
Assignment 1

SFWR ENG 2AA4

Files due Jan 28 (11:59 pm), E-mail partner due Jan 29 (11:59 pm), Lab
report due Feb 2 (11:59 pm)

The purpose of this software design exercise is to write a Python program that creates,
uses, and tests a simple Abstract Data Type (ADT) that stores data on a circle. The
Circle ADT will allow a program to create instances of the datatype CircleT. A circle
ADT may be of interest in computer graphics or gaming applications. The program will
consist of two modules and a test driver program.

All of your code (all files) should be documented using doxygen. All of your reports
should be written using LaTeX. Your code should follow the given specification as closely
as possible. In particular, you should not add public methods that are not specified and
you should not change the number or order of parameters for methods. If you need private
methods, please use the Python convention of naming the files with the double underscore
(methodName).

Step 1

Write a first module that creates a circle ADT. It should consist of a Python code file
named CircleADT.py. The module should define a class CircleT, which contains the
following class methods that define the external interface:

• A constructor (CircleT) that takes three real numbers x, y and r as input and
assigns them to private instance variables. The x and y values define the centre of
the circle and r defines its radius.

• Three getters named xcoord, ycoord and radius that return the x and y coordi-
nates of the centre of the circle and the radius of the circle, respectively.

• A method named area that returns the area of the circle.

• A method named circumference that returns the circumference of the circle.

1

y

x

w

h

(x0, y0)

(0,0)

(x, y)

r

Figure 1: Determination of whether a circle is inside a box or not

• A method named insideBox that takes the following inputs: the x coordinate of
the left side of a box (x0), the y coordinate of the top of a box (y0), the width (w)
of the box and the height (h) of the box. The box, the circle and the associated
coordinate system are shown in Figure 1. This method should return true if the
circle is inside the box and false if it is not.

• A method named intersect that takes a second instance of CircleT c as input
and returns true if the circles intersect and false otherwise. (Two circles intersect if
they have any points in common. The interior of the circle is considered to be part
of the circle.)

• A method named scale that takes a float k as an argument and changes the radius
such that it is scaled by k.

• A method named translate that take two floats dx and dy as arguments and
translates the centre of the circle by dx in the x direction and by dy in the y
direction.

2

Step 2

Write a second module that uses the first module to calculate various statistics for
a list of circles. It should consist of the Python file: Statistics.py. Some of the
routines in this module should be implemented using the numpy, which is located at
http://www.numpy.org/. The new module should consist of the following functions:

• A function named average that takes a list of instances of CircleT and returns the
average radius of all of the circles in the list. This function should be implemented
using numpy.

• A function named stdDev that takes a list of instances of CircleT and returns the
standard deviation of the radii of all of the circles in the list. This function should
be implemented using numpy.

• A function named rank that takes a list of instances of CircleT and returns a listed
ranked by radius. A ranking list provides for each element in the list the position
it would hold if the list were sorted in descending order of radius. The maximum
entry in the list will have a rank of 1. For instance, the rank of radii [6.0, 5.0, 11.0,
9.0] would be [3, 4, 1, 2]. You are required to implement this function yourself,
without using numpy. The efficiency of your implementation is not relevant, only
the correctness. If you need to make assumptions to implement your algorithm,
please state your assumptions as doxygen comments in the code.

Step 3

Write a third module that tests the first and second modules together. It should be a
Python file named testCircles.py. Write a Makefile with a rule test that runs your
testCircles source with the Python interpreter. Each procedure should have at least
one test case. Record your rationale for test case selection and the results of using this
module to test the procedures in the other two modules. The requirements for testing
are deliberately vague; at this time, we are most interested in your ideas and intuition for
how to build and execute your test suite.

Step 4

Add to your makefile a rule for doc. This rule should compile your documentation into
an html and LaTeX version. Ideally, your documentation should be generated to the A1

folder.

3

Step 5

Submit the files CircleADT.py, Statistics.py, testCircles.py and Makefile using
git. Please use the names and locations for these files already given in your git project
repo. You should also push your doxygen configuration file to the repo. You will have to
add this file to the repo. Ideally, you should place it in the A1 folder. You should NOT
sumbit your generated documentation (html and latex folders). In general, files that can
be regenerated are not put under version control.

After the deadline for submitting your solution has passed, please e-mail the CircleADT.py
and Statistics.py files to your assigned partner. (Partner assignments will be posted.)
Your partner will likewise e-mail you his or her files. This step must be completed by
11:59 pm of the deadline noted at the beginning of this assignment.

Step 6

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not make any modifications to any of the code. Run your test module and
record the results. Your evaluation for this step does not depend on the quality of your
partner’s code, but only on your discussion of the testing results.

Step 7

Write a report (using LaTeX) that includes the following:

1. Your name and macid.

2. Your CircleADT.py, Statistics.py, testCircles.py and Makefile files.

3. Your partner’s CircleADT.py and Statistics.py files.

4. The results of testing your files.

5. The results of testing your files combined with your partner’s files.

6. A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules.

7. A discussion of how you handled the value of π in your program and why you made
this choice. Is π explicitly expanded in your formulae, or do you use a symbolic
constant? If you use a constant, what is its scope?

4

Your commit (push) to the repository should include the file report.tex as given
in your initial folder structure. You should also add the file report.pdf in the same
folder. Although the pdf file is a generated file, we’ll make an exception to the general
rule of avoiding version control for generated files. The purpose of the exception is for
the convenience of the TAs doing the grading.

Including code in your report is made easier by the listings package:
https://en.wikibooks.org/wiki/LaTeX/Source Code Listings.

You may also find it useful to link to code using the hyperref package:
https://www.sharelatex.com/learn/Hyperlinks.

The final submission of your report, including your tex file, should be done using git
by 11:59 pm on the assigned due date. If you notice problems in your original *.py files,
you should discuss these problems, and what changes you would make to fix them, in
your report. However, the code files submitted on the first deadline will be the ones that
are graded.

Notes

1. Your git repo will be organizes with the following directories at the top level: A1,
A2, A3, and A4.

2. Inside the A1 folder you will start with initial stubs of the files and folders that you
need to use. Please do not change the names or locations of any of these files or
folders.

3. Please put your name and macid at the top of each of your source files.

4. Your program must work in the ITB labs on mills when compiled with its versions
of Python (version 2), LaTeX, doxygen and make.

5. If your partner fails to provide you with a copy of his or her files by the deadline,
please tell the instructor via e-mail as soon as possible.

6. If you do not send your files to your partner by the deadline, you will be assessed a
20% penalty to your assignment grade.

7. Any changes to the assignment specification will be announced in class. It is your
responsibility to be aware of these changes.

5

https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://www.sharelatex.com/learn/Hyperlinks

