SE 3XA3: Test Plan
CraftMaster

Group 307, 3 Craftsmen
Hongqing Cao 400053625
Sida Wang 400072157
Weidong Yang 400065354

February 29, 2020

Contents

List of Tables ii
List of Figures ii
1 General Information 1
1.1 Purpose e e 1
1.2 Scope 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document 1
2 Plan 2
2.1 Software Description 2
22 Test Team 2
2.3 Automated Testing Approach 2
2.4 Testing Tools 2
2.5 Testing Schedule L. 2
3 System Test Description 3
3.1 Tests for Functional Requirements 3
3.1.1 Testing for Mouse Inputs 3
3.1.2 Testing for Keyboard Inputs 6
3.2 Tests for Nonfunctional Requirements 10
3.2.1 Testing for Look and Feel Requirements 10
3.2.2 Testing for Usability and Humanity Requirement . . . 11
3.2.3 Testing for Performance Requirements 12

3.2.4 Testing for Operational and Environmental Require-
ments 13
3.2.5 Testing for Maintainability and Support Requirements 13
3.2.6 Testing for Security Requirements 14
3.2.7 Testing for Cultural Requirements 15
3.2.8 Testing for Legal Requirements 15
3.2.9 Testing for Health and Safety Requirements 16
3.3 Traceability Between Test Cases and Requirements 16
4 Tests for Proof of Concept 19

5 Comparison to Existing Implementation 20

6 Unit Testing Plan
6.1 Unit testing of internal functions
6.2 Unit testing of output files

7 Appendix
7.1 Symbolic Parameters
7.2 Survey Questionso

Bibliography

List of Tables

Revision History
Table of Abbreviations
Table of Definitions
Testing Tools
Traceability Matrix for FRs
Traceability Matrix for NFRs

SOl W N+~

List of Figures

Table 1: Revision History

20
20
20

21
21
21

21

Date Version Notes

Feb 13th 1.0 Team info updated

Feb 27th 1.1 General Content added
Feb 28th 1.1 Tables and Figure added

Feb 28th 1.1 Grammar Check

i

This document describes the scope, approach, resources, and schedule of
the testing stage in the development process of CraftMaster.

1 General Information

1.1 Purpose

The main purpose of the testing stage of this project is to verify that the
design team correctly transformed the requirements into functionalities of
the system and those functionalities perform properly.

1.2 Scope

The functional requirements will be tested with traceability matrices and
non-functional requirements will be tested with the fit-criterions defined in
the SRS document. Each function will be tested individually by unit testing
and the system will be tested as a whole by integration testing and edge case
testing. The test cases described in this document will act as a means to
check the traceability between the project specifications.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations
Abbreviation Definition

SRS Software Requirement Specification
OS Operating System
GUI Graphical User Interface

1.4 Overview of Document

This document will act as a guideline for testing activities for CraftMaster.

Table 3: Table of Definitions

Term Definition

Python The programming language that is used for the devel-
opement of this project

Pyglet A Python library for the design of graphical user inter-
face

Pytest A Python library and framework for unit testing

Sandbox Games A type of game that allows player to create, modify,
and destroy the environment
3D Game A game in three dimensions

2 Plan

2.1 Software Description

CraftMaster is a 3D sandbox game implemented in Python with Pyglet
library, which allows users to play by building and destroying.

2.2 Test Team

The individuals responsible for testing are Hongqing Cao, Sida Wang, and
Weidong Yang. All testing works are splat evenly to those three testers.

2.3 Automated Testing Approach

The test team will use Pytest to perform unit testing. After test cases
created, Pytest can run automated tests and report code coverage and
passes/failures. The time and task division of unit test cases are under the
Gantt Chart of 2.5.

2.4 Testing Tools

The testing tool will be used is shown in table below.

2.5 Testing Schedule
See Gantt Chart HERE.

https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/ProjectSchedule/ProjectSchedule_3XA3_307.pdf

Testing Tool Where to use remarks
Pytest Unit Testing
Python Time Library | System Testing NFR
Google Form System Testing | NFR survey

Table 4: Testing Tools

3 System Test Description

3.1 Tests for Functional Requirements

Since the software game highly depends on the mouse and the keyboard
inputs, and the game events are all triggered by these input elements, the
test for functional requirements will be divided into two sections including
testing for mouse inputs and testing for keyboard inputs.

3.1.1 Testing for Mouse Inputs

1. TFR1: Test Game Start
Relevant Functional Requirement id: FR1, FR2, FR3, FR4

Type: Functional, Dynamic, Manual
Initial State: The software game is installed and ready to execute.

Input: A cursor placement on the game icon and a double-click on the
left mouse key.

Output: The program opens the GUI frame with game scene and char-
acter loaded, and with a crosshair placed at the center of the window.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the GUI is opened, the
game scene and character are loaded, and a crosshair is placed at the
center of the window.

2. TFR2: Test Crosshair Position Stability
Relevant Functional Requirement id: FR4, FR4.1
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the crosshair is
placed at the center of the GUI window.

Input: A sequence of movements of the character(controlled by key-
board inputs) followed by a sequence of block operations(controlled by
keyboard and mouse inputs).

Output: The crosshair keeps in position(center of GUI window).

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the crosshair keeps its po-
sition.

. TFR3: Test Character Direction
Relevant Functional Requirement id: FR6
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded.

Input: A movement of the mouse.
Output: The character changes its view direction.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character changes its
view direction.

. TFRA4: Test Block Outline
Relevant Functional Requirement id: FR9
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. A block is near the character.

Input: A movement of the mouse to aim the crosshair at the block.

Output: The GUI shows the outline of the block(indicating the block
is being aimed at).

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the outline of the block is
shown.

. TFR5: Test Block Removal
Relevant Functional Requirement id: FR10, FR15

Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. A block is near the character and the player
has already aimed the crosshair at the block.

Input: A left-click on the mouse.

Output: The block is being removed from the window and the program
plays a sound effect to notify.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the block is removed and
whether the program plays a sound effect to notify this event.

. TFR6: Test Block Build
Relevant Functional Requirement id: FR11

Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. A block is near the character and the player
has already aimed the crosshair at the block(the crosshair could be
pointed to top, or bottom, or any side).

Input: A right-click on the mouse.

Output: The new block is being built at the position that is next to
the surface of the existing block that the crosshair was pointed to and
the program plays a sound effect to notify.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the new block is built in
the right place. The tester will also check whether the program plays
a sound effect to notify this event as well.

. TFR7: Test Game Close

Relevant Functional Requirement id: FR13
Type: Functional, Dynamic, Manual

Initial State: Based on the successful post condition of TFR19 Test
Cursor release

Input: A cursor placement on the close button(“X”) on the GUI fol-
lowed by a left-click on the mouse.

Output: The GUI is closed and the game terminates.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the GUI closes and the
game terminates successfully.

8. TFRS8: Test Background Music
Relevant Functional Requirement id: FR14
Type: Functional, Dynamic, Manual
Initial State: The software game is installed and ready to execute.

Input: A cursor placement on the game icon and a double-click on the
left mouse key.

Output: The program plays the background music of the game.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the program plays the back-
ground music.

9. TFR9: Test Stone Block Operations
Relevant Functional Requirement id: FR17
Type: Functional, Dynamic, Manual
Initial State: A cursor is placed on a stone block
Input: A left-click on the mouse.

Output: The stone is not removed.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the stone is removed.

3.1.2 Testing for Keyboard Inputs

1. TFR10: Test Forward Movement
Relevant Functional Requirement id: FR5.1
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. The character is free to move forward(no
blocks are close to and at the front of the character).

Input: A click on the “W” key on the keyboard.

Output: The character moves forward.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character moves forward.
. TFR11: Test Left Movement

Relevant Functional Requirement id: FR5.2

Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. The character is free to move to the left(no
blocks are close to and on the left of the character).

Input: A click on the “A” key on the keyboard.
Output: The character moves to the left.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character moves to the
left.

. TFR12: Test Backward Movement
Relevant Functional Requirement id: FR5.3
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. The character is free to move backward(no
blocks are close to and at the back of the character).

Input: A click on the “S” key on the keyboard.
Output: The character moves backward

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character moves back-
ward.

. TFR13: Test Right Movement
Relevant Functional Requirement id: FR5.4
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded. The character is free to move to the right(no
blocks are close to and on the right of the character).

Input: A click on the “D” key on the keyboard.
Output: The character moves to the right

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character moves to the
right.

. TFR14: Test Jump Action
Relevant Functional Requirement id: FR7
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded.

Input: A click on the space key on the keyboard.

Output: The character jumps once.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character jumps.

. TFR15: Test Flying Mode

Relevant Functional Requirement id: FR8, FR8.1, FR8.2, FR8.3
Type: Functional, Dynamic, Manual

Initial State: The software game GUI is opened and the game scene
and character are loaded.

Input: A click on the tab key, followed a sequence of clicks on the “W”
and “S” keys, and followed by a click on the tab key on the keyboard.

Output: The character jumps once.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the tab key enables or
disables the flying mode, and to check whether the “W” and “S” keys
would control the character to fly under flying mode.

. TFR16: Test Block Type Change - Brick
Relevant Functional Requirement id: FR11.1
Type: Functional, Dynamic, Manual

Initial State: Based on the successful post condition of TFR6 Test
Block Build. A block is near the character and the player has already

aimed the crosshair at the block(the crosshair could be pointed to top,
or bottom, or any side).

Input: A click on the “1” key on the keyboard, followed by a right-click
on the mouse.

Output: A brick block is built.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the block type is changed
to brick.

. TFR17: Test Block Type Change - Grass
Relevant Functional Requirement id: FR11.2

Type: Functional, Dynamic, Manual

Initial State: Based on the successful post condition of TFR6 Test
Block Build. A block is near the character and the player has already
aimed the crosshair at the block(the crosshair could be pointed to top,
or bottom, or any side).

Input: A click on the “2” key on the keyboard, followed by a right-click
on the mouse.

Output: A grass block is built.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the block type is changed
to grass.

. TFR18: Test Block Type Change - Sand
Relevant Functional Requirement id: FR11.3

Type: Functional, Dynamic, Manual

Initial State: Based on the successful post condition of TFR6 Test
Block Build. A block is near the character and the player has already
aimed the crosshair at the block(the crosshair could be pointed to top,
or bottom, or any side).

Input: A click on the “3” key on the keyboard, followed by a right-click
on the mouse.

Output: A sand block is built.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the block type is changed
to sand.

10. TFR19: Test Cursor Release
Relevant Functional Requirement id: FR12
Type: Functional, Dynamic, Manual
Initial State: The software game GUI is opened.
Input: A click on the “ESC” key on the keyboard

Output: The cursor is released from the GUI, which means it does not
control the direction change and block operations of the character.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the cursor is released.
11. TFR20: Test Block-Through Movement
Relevant Functional Requirement id: FR16
Type: Functional, Dynamic, Manual

Initial State: Based on the successful post condition of Test Move-
ments TFR10, TFR11, TFR12, TFR13. The character is in a
position where is surrounded by blocks.

Input: A sequence of clicks on “W”, “A” “S” “D”.
Output: The character does not move through the surrounding blocks.

How test will be performed: The tester will perform the input action
and conduct a visual test to check whether the character can move
through the surrounding blocks.

3.2 Tests for Nonfunctional Requirements

3.2.1 Testing for Look and Feel Requirements

1. TNFR1 Test Look and Feel
Relevant Nonfunctional Requirement id: NFR1, NFR2

Type: Dynamic, Manual

Initial State: The game is installed and is given to a group of teenagers
with experience of playing Minecraft to play.

10

Condition: The group should be satisfied with the attractiveness and
style of the game.

Result: The group is satisfied with the attractiveness and style of the
game.

How test will be performed: One member of the testing team will assign
a group of teenagers with experience of playing Minecraft, give them
the game to play and hand out a survey after they play the game.
The survey will ask for the attractiveness(a rank between 1-10) and
“Minecraft-like Style” (basically saying how similar it is compared to
Minecraft, a rank between 1-10) of the game, the average of the result
should be above AVG1 to pass the test.

3.2.2 Testing for Usability and Humanity Requirement
1. TNFR2: Test Game Difficulty
Relevant Nonfunctional Requirement id: NFR3
Type: Dynamic, Manual
Initial State: The game is installed and is given to a group of random
aged people to play.
Condition: 95% of the players in the group should be able to play the
game with no difficulty.
Result: 95% of the players in the group play the game with no difficulty.

How test will be performed: One member of the testing team will assign
a group of ten people from different age groups, give them the game to
play and hand out a survey after they play the game. The survey will
ask for the difficulty of the game(a rank between 1-10), the average of
the result should be below AVG2 to pass this test.

2. TNFR3: Test Learning Curve
Relevant Nonfunctional Requirement id: NFR4
Type: Dynamic, Manual

Initial State: The game is installed and is given to a group of random
aged people to play.

Condition: 95% of the players in the group should be able to learn
the game within a time between LEARN_MIN to LEARN _MAX
minutes.

11

Result: 95% of the players in the group successfully learn the game
within a time between LEARN_MIN to LEARN_MAX minutes.

How test will be performed: One member of the testing team will assign
a group of ten people from different age groups, give them the game to
play and hand out a survey after they play the game. The survey will
ask for the learning time of the game, the average of the result should
be between LEARN_MIN to LEARN_MAX minutes. to pass this

test.

3.2.3 Testing for Performance Requirements

1. TNFR4: Test Speed
Relevant Nonfunctional Requirement id: NFR5

Type: Dynamic, Manual
Initial State: The game is installed.

Condition: The software game should respond to game events in less
than RESPONSE second for 99% of the interrogations and no re-
sponse should take longer than FALSE _ RESPONSE second.

Result: The software game responds to game events in less than RE-
SPONSE second for 99% of the interrogations and no response should
take longer than FALSE_RESPONSE second.

How test will be performed: One member of the testing team will use
the Python build-in Time library to count the execution time of OP-
ERATION_NUM operations in the program. All operations should
take less than RESPONSE second.

2. TNFR5: Test Availability
Relevant Nonfunctional Requirement id: NFR6
Type: Dynamic, Manual
Initial State: The game is installed.

Condition: The software game should allow access to the game at dif-
ferent times.

Result: The software game allows access to the game at different times.

How test will be performed: One member of the testing team will write
a driver to randomly access the program in TIME minutes for TRIES

12

times. The driver will be used two times on two different dates. The
result should be all successful accesses to pass this test.

3. TNFRG6: Test Reliability
Relevant Nonfunctional Requirement id: NFR7
Type: Dynamic, Manual
Initial State: The game is installed.
Condition: The software game should run for five hours.
Result: The software game successfully runs for five hours.

How test will be performed: One member of the testing team will start
the game and keep it for five hours. The game should run with no
errors and failures during that time period to pass this test.

3.2.4 Testing for Operational and Environmental Requirements

1. TNFR7: Test Adjacent System Effect
Relevant Nonfunctional Requirement id: NFR8

Type: Dynamic, Manual
Initial State: The game is installed.

Condition: The software game should not produce any negative effects
on adjacent system.

Result: The software game does not produce any negative effects on
adjacent system.

How test will be performed: One member of the testing team will
execute the game and monitor the activities in the process monitor on
the computer. The game should not cause other programs to terminate
to pass this test.

3.2.5 Testing for Maintainability and Support Requirements

1. TNFRS8: Test Adaptability
Relevant Nonfunctional Requirement id: NFR10

Type: Dynamic, Manual

Initial State: The game is available to be downloaded from internet.

13

Condition: The software game should be easily downloaded, installed,
and opened onto both Windows and Linux OS.

Result: The software game can be easily downloaded, installed, and
opened onto both a Windows OS and a Linux OS.

How test will be performed: One member of the testing team will
download the game from the game website and install it onto both a
Windows OS and a Linux OS and then open the game on both OS.
There should be no unexpected issue happening during this process to
pass the test.

3.2.6 Testing for Security Requirements

1. TNFR9: Test Integrity
Relevant Nonfunctional Requirement id: NFR11
Type: Dynamic, Manual
Initial State: The game is installed.
Condition: The software game should prevent low level threats.

Result: The software game prevents low level threats and does not
crash due to intentional abuse.

How test will be performed: One member of testing team will write a
specific threat test case for intentional abuse to the game. There should
be no errors or failures happening to pass the test.

2. TNFR10: Test Privacy
Relevant Nonfunctional Requirement id: NFR12
Type: Static, Manuel
Initial State: The game is installed.

Condition: There should be no external user data generated during the
game execution.

Result: There is no external user data generated during the game exe-
cution.

How test will be performed: The testing team will do a static analysis
on the code and go through each module to check whether the program
potentially produces external data. The result should be “No” to pass
the test.

14

3.2.7 Testing for Cultural Requirements

1. TNFR11: Test Cultural Politeness
Relevant Nonfunctional Requirement id: NFR13

Type: Dynamic, Manual

Initial State: The game is installed and is given to a group of people
from different cultural groups to play.

Condition: The group should have satisfaction with the cultural po-
liteness of the game.

Result: The group has satisfaction with the cultural politeness of the
game.

How test will be performed: One member of the testing team will assign
a group of ten people from different cultural groups, give them the game
to play and hand out a survey after they play the game. The survey
will ask for the satisfaction of the cultural politeness of the game(a
rank between 1-10), the average of the result should be above AVG1
to pass this test.

3.2.8 Testing for Legal Requirements

1. TNFR12: Test Compliance
Relevant Nonfunctional Requirement id: NFR14

Type: combined with Dynamic and Static, Manual
Initial State: The game is installed and the documentation is complete.

Condition: The software product should not violate the Digital Millen-
nuim Copy-right Act[1].

Result: The software product does not violate the Digital Millennuim
Copy-right Act[1].

How test will be performed: One member of the testing team will show
the game and the documentation to a legal expert and get feedback.
The feedback should say the software product does not violate the
Digital Millennuim Copy-right Act[1].

15

3.2.9 Testing for Health and Safety Requirements

1. TNFR13: Test Safety
Relevant Nonfunctional Requirement id: NFR15

Type: combined with Dynamic and Static, Manual
Initial State: The game is installed and the documentation is complete.

Condition: The software product should not generate any mental or
physical threat to the players.

Result: The software product does not generate any mental or physical
threat to the players.

How test will be performed: One member of the testing team will show
the game and the documentation to a safety expert and get feedback.
The feedback should say the software product does not generate any
mental or physical threat to the players.

3.3 Traceability Between Test Cases and Requirements

16

FR

TFR1 TFR2 TFR3 TFR4 TFR5 TFR6 TFR7Y

FR1
FR2
FR3
FR4
FR6
FR9
FR10
FR11
FR13
FR15

ESENENEN

v
v

FR

TFR8 TFR9 TFR10 TFR11 TFR12 TFR13 TFR14

FR5
FR7
FR14
FR17

v v v v
v
v
v

FR

TRF15 TFR16 TFR17 TFR18 TFR19 TFR20

FR8
FR11
FR12
FR16

v
v v v
v
v

Table 5: Traceability Matrix for FRs

17

NFR

TNFR1

TNFR2 TNFR3 TNFR4 TNFR5 TNFR6 TNFR7

NFR1
NFR2
NFR3
NFR4
NFR5
NFR6
NFR7
NFRS

v
v

v
v

NFR

TNFR8 TNFR9 TNFR10 TNFR11 TNFR12 TNFRI13

NFR10
NFRI11
NFR12
NFR13
NFR14
NFR15

v

v

v

v

Note: NFRY is in terms of software updates and maintenance that is
not testable.

Table 6: Traceability Matrix for NFRs

18

4 Tests for Proof of Concept

There were not many issues or conflicts happened to the project’s first Proof
of Concept Demonstration. This section will focus on the area of testings
including the product delivery style and 3D game perspectives. The testing
plan described in this section is used for future Proof of Concept Demonstra-
tion preparations.

Testing for Product Delivery Style

e Test Executable Files
How test will be performed:

The development team will generate Windows version and Linux ver-
sion executable files according to each update of the source code. The
test team will ensure that each generated executable file will automat-
ically open the game, has its unique icon, and not invoke the terminal
window.

e Test Game Download
How test will be performed:

The development team will upload the executable files on the game
website for each release. The test team will ensure that the game down-
load is stable, which means the game can be successfully downloaded
and played.

Testing for 3D Game Perspectives

e Test 3D Game Bugs
How test will be performed:

By following the principle of edge case testing, the test team will play
the game and try to discover as many 3D game bugs as possible to keep
the system stable and reliable.

19

http://rexwangsida.pythonanywhere.com/
http://rexwangsida.pythonanywhere.com/

5 Comparison to Existing Implementation

6 Unit Testing Plan

The Pytest framework and library will be used to accomplish unit testing for
CraftMaster. The Pytest library provides sufficient testing functionalities
and also supports automated testing approach as described in section 2.3.

6.1 Unit testing of internal functions

There will be one test file for each module of the implementation. For each
method within the module, two test cases will be made, including one bound-
ary value test case and one equivalence test case. All mutator methods will be
implicitly tested by performing test cases on accessor methods. With Pytest
framework, each test case can be done by taking an individual method with
inputs and giving it an expected return value. There will not be any drivers
and stubs to be imported or implemented for the unit testing stage since it is
supported by Pytest framework. Since Pytest supports coverage message,
the test coverage will be checked according to the test report generated by
Pytest instead of manual coverage metrics. For each test file, the coverage
needs to exceed 95%.

6.2 Unit testing of output files

Since there is no data output from the system to the external environment,
unit testing will not be performed on any output data file. Hence, this section
does give any specification of unit testing.

20

7 Appendix

7.1 Symbolic Parameters

e AVG1: 7

e AVG2: 3

e LEARN_MIN: 2

e LEARN_MAX: 30

e RESPONSE: 0.1

e FALSE RESPONSE: 0.5
e OPERATION_NUM: 10
e TIME: 60

e TRIES: 100

7.2 Survey Questions

Relevant Test case id Survey Question
TNFR1 How do you like this game, rate it 1-107
How does this game remind you of Minecraft, rate it 1-107
TNFR2 How difficult is this game, rate it 1-107
TNFR3 How long does it take you to learn this game?
TNFR11 What is the level of cultural politeness of this game, rate it 1-107
Bibliography

[1] New Media Rights. Video Games and the law: Copyright, Trademark and
Intellectual Property [hitps://www.newmediarights.orq/quide/legal/
Video_Games_law_Copyright_Trademark_Intellectual_Property]. 2018.

21

	List of Tables
	List of Figures
	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Testing for Mouse Inputs
	Testing for Keyboard Inputs

	Tests for Nonfunctional Requirements
	Testing for Look and Feel Requirements
	Testing for Usability and Humanity Requirement
	Testing for Performance Requirements
	Testing for Operational and Environmental Requirements
	Testing for Maintainability and Support Requirements
	Testing for Security Requirements
	Testing for Cultural Requirements
	Testing for Legal Requirements
	Testing for Health and Safety Requirements

	Traceability Between Test Cases and Requirements

	Tests for Proof of Concept
	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Survey Questions

	Bibliography

