diff --git a/Tutorials/T04-A2Example/slides/T4.pdf b/Tutorials/T04-A2Example/slides/T4.pdf
index 947a660279b7a615a98d5038cb66246ca4eee6e9..506422a1c8e0669f7132842052f2ba37d78850ec 100644
Binary files a/Tutorials/T04-A2Example/slides/T4.pdf and b/Tutorials/T04-A2Example/slides/T4.pdf differ
diff --git a/Tutorials/T04-A2Example/slides/T4.tex b/Tutorials/T04-A2Example/slides/T4.tex
index 6094c23ff46f815c39a1cc31921b4d7b1a8dc11e..081582e0120998595774877c3d67ddcab8e98a05 100644
--- a/Tutorials/T04-A2Example/slides/T4.tex
+++ b/Tutorials/T04-A2Example/slides/T4.tex
@@ -130,8 +130,8 @@ McMaster University\\ }
 	\frametitle{What is a MIS?}
                 \begin{itemize} \item Module Interface Specification
                                        \item Specifices externally observable behaviour of a module
-			\item Not in language of implementation, but uses mathematical and application language
-			\item Internal implementations are not included in a MIS
+			\item Not in language of implementation, uses mathematical language
+			\item Implementation details are not included in the MIS
 	 \end{itemize}
              
 \end{frame}
@@ -193,7 +193,7 @@ McMaster University\\ }
         	     Consider the following triangle:
                \begin{figure}[h]
     \centering
-    \includegraphics[width=0.5\textwidth]{triangle.png}
+%    \includegraphics[width=0.5\textwidth]{triangle.png}
   \end{figure}
      We are using the following inequality which is called inequality equation to know the possibility of having triangle with three points A, B and C:
              
@@ -233,7 +233,7 @@ N/A
 \textbf{Syntax}\\
 Exported Types:
 \newline
-pointT = ?
+PointT = ?
 
 \end{frame}
 
@@ -248,13 +248,13 @@ pointT = ?
 \hline
 \textbf{Routine name} & \textbf{In} & \textbf{Out} & \textbf{Exceptions}\\
 \hline
-init & real, real & pointT & ~\\
+new PointT & real, real & PointT & ~\\
 \hline
 xcoord & ~ & real & ~\\
 \hline
 ycoord & ~ & real & ~\\
 \hline
-dist & pointT & real & ~\\
+dist & PointT & real & ~\\
 \hline
 \end{tabular}
 
@@ -277,10 +277,7 @@ None
 
 ~\newline
 \textbf{Assumptions}
-init() is called for each abstract object before any other access routine is called for that object
-
-
-
+None
 
 \end{frame}
 
@@ -294,7 +291,7 @@ init() is called for each abstract object before any other access routine is cal
 
 \textbf{Access Routine Semantics}\\
 
-init($x, y$):
+PointT($x, y$):
 \begin{itemize}
 \item transition: $xc, yc := x, y$
 \item output: $out := \mathit{self}$
@@ -319,17 +316,11 @@ init($x, y$):
 
 \item exception: none
 \end{itemize}
-
-
    
-             
 \end{frame}
 
-
-
 % --------------------------------------------------
 
-
 \begin{frame}[fragile]
 
 \frametitle{MIS Interface}
@@ -369,16 +360,6 @@ From the MIS we can deduce the interface of the code will look like:
 
 % --------------------------------------------------
 
-
-%
-%
-%
-%
-%
-%
-
-% --------------------------------------------------
-
 \subsection{TriangleADT Module }
 \begin{frame}
 	\frametitle{TriangleADT }
@@ -406,13 +387,13 @@ TriangleADT = ?\\
 \tabcolsep=0.09cm
 \begin{tabular}{| l | l | l | l |}
 \hline
-\textbf{Routine name} & \textbf{In} & \textbf{Out} & \textbf{Exceptions}\\
+\textbf{Routine name} & \textbf{In} & \textbf{Out} & \textbf{Except.}\\
 %\hline
 %init & \multirow{2}{*}{Note 1}  & Triangle & \\ \cline{1-3}
 \hline
-init & pointT,pointT,pointT&TriangleADT & ~\\
+new TriangleT & PointT, PointT, PointT&TriangleADT & ~\\
 \hline
-sides & & &~\\
+sides & & seq[3] of real &~\\
 \hline
 inequality\char`_theorem & ~ & boolean & LINE~\\
 \hline
@@ -432,97 +413,82 @@ area\char`_of\char`_triangle &  & real & LINE ~\\
 
 State Variables:
 
-$p1$: pointT\\
-$p2$: pointT\\
-$p3$: pointT\\
-$AB$: real\\
-$AC$ : real\\
-$BC$ : real\\
+$p1$: PointT\\
+$p2$: PointT\\
+$p3$: PointT\\
+
 ~\newline
 \textbf{State Invariant}
 None
 
 ~\newline
 \textbf{Assumptions}
-init() is called for each abstract object before any other access routine is called for that object
-
-
-
+None
 
 \end{frame}
 
-
 % --------------------------------------------------
 
 \begin{frame}
 
-
 \textbf{Access Routine Semantics}\\
 
-init($p1, p2, p3$):
+new TriangleT($a, b, c$):
 \begin{itemize}
-\item transition: $a, b, c := p1, p2, p3$
+\item transition: $p1, p2, p3 := a, b, c$
 \item output: $out := \mathit{self}$
 \item exception: none
 \end{itemize}
 \noindent sides():
 \begin{itemize}
-\item transition: $AB, AC, BC := pointT.dist(self.a,self.b),$
-\\ $pointT.dist(slef.a,self.c), pointT.dist(self.b,self.c)$
-\item output: $out := \mathit{self}$
+\item output: $out := [p1.dist(p2), p1.dist(p3), p2.dist(p3)]$
 \item exception: none
 \end{itemize}
 \end {frame}
 
-
-
+% --------------------------------------------------
 
 \begin {frame}
-\noindent inequality theorem():
+\noindent inequality\_theorem():
 \begin{itemize}
-\item output: $$out := \mathrm {(self.AB +self.AC > self.BC\quad and \quad self.AB+self.BC }$$
-	     $$ \mathrm {> self.AC\quad and\quad self.AC+self.BC >self.AB)}$$
+\item output: 
+$out := ((self.sides[0] + self.slide[1]) > self.sides[2]$
+    $\wedge (self.sides[1] + self.slide[2]) > self.sides[0]$
+$\wedge (self.sides[0] + self.slide[2]) > self.sides[1]$)
 \item exception: 
-\\ ex := ((self.a.xcoord()==self.b.xcoord() ==self.c.xcoord() or 
-\\ self.a.ycoord()==self.b.ycoord() ==self.c.ycoord()) $\Rightarrow \mbox{LINE})$
+\\ ex := ((p1.xcoord()==p2.xcoord() ==p3.xcoord() $\vee$
+\\ p1.ycoord()==p2.ycoord() ==p3.ycoord()) $\Rightarrow \mbox{LINE})$
 \end{itemize}
 
-
-
 \end{frame}
 
-
 % --------------------------------------------------
 
 \begin{frame}
-\noindent perimeter of triangle($ $):
+\noindent perimeter\_of\_triangle($ $):
 \begin{itemize}
-\item output: $$out := \mathrm{self.AB+self.AC+self.BC}$$
+\item output: $$out := self.sides[0]+self.sides[1]+self.sides[2]$$
 \item exception: 
-\\ ex := ((self.a.xcoord()==self.b.xcoord() ==self.c.xcoord() or 
-\\ self.a.ycoord()==self.b.ycoord() ==self.c.ycoord()) $\Rightarrow \mbox{LINE})$
+\\ ex := ((p1.xcoord()==p2.xcoord() ==p3.xcoord() $\vee$
+\\ p1.ycoord()==p2.ycoord() ==p3.ycoord()) $\Rightarrow \mbox{LINE})$
 
 \end{itemize}
 \noindent area of triangle($ $):
 \begin{itemize}
-\item  output : $$out :=\mathit {\sqrt[2]{P/2(P/2-self.AB)(P/2-self.AC)(P/2-self.BC)}}$$
+\item  output : $out :=$ 
+${\sqrt[2]{P/2(P/2-self.sides[0])(P/2-self.sides[1])(P/2-self.sides[2])}}$
 \item exception: 
-\\ ex := ((self.a.xcoord()==self.b.xcoord() ==self.c.xcoord() or 
-\\ self.a.ycoord()==self.b.ycoord() ==self.c.ycoord()) $\Rightarrow \mbox{LINE})$
+\\ ex := ((p1.xcoord()==p2.xcoord() ==p3.xcoord() $\vee$
+\\ p1.ycoord()==p2.ycoord() ==p3.ycoord()) $\Rightarrow \mbox{LINE})$
 \end{itemize}
 
-\textbf{Local Constants}\\
-P := self.AB+self.AC+self.BC
-
-
+\textbf{Local Function}\\
+P := perimeter\_of\_triangle( )
              
 \end{frame}
 
-
-
 % --------------------------------------------------
 
-
 \begin{frame}[fragile]
 
 \frametitle{MIS Interface}
@@ -548,7 +514,6 @@ From the MIS we can deduce the interface of the code will look like:
 
 	\end{lstlisting}
 
-
 \end{frame}
 
 % --------------------------------------------------
@@ -559,14 +524,10 @@ From the MIS we can deduce the interface of the code will look like:
 	\textbf{See TriangleADT for implementation.}\\
 	\end{center}
 
-
 \end{frame}
 
 % --------------------------------------------------
 
-
-
-% -----------------------------------------------------
 \begin{frame}
 	\frametitle{Implementation files}
 	\begin{itemize}
@@ -575,6 +536,4 @@ From the MIS we can deduce the interface of the code will look like:
 
 \end{frame}
 
-
-
 \end{document}