diff --git a/Lectures/L28_ParnasTables/ParnasTables.pdf b/Lectures/L28_ParnasTables/ParnasTables.pdf
index 350b5c99220a6b0fbdd9069aa24ce0ec8ab8e260..b9382a2929bce960912fa9a20fb1efce60a20e7d 100644
Binary files a/Lectures/L28_ParnasTables/ParnasTables.pdf and b/Lectures/L28_ParnasTables/ParnasTables.pdf differ
diff --git a/Lectures/L28_ParnasTables/ParnasTables.tex b/Lectures/L28_ParnasTables/ParnasTables.tex
index 860b70a45eb17b48fe880d949792d298061947a4..eb39ff5f6c53084e6e5029f0018641e991b237ec 100755
--- a/Lectures/L28_ParnasTables/ParnasTables.tex
+++ b/Lectures/L28_ParnasTables/ParnasTables.tex
@@ -48,8 +48,8 @@
 \begin{itemize}
 \item Today's slide are partially based on slides by Dr.\ Wassyng
 \item Administrative details
-\item Translating Englisth to Math exercise
-\item Midterm question
+\item Translating English to Math exercise
+\item Motivating example: midterm question
 \item History of tables
 \item Example tables
 \item Semantics for tables
@@ -389,7 +389,7 @@ $min_d \le x_1 \le max_d$ & & $\{@{x_1}\}$ & $NULL$ \\
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 \begin{frame}
-\frametitle{Example for Solving Real Roots of $ax^2 + bx + c = 0$}
+\frametitle{Solving Real Roots of $ax^2 + bx + c = 0$}
 
 \includegraphics[scale=0.5]{../Figures/QuadraticEquationExample.png}
 
@@ -405,7 +405,7 @@ $min_d \le x_1 \le max_d$ & & $\{@{x_1}\}$ & $NULL$ \\
 \structure<1>{What are the advantages of the tabular specification?}
 \uncover<2->{
 \bi
-\item Understandability
+\item Understandable
 \item Unambiguous
 \item Check for completeness and disjointness
 \item Test cases
@@ -457,7 +457,7 @@ Elseif Condition n then f\_name = Result n\\
 ~\newline
 \uncover<2->{\structure<2>{Disjointedness $\equiv$
 $\forall (i, j: \mathbb{N} | 1 \leq i \leq n \wedge 1 \leq j \leq n \wedge i \neq j : \mbox{Condition } i \wedge
-\mbox{Condition } j \Leftrightarrow \mathit{false})$\\
+\mbox{Condition } j \Leftrightarrow \mbox{false})$\\
 ~\\
 Completeness $\equiv \vee (i: \mathbb{N} | 1 \leq i \leq n : \mbox{Condition } i )$}}
 \end{frame}
@@ -606,7 +606,7 @@ sequences of operations
 \hhline{-|-|-|}
 \uncover<2->{$llx \leq px \leq llxw$} & \uncover<3->{$py < lly$} & \uncover<7->{$(lly-py) \leq\mbox{T}$}\\
 \hhline{|~|-|-|}
-~ & \uncover<3->{$lly \leq py \leq llyh$} & \uncover<8->{$\mathit{true}$}\\
+~ & \uncover<3->{$lly \leq py \leq llyh$} & \uncover<8->{$\mbox{True}$}\\
 \hhline{|~|-|-|}
 ~ & \uncover<3->{$py > llyh$} & \uncover<9->{$(py - llyh) \leq \mbox{T}$}\\
 \hhline{-|-|-|}