
SE 3XA3:
Module Guide
CraftMaster

Group Number: 307
Group Name: 3 Craftsmen

Members:
Hongqing Cao 400053625

Sida Wang 400072157
Weidong Yang 400065354

Contents

1 Introduction 1
1.1 Project Overview . 1
1.2 Context of Module Guide . 1
1.3 Design Principles . 2
1.4 Content Structure . 2
1.5 Naming Conventions and Terminology . 3

2 Anticipated and Unlikely Changes 3
2.1 Anticipated Changes . 3
2.2 Unlikely Changes . 5

3 Module Hierarchy 5

4 Connection Between Requirements and Design 7

5 Module Decomposition 7
5.1 Hardware Hiding Modules (M16) . 7
5.2 Behaviour-Hiding Module . 7

5.2.1 game Module (M5) . 7
5.2.2 gameScene Module (M8) . 7
5.2.3 mainScene Module (M9) . 7
5.2.4 settingScene Module (M10) . 8
5.2.5 screen Module (M13) . 8

5.3 Software Decision Module . 8
5.3.1 creature Module (M3) . 8
5.3.2 player Module (M11) . 8
5.3.3 block Module (M1) . 8
5.3.4 processQueue Module (M12) . 8
5.3.5 shape Module (M14) . 9
5.3.6 world Module (M15) . 9
5.3.7 devTools Module (M4) . 9
5.3.8 button Module (M1) . 9
5.3.9 loadSource Module (M6) . 9

6 Traceability Matrix 10

7 Use Hierarchy Between Modules 12

List of Tables

1 Revision History . iii

i

2 Module Hierarchy . 6
3 Trace Between Requirements and Modules 11
4 Trace Between Anticipated Changes and Modules 12

List of Figures

1 Dirt and Sand Block . 4
2 Lava and Water Block . 4
3 Chicken and Cow Object . 5
4 Use hierarchy among modules . 13

ii

Date Editor(s) Change

Mar 9 Sida General Content added
Mar 13 Weidong Edited for Rev0 submission
Mar 13 Sida Minor Modification

Table 1: Revision History

iii

1 Introduction

1.1 Project Overview

CraftMaster is a re-implementation of Michael Fogleman’s Simple Minecraft-inspired
Demo (refered to as orginal project in the following content), which is developed in
Python and Pyglet. The CraftMaster design team has initiated and completed multiple
requirements(specified in the Software Requirement Specifications(SRS)) to add new
features, including new block types, day and night mode shift, game saving, and game menu
frames, to the original project. During the software design process, the team has also applied
software architecture design patterns and software design principles to increase the quality
of the software design. The specification of those design methodologies will be described in
this document.

In terms of the software product characteristics, CraftMaster is a 3D Sandbox Game that
allows players to control the character and build the game world based on their imagination.
We believe that CraftMaster will be beneficial to teenagers and children in the way that it
inspires them to unleash their creativity.

1.2 Context of Module Guide

The SRS document shows the features, functionalities and desired properties that the sys-
tem should have. The Module Guide(MG) is generated based on the SRS, which further
evaluates how requirements are achieved and also specifies the modular structure decompo-
sition of the software system. It will be distributed to help potential readers easily identify
the decomposed parts of the software. The potential readers are as follows:

• New Project Members: The MG acts as a guideline for the new project members
to easily and quickly understand the modular structure of the system and its decompo-
sition specifications. With this document, those new members can search for relevant
modules more efficiently.

• Designers: The MG is used to help software system designers check for the consis-
tency among modules, the flexibility of the design, and the feasibility of the modular
decomposition.

• Developers: The hierarchical structure specified in the MG will give the developers
a better understanding of the system decomposition and use relationships between
different modules.

• Maintainers: The hierarchical structure of the system improves the maintainers’
understanding of either the system as a whole or individual modular parts when they
need to make changes to the system and the documents.

1

https://github.com/fogleman/Minecraft
https://github.com/fogleman/Minecraft
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/Doc/SRS/SRS.pdf
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/Doc/SRS/SRS.pdf
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/Doc/SRS/SRS.pdf

The Module Interface Specifications(MIS) is another section of the Design Specifica-
tions Documents other than the MG. The MIS shows the semantics and syntax of exported
functions for each module in details. The MG should be an entry document for the design
specifications and the readers should read the MG first to get an overview of the system,
then browse the MIS for further references once they identify which module(s) they are
searching for.

1.3 Design Principles

• High Cohesion and Low Coupling: This principle has been applied to the project
in the way that the modules are designed to be strongly related and the dependency
has been minimized.

• Open-Closed Principle: The modules are designed to be closed to modification
and the system is designed to easily extended. For instance, the screen module is
implemented as a template and all other scenes(such as gameScene, mainScene and
settingScene) inherit it. There might be new scenes to be implemented in the future
to easily extend the system.

• Liskov Substitution Principle: The inheritance relationships among modules fol-
lows the Liskov Substitution Principle.

• Dependency Inversion Principle: The inheritance design pattern is used to support
the abstraction of the system. With the abstraction, the dependency inversion principle
can be followed.

• Interface Segregation Principle: The inheritance design pattern minimizes the
interfaces of subclass modules, which follows the Interface Segregation Principle.

• Law of Demeter: The abstraction of the system supports the principle of the Law
of Demeter. The communications only depend on the interfaces as limited knowledge.

• Information Hiding: The information hiding principle is supported by abstraction
and private methods.

1.4 Content Structure

The rest of the document is organized as follows:

• Section 2 lists the anticipated and unlikely changes of the software requirements.

• Section 3 summarizes the module decomposition that was constructed according to the
likely changes.

• Section 4 specifies the connections between the software requirements and the modules.

2

https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/Doc/Design/MIS/MIS.pdf
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/Doc/Design/MIS/MIS.pdf
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/Doc/Design/MIS/MIS.pdf
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/src/screen.py
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/src/gameScene.py
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/src/mainScene.py
https://gitlab.cas.mcmaster.ca/wangs132/minecraft/-/blob/master/src/settingScene.py

• Section 5 gives a detailed description of the modules.

• Section 6 includes two traceability matrices. One checks the completeness of the design
against the requirements provided in the SRS. The other shows the relation between
anticipated changes and the modules.

• Section 7 describes the use relation between modules.

1.5 Naming Conventions and Terminology

The naming conventions and terminology section will aid readers from different backgrounds
to clearly understand the content of this document. The naming conventions and terminolo-
gies used in this document are listed below:

• OS: Operating System.

• GUI: Graphical User Interface, which allows the user to interact and visualize the
program by graphics instead of text.

• Sandbox Game: A type of game that allows player to create, modify, and destroy
the environment.

• Pyglet: The Python library for the design of graphical user interface and multi-media.

• Player/Gamer: The person who controls the PC to play the game.

• Character: The fictional character who is controllable by the player/gamer(not visible
to the player).

• 3D Game: A game in three dimensions.

2 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of the change,
the possible changes are classified into two categories. Anticipated changes are listed in
Section 2.1, and unlikely changes are listed in Section 2.2.

2.1 Anticipated Changes

AC1: The specific hardware on which the software is running.

AC2: More static block types such as Dirt and Sand, shown in Figure 1.

3

Figure 1: Dirt and Sand Block

AC3: The dynamic block types including Lava and Water, shown in Figure 2, which
provide explicit interactions with the game character.

Figure 2: Lava and Water Block

AC4: Objects that can interact with the game character, such as Chicken and Cow,
shown in Figure 3.

4

Figure 3: Chicken and Cow Object

2.2 Unlikely Changes

This section specifies the changes that are planned out but difficult to implement due to the
limitation of the utilities of Pyglet.

UC1: Input Devices such as game console controller.

UC2: Saving more game scenes, as the maximum game saving is two for now.

UC3: Inventory System.

3 Module Hierarchy

This section provides an overview of the module design. Modules are summarized in a
hierarchy decomposed by secrets in Table 2. The Hardware-hiding section hides the hardware
machine or the “virtual machine” provided by the Pyglet. The Software decision section
hides internal data structures and algorithms. The Behaviour hiding section hides input
formats, screen formats, and text messages. The modules listed below, which are leaves in
the hierarchy tree, are the modules that will actually be implemented.

M1: block

M2: button

M3: creature

M4: devTools

M5: game

M6: loadSource

5

M7: main

M8: gameScene

M9: mainScene

M10: settingScene

M11: player

M12: processQueue

M13: screen

M14: shape

M15: world

Level 1 Level 2

Hardware-Hiding Module Pyglet

Behaviour-Hiding Module

game
gameScene
mainScene
settingScene
screen

Software Decision Module
creature
block
player
processQueue
shape
world
devTools
button
loadSource

*Note that the main module only acts as a trigger to the program and does not support
information hiding and therefore it is mentioned in either this table or Section 5.

Table 2: Module Hierarchy

6

4 Connection Between Requirements and Design

The design of the system is intended to satisfy the requirements developed in the SRS. In
this stage, the system is decomposed into modules. The consistency between requirements
and modules is listed in Table 3. The Non-functional Requirements are realized highly based
on the functionalities of the hardware.

5 Module Decomposition

5.1 Hardware Hiding Modules (M16)

Secrets: The algorithm used to implement the virtual hardware that controls the mouse,
keyboard, monitor and audio player.

Services: Serves as a virtual hardware used by the rest of the system. This module provides
the interface between the hardware and the software. So, the system can use it to
display outputs or to accept inputs.

Implemented By: OS and Pyglet

5.2 Behaviour-Hiding Module

5.2.1 game Module (M5)

Secrets: The interactive game frame(GUI).

Services: Provide the game frame(GUI) that controls the scenes switches and game world
initialization.

Implemented By: game.py

5.2.2 gameScene Module (M8)

Secrets: The interactive content of the game scene that will be rendered on the GUI.

Services: Render the interactive content of the game Scene on the GUI.

Implemented By: gameScene.py

5.2.3 mainScene Module (M9)

Secrets: The main menu scene that will be rendered on the GUI.

Services: Render the main menu on the GUI.

Implemented By: mainScene.py

7

5.2.4 settingScene Module (M10)

Secrets: The setting menu scene that will be rendered on the GUI.

Services: Render the setting menu on the GUI.

Implemented By: settingScene.py

5.2.5 screen Module (M13)

Secrets: The interactive scene template.

Services: Provide a basic template for other scenes.

Implemented By: screen.py

5.3 Software Decision Module

5.3.1 creature Module (M3)

Secrets: The moving object in the game world.

Services: Provide a basic template for the moving objects in the game world.

Implemented By: creature.py

5.3.2 player Module (M11)

Secrets: The game character.

Services: Provide a game character with its operations in the game world.

Implemented By: player.py

5.3.3 block Module (M1)

Secrets: The game blocks.

Services: Provide a basic template for the game blocks in the game world.

Implemented By: block.py

5.3.4 processQueue Module (M12)

Secrets: The processQueue data structure.

Services: Provide a data structure to store processes.

Implemented By: processQueue.py

8

5.3.5 shape Module (M14)

Secrets: The shape drawing algorithm.

Services: Provide an algorithm to draw 2-dimensional and 3-dimensional shapes.

Implemented By: shape.py

5.3.6 world Module (M15)

Secrets: The game world.

Services: Provide a game world and its operations.

Implemented By: world.py

5.3.7 devTools Module (M4)

Secrets: The image process and formating algorithm.

Services: Provide an algorithm to process and produce texture images in a certain format.

Implemented By: devTools.py

5.3.8 button Module (M1)

Secrets: Buttons.

Services: Provide two types of buttons(switches by OnOffButton and Toggles by Button).

Implemented By: button.py

5.3.9 loadSource Module (M6)

Secrets: The algorithm of loading media.

Services: Provide algorithms to load texture images, background music and on-click effect
sound.

Implemented By: loadSource.py

9

6 Traceability Matrix

This section shows two traceability matrices: between the modules and the requirements
and between the modules and the anticipated changes.

10

Req. Modules

FR1 M5, M7, M16
FR2 M5, M9, M16
FR2.1 M2, M8, M9, M10, M13, M14
FR2.1.1 M2, M5, M8, M11, M12, M13, M14, M15
FR2.1.2 M2, M5, M8, M11, M12, M13, M14, M15
FR2.1.3 M2, M5, M10, M13, M14
FR2.1.4 M2, M5, M9, M10, M13, M14
FR3 M3, M5, M8, M11
FR4 M5, M8
FR4.1 M5, M8
FR5 M5, M8, M11, M16
FR5.1 M5, M8, M11, M16
FR5.2 M5, M8, M11, M16
FR5.3 M5, M8, M11, M16
FR5.4 M5, M8, M11, M16
FR6 M5, M8, M11, M16
FR7 M5, M8, M11, M16
FR8 M5, M8, M11, M16
FR8.1 M5, M8, M11, M16
FR8.2 M5, M8, M11, M16
FR8.3 M5, M8, M11, M16
FR9 M1, M5, M8, M11, M14, M15
FR10 M1, M5, M8, M11, M12, M14, M15, M16
FR11 M1, M5, M8, M11, M12, M14, M15, M16
FR11.1 M1, M5, M6, M8, M16
FR11.2 M1, M5, M6, M8, M16
FR11.3 M1, M5, M6, M8, M16
FR12 M5, M8, M10, M13, M16
FR12.1 M5, M8, M9, M10, M13
FR12.2 M5, M8, M9, M10, M13
FR13 M5
FR14 M6, M7, M16
FR15 M5, M6, M8, M11, M12, M13, M14, M15, M16
FR16 M15
FR17 M5, M8, M15
NFR2 M6
NFR5 M16
NFR6 M16
NFR7 M16
NFR8 M16
NFR10 M16
NFR11 M16
NFR14 M16

Table 3: Trace Between Requirements and Modules

11

AC Modules

AC1 M16
AC2 M4, M6, M8, M15
AC3 M4, M6, M8, M15
AC4 M3, M4, M6, M8, M15

Table 4: Trace Between Anticipated Changes and Modules

7 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. Arrow represent USES
relationship between modules.The Hardware Hiding Module refers to OS and Pyglet
modules, which belong to external program. The figure contains two software components,
Software Game and Texture Image Processor. The Software Game component
demonstrates the use hierarchy between modules in the implementation of the game program
itself. The Texture Image Processor is a software tool implemented by the team to
produce texture images in a certain format that will be implicitly used by the block module,
which is shown with a dashed arrow line.

12

Figure 4: Use hierarchy among modules

13

	Introduction
	Project Overview
	Context of Module Guide
	Design Principles
	Content Structure
	Naming Conventions and Terminology

	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules (M16)
	Behaviour-Hiding Module
	game Module (M5)
	gameScene Module (M8)
	mainScene Module (M9)
	settingScene Module (M10)
	screen Module (M13)

	Software Decision Module
	creature Module (M3)
	player Module (M11)
	block Module (M1)
	processQueue Module (M12)
	shape Module (M14)
	world Module (M15)
	devTools Module (M4)
	button Module (M1)
	loadSource Module (M6)

	Traceability Matrix
	Use Hierarchy Between Modules

