
Computing and Software Department, McMaster University

MG and MIS Examples

Dr. Spencer Smith

February 12, 2009

Smith:

MG and MIS Examples (slide 1)



MG and MIS Examples

I Modules with external interaction

I Assignment 3

I Parnas’s Rational Design Process (finish up)
I Examples

• A mesh generator
• A maze tracing robot (see WebCT document)

Smith:

MG and MIS Examples (slide 2)



Administrative Details

I What has happened to discussion on WebCT?
I Assignment 3 deadlines

• Code due by midnight Feb 23
• E-mail your partner your code by Feb 24
• Lab report due by the beginning of class Mar 2

I Midterm exam

• March 4 during tutorial time
• In T29/105, not our usual classroom

Smith:

MG and MIS Examples (slide 3)



Assignment 3

I Working with vector spaces and inner product spaces

I Taking advantage of OCaml’s treatment of functions as first
class citizens

I Our vector space will be the space of real continuous functions
I The submission of part 1 will consist of the following files:

• test vectorT.ml to test vectorT.ml
• test vectorSpaceT.ml to test vectorSpaceT.ml
• test innerProductSpaceT.ml to test
innerProductSpaceT.ml

• test assig3.ml to test all of the above using a test suite.
• A Makefile to make the executable test assig

Smith:

MG and MIS Examples (slide 4)



Modules with External Interaction

I In general, some modules may interact with the environment
or other modules

I Environment might include the keyboard, the screen, the file
system, motors, sensors, etc.

I Sometimes the interaction is informally specified using prose
(natural language)

I Can introduce an environment variable

• Name, type
• Interpretation

I Environment variables include the screen, the state of a motor
(on, direction of rotation, power level, etc.), the position of a
robot

Smith:

MG and MIS Examples (slide 5)



External Interaction Continued

I Some external interactions are hidden

• Present in the implementation, but not in the MIS
• An example might be OS memory allocation calls

I External interaction described in the MIS

• Naming access programs of the other modules
• Specifying how the other module’s state variables are changed
• The MIS should identify what external modules are used

Smith:

MG and MIS Examples (slide 6)



MIS for GUI Modules

I Could introduce an environment variable
I window: sequence [RES H][RES V] of pixelT

• Where window[r][c] is the pixel located at row r and column c,
with numbering zero-relative and beginning at the upper left
corner

• Would still need to define pixelT

I Could formally specify the environment variable transitions

I More often it is reasonable to specify the transition in prose

I In some cases the proposed GUI might be shown by rough
sketches

Smith:

MG and MIS Examples (slide 7)



Display Point Masses Module Syntax

Exported Access Programs

Routine name In Out Exc.
DisplayPointMassesApplet DisplayPointMassesApplet

paint

Smith:

MG and MIS Examples (slide 8)



Display Point Masses Module Semantics
Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

I transition: The state of the abstract object ListPointMasses is
modified as follows:
ListPointMasses.init()
ListPointMasses.add(0, PointMassT(20, 20, 10)
ListPointMasses.add(1, PointMassT(120, 200, 20)
...

paint():

I transition win := Modify window so that the point masses in
ListPointMasses are plotted as circles. The centre of each
circles should be the corresponding x and y coordinates and
the radius should be the mass of the point mass.

Smith:

MG and MIS Examples (slide 9)



Assignment 3 Vector Module

Exported Access Programs

Routine name In Out Exceptions
new vectorT real → real vectorT

getf real → real

eval real, real, integer sequence of real deltaNeg,
nstepsNeg

evalPrint real, real, integer deltaNeg,
nstepsNeg

Smith:

MG and MIS Examples (slide 10)



Vector Module Semantics

Environment Variables
screen : two dimensional sequence of positions on the screen,
which each position holding a character

State Variables
f : real → real

Access Routine Semantics
eval (startx , deltax , nsteps):

I output: out :=< f (startx), f (startx + deltax), f (startx + 2 ·
deltax), ..., f (startx + nsteps · deltax) >

I exception:
exc := ((deltax < 0) ⇒ deltaNeg|(nsteps < 0) ⇒ nstepsNeg)

Smith:

MG and MIS Examples (slide 11)



Vector Module Semantics Continued

evalPrint (startx , deltax , nsteps):

I transition: The state of screen is modified so that the
sequence returned by eval (startx , deltax , nsteps) is displayed.

I exception:
exc := ((deltax < 0) ⇒ deltaNeg|(nsteps < 0) ⇒ nstepsNeg)

Smith:

MG and MIS Examples (slide 12)



Parnas’s Rational Design Process (RDP)

I SRS

I MG

I Uses Hierarchy (produced after all MISs)
I For each module

• MIS
• MID

I Implementation

I Testing
I Very successfully used on projects such as

• The Darlington Nuclear Reactor shutdown system
• The A7-E fighter jet

Smith:

MG and MIS Examples (slide 13)



RDP - Views

I As well as the MG, the modular decomposition should be
displayed using a variety of views

I An obvious one is the Uses Hierarchy

I The Uses Hierarchy can be formed once the MIS for all
modules is complete

I The Uses Hierarchy can be represented

• Graphically (if it isn’t too large and complex)
• Using a binary matrix

Smith:

MG and MIS Examples (slide 14)



RDP - MG

I Criteria for a good secret

• One module one secret (if possible)
• Secrets should often be nouns (data structure, algorithm,

hardware, ...)
• Secrets are often phrased as “How to ... ”

Smith:

MG and MIS Examples (slide 15)



RDP - MID

I Another document that is often helpful is the Module Internal
Design (MID) for each module

I The MID provides the implementation of the module; that is,
it shows how we will deliver on what is promised in the MIS

I The MID is requirements for the code represented at a higher
level of abstraction than the code

I The MID uses the syntax of the selected programming
language

I The MID shows decisions like whether to use a static array, or
dynamic memory allocation and pointers

Smith:

MG and MIS Examples (slide 16)



Mesh Generator Simple Rectangular Geometry

x

vi

yy

1

20

2

3

4

1

i

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

10

11

12

W

L

ui

y

x

Smith:

MG and MIS Examples (slide 17)



Mesh Generator Complex Circular Geometry

Smith:

MG and MIS Examples (slide 18)



Mesh Generator Example: Design Goals

I Independent and flexible representation for each mesh entity

I Complete separation of geometric data from the topology

I The mesh generator should work with different coordinate
systems

I A flexible data structure to store sets of vertices, edges and
triangles

I Different mesh generation algorithms with a minimal amount
of local changes

Smith:

MG and MIS Examples (slide 19)



Mesh Generator Uses Hierarchy

Smith:

MG and MIS Examples (slide 20)



Dr. v. Mohrenschildt’s Maze Tracing Robot Example

B

E

Smith:

MG and MIS Examples (slide 21)


