c l a s s TestPointT
{

pr ivate s t a t i c double
ADMISS ERR CONSTRUCTOR = 0 ;

pr ivate s t a t i c double ADMISS ERR DIST =
1e−20;

@Test
publ ic void t e s t C o n s t r u c t o r F o r x ()
{

a s s e r t E q u a l s (2 3 , new PointT (2 3 ,
38) . x c o o r d () ,
ADMISS ERR CONSTRUCTOR) ;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 8/35

TestPointT.java II
}
@Test
publ ic void t e s t C o n s t r u c t o r F o r y ()
{

a s s e r t E q u a l s (3 8 , new PointT (2 3 ,
38) . y c o o r d () ,
ADMISS ERR CONSTRUCTOR) ;

}
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)
publ ic void t e s t F o r E x c e p t i o n N e g x ()
{

PointT p = new PointT (−10 , 0) ;
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 9/35

TestPointT.java III
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)
publ ic void t e s t F o r E x c e p t i o n N e g y ()
{

PointT p = new PointT (0 , −10) ;
}
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)
publ ic void t e s t F o r E x c e p t i o n M a x x ()
{

PointT p = new
PointT (C o n s t a n t s . MAX X+1, 0) ;

}
@Test

(e x p e c t e d=I n v a l i d P o i n t E x c e p t i o n . c l a s s)

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 10/35

TestPointT.java IV
publ ic void t e s t F o r E x c e p t i o n M a x y ()
{

PointT p = new PointT (0 ,
C o n s t a n t s . MAX Y+1) ;

}
@Test
publ ic void t e s t D i s t N o r m a l ()
{

double x = C o n s t a n t s . MAX X / 2 . 0 ;
double y = C o n s t a n t s . MAX Y / 2 . 0 ;
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (Math . s q r t (x∗x + y∗y) ,

p . d i s t (new PointT (0 , 0)) ,
ADMISS ERR DIST) ;

}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 11/35

TestPointT.java V
@Test
publ ic void t e s t D i s t L a r g e s t D i a g o n a l ()
{

double x = C o n s t a n t s . MAX X ;
double y = C o n s t a n t s . MAX Y ;
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (Math . s q r t (x∗x + y∗y) ,

p . d i s t (new PointT (0 , 0)) ,
ADMISS ERR DIST) ;

}
@Test
publ ic void t e s t D i s t A l o n g E d g e ()
{

double x = C o n s t a n t s . MAX X ;
double y = C o n s t a n t s . MAX Y ;

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 12/35

TestPointT.java VI
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (C o n s t a n t s . MAX X,

p . d i s t (new PointT (0 ,
C o n s t a n t s . MAX Y)) ,
ADMISS ERR DIST) ;

}
@Test
publ ic void t e s t D i s t Z e r o ()
{

double x = C o n s t a n t s . MAX X / 2 . 0 ;
double y = C o n s t a n t s . MAX Y / 2 . 0 ;
PointT p = new PointT (x , y) ;
a s s e r t E q u a l s (0 , p . d i s t (p) ,

ADMISS ERR DIST) ;
}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 13/35

TestPointT.java VII
// e t c .

}

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 14/35

Function Table-Based Testing

Boundaries are obvious in table predicates

Make test cases that exercise between and on boundaries

Coverage already aided by function table “rules”

What test cases do you recommend?

What if you use the heuristic [-Large, -Normal, Boundary-1,
Boundary, Boundary+1, Normal, Large]?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 15/35

Function Table-Based Testing

Boundaries are obvious in table predicates

Make test cases that exercise between and on boundaries

Coverage already aided by function table “rules”

What test cases do you recommend?
What if you use the heuristic [-Large, -Normal, Boundary-1,
Boundary, Boundary+1, Normal, Large]?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 15/35

Function Table-Based Testing

Boundaries are obvious in table predicates

Make test cases that exercise between and on boundaries

Coverage already aided by function table “rules”

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 16/35

Testing Boundary Conditions

Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

Some typical programming errors, however, just happen
to be at the boundary between different classes

I Off by one errors
I < instead of ≤
I equals zero

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 17/35

Criterion

After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

This applies to both white-box and black-box techniques

In practice, use the different testing criteria in
combinations

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 18/35

The Oracle Problem

When might it be difficult to know the “expected”
output/behaviour?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 19/35

The Oracle Problem

Given input test cases that cover the domain, what are
the expected outputs?

Oracles are required at each stage of testing to tell us
what the right answer is

Black-box criteria are better than white-box for building
test oracles

Automated test oracles are required for running large
amounts of tests

Oracles are difficult to design - no universal recipe

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 20/35

The Oracle Problem Continued

Determining what the right answer should be is not
always easy

I Air traffic control system
I Scientific computing
I Machine learning
I Artifical intelligence

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 21/35

The Oracle Problem Continued

What are some strategies we can use when we do not have a
test oracle?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 22/35

Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output

I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing)
I etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 23/35

Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output

I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing)
I etc.

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 23/35

Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 24/35

Module Testing

Scaffolding needed to create the environment in which
the module should be tested

Stubs - a module used by the module under test

Driver - module activating the module under test

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 25/35

Testing a Functional Module

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 26/35

Integration Testing

Big-bang approach
I First test individual modules in isolation
I Then test integrated system

Incremental approach
I Modules are progressively integrated and tested
I Can proceed both top-down and bottom-up according to

the USES relation

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 27/35

Integration Testing and USES relation

If integration and test proceed bottom-up only need
drivers

Otherwise if we proceed top-down only stubs are needed

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 28/35

Example

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
In what order would you test these modules?

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 29/35

Example

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
Case 1

I Test M1 providing a stub for M2 and a driver for M1

I Then provide an implementation for M2,1 and a stub for
M2,2

Case 2
I Implement M2,2 and test it by using a driver
I Implement M2,1 and test the combination of M2,1 and

M2,2 (i.e. M2) by using a driver
I Finally implement M1 and test it with M2 using a driver

for M1

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 30/35

Testing OO and Generic Programs

New issues
I Inheritance
I Genericity
I Polymorphism
I Dynamic binding

Open problems still exist

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 31/35

Inheritance

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 32/35

How to Test Classes of the Hierarchy

“Flattening” the whole hierarchy and considering every
class as totally independent component

This does not exploit incrementality

Finding an ad-hoc way to take advantage of the hierarchy

Think about testing PointT.java and PointMassT.java

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 33/35

A Sample Strategy

A test that does not have to be repeated for any heir

A test that must be performed for heir class X and all of
its further heirs

A test that must be redone by applying the same input
data, but verifying that the output is not (or is) changed

A test that must be modified by adding other input
parameters and verifying that the the output changes
accordingly

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 34/35

Testing Concurrent and Real-time Systems

Nondeterminism inherent in concurrency affects
repeatability

For real-time systems, a test case consists not only of
input data, but also of the times when such data are
supplied

Considerable care and detail when testing real-time
systems

Dr. Smith SE 2AA4, CS 2ME3 Winter 2018: 34 Black Box Testing (Ch. 6) DRAFT 35/35

