diff --git a/Lectures/L28_ParnasTables/ParnasTables.pdf b/Lectures/L28_ParnasTables/ParnasTables.pdf index 350b5c99220a6b0fbdd9069aa24ce0ec8ab8e260..b9382a2929bce960912fa9a20fb1efce60a20e7d 100644 Binary files a/Lectures/L28_ParnasTables/ParnasTables.pdf and b/Lectures/L28_ParnasTables/ParnasTables.pdf differ diff --git a/Lectures/L28_ParnasTables/ParnasTables.tex b/Lectures/L28_ParnasTables/ParnasTables.tex index 860b70a45eb17b48fe880d949792d298061947a4..eb39ff5f6c53084e6e5029f0018641e991b237ec 100755 --- a/Lectures/L28_ParnasTables/ParnasTables.tex +++ b/Lectures/L28_ParnasTables/ParnasTables.tex @@ -48,8 +48,8 @@ \begin{itemize} \item Today's slide are partially based on slides by Dr.\ Wassyng \item Administrative details -\item Translating Englisth to Math exercise -\item Midterm question +\item Translating English to Math exercise +\item Motivating example: midterm question \item History of tables \item Example tables \item Semantics for tables @@ -389,7 +389,7 @@ $min_d \le x_1 \le max_d$ & & $\{@{x_1}\}$ & $NULL$ \\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} -\frametitle{Example for Solving Real Roots of $ax^2 + bx + c = 0$} +\frametitle{Solving Real Roots of $ax^2 + bx + c = 0$} \includegraphics[scale=0.5]{../Figures/QuadraticEquationExample.png} @@ -405,7 +405,7 @@ $min_d \le x_1 \le max_d$ & & $\{@{x_1}\}$ & $NULL$ \\ \structure<1>{What are the advantages of the tabular specification?} \uncover<2->{ \bi -\item Understandability +\item Understandable \item Unambiguous \item Check for completeness and disjointness \item Test cases @@ -457,7 +457,7 @@ Elseif Condition n then f\_name = Result n\\ ~\newline \uncover<2->{\structure<2>{Disjointedness $\equiv$ $\forall (i, j: \mathbb{N} | 1 \leq i \leq n \wedge 1 \leq j \leq n \wedge i \neq j : \mbox{Condition } i \wedge -\mbox{Condition } j \Leftrightarrow \mathit{false})$\\ +\mbox{Condition } j \Leftrightarrow \mbox{false})$\\ ~\\ Completeness $\equiv \vee (i: \mathbb{N} | 1 \leq i \leq n : \mbox{Condition } i )$}} \end{frame} @@ -606,7 +606,7 @@ sequences of operations \hhline{-|-|-|} \uncover<2->{$llx \leq px \leq llxw$} & \uncover<3->{$py < lly$} & \uncover<7->{$(lly-py) \leq\mbox{T}$}\\ \hhline{|~|-|-|} -~ & \uncover<3->{$lly \leq py \leq llyh$} & \uncover<8->{$\mathit{true}$}\\ +~ & \uncover<3->{$lly \leq py \leq llyh$} & \uncover<8->{$\mbox{True}$}\\ \hhline{|~|-|-|} ~ & \uncover<3->{$py > llyh$} & \uncover<9->{$(py - llyh) \leq \mbox{T}$}\\ \hhline{-|-|-|}