
SE 3XA3: Test Plan
CryptoMetrics

Team 15
Saif Fadhel, fadhels

Vanshaj Verma, vermav2
Himanshu Aggarwal, aggarwah

March 12, 2022

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 2

2 Plan 2
2.1 Software Description . 2
2.2 Test Team . 3
2.3 Automated Testing Approach 3
2.4 Testing Tools . 3
2.5 Testing Schedule . 3

3 System Test Description 3
3.1 Tests for Functional Requirements 3

3.1.1 Home Page . 3
3.1.2 Details Page . 5
3.1.3 Compare Page . 6
3.1.4 Fetching Data . 7
3.1.5 User Interface . 8

3.2 Tests for Nonfunctional Requirements 9
3.2.1 Look and Feel . 9
3.2.2 Usability and Humanity 10
3.2.3 Performance . 11

3.3 Traceability Between Test Cases and Requirements 12

4 Tests for Proof of Concept 12
4.1 Table/Card View Testing . 12
4.2 Search Feature Testing . 13

5 Comparison to Existing Implementation 14

6 Unit Testing Plan 14
6.1 Unit testing of internal functions 14
6.2 Unit testing of output files . 15

i

7 Appendix 15
7.1 Symbolic Parameters . 15
7.2 Usability Survey Questions . 16

List of Tables

1 Revision History . ii
2 Table of Abbreviations . 1
3 Table of Definitions . 2
4 Traceability Matrix . 12

List of Figures

Table 1: Revision History

Date Version Notes

Mar 10, 2022 1.0 Creation of the test plan document
Mar 11, 2022 1.1 Update and finalize the test plan

ii

1 General Information

1.1 Purpose

The purpose of this document is to outline the development team’s test
plan for the proposed project, CryptoMetrics as per the verification and
validation section of the software development cycle. The details pertaining
to the test plan includes the automated testing approach, the tools that will
be used to conduct tests, and the schedule prioritizing the tests that must
take precedence over others.

1.2 Scope

The scope of testing includes the tests that will be conducted to verify that
the functional and non-functional requirements have been met, the tests pre-
scribed for the Proof of Concept, and the overall Unit-Testing Plan. Since
the application being developed is primarily a web application that was cre-
ated using NextJS, testing will be mostly focused on the ensuring that the
features and functionalities respond appropriately to the user’s interactions.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

TA Teaching Assistant who is a client of the project.
UI User Interface.
API Application Programming Interface
JS JavaScript. The language used to create the project.
URL Uniform Resource Locator.
FR Functional Requirements.
NFR Non-functional Requirements.
HTTP Hypertext Transfer Protocol

1

Table 3: Table of Definitions

Term Definition

CryptoMiner The name of the project in development.
Cryptocurrency Digital currency secured by cryptography that uses a

decentralized system to record transactions.
Browser Software application utilized to access the World Wide

Web.
React JavaScript library that was used to create the reference

project.
NextJS/Next.js The specific React framework that will be utilized to

develop and organize the web application.
Bug Fault in the code that produces an incor-

rect/unexpected result.
Database Organized collection of data.

1.4 Overview of Document

This document will summarize the testing plan for the web-based application
CryptoMetrics. It will go over the various testing techniques which will be
utilized, for example, manual testing, end-to-end testing and unit testing.
This document will also highlight the tests made for the functional and non-
functional requirements of the system and would also cover the tests for the
PoC.

2 Plan

2.1 Software Description

The software will act as a resource to our targeted audience for looking
up more information about their favourite cryptocurrencies. It is a web
application where the user can access data on cryptocurrencies regarding
its pricing, charts, its performance over a span of time and visuals. The
implementation will be done in NextJS.

2

2.2 Test Team

The test team consists of the existing developers: Himanshu Aggarwal, Saif
Fadhel, Vanshaj Verma.

2.3 Automated Testing Approach

The cypress library will be used to automate most of the frontend tests
for this project. The approach is to do mostly automated integration and
end-to-end testing to verify if the features are working as expected. The
cypress library allows us to mimic ”clicks” on a webpage and observe the
resulting behavior and changes in the webpage. Using this, we can effectively
automate most situations which would otherwise require manual testing.

Apart from this, Jest will be used to do unit testing for some utility
methods.

2.4 Testing Tools

Majority of integration and end-to-end testing will be done either manually
or using the cypress library. Unit testing will be done using Jest.

2.5 Testing Schedule

See the Gantt Chart here.

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Home Page

Front End Testing

1. FT-HP-1

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user clicks on the ’Table’ icon.

3

https://gitlab.cas.mcmaster.ca/webapp/webapp_l02_grp15/-/tree/main/ProjectSchedule

Output/Result: The system shall display every cryptocurrency’s rel-
evant information in a table-like manner.

How test will be performed: This test will be performed using the
cypress library to verify if the Table component gets rendered to the
DOM.

2. FT-HP-2

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user uses the Search input to a valid name of
a cryptocurrency.

Output/Result: The cryptocurrencies being displayed shall be fil-
tered based on user’s input.

How test will be performed: This test will be performed using the
cypress library to verify if typing a cryptocurrency name filters the
cryptocurrencies being displayed.

3. FT-HP-3

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user uses the Search input to an invalid name
of a cryptocurrency.

Output/Result: The application shall display a message to indicate
that the search query did not find any results.

How test will be performed: This test will be performed using the
cypress library to verify if the message is shown.

4. FT-HP-4

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user uses filter options to add a filter.

4

Output/Result: The cryptocurrencies being displayed shall be up-
dated based on the selected filters.

How test will be performed: This test will be performed using the
cypress library to verify if adding a filter changes the data accordingly.

5. FT-HP-5

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user removes a filter.

Output/Result: The cryptocurrencies being displayed shall be up-
dated based on the new filters.

How test will be performed: This test will be performed using
the cypress library to verify if removing a filter updates the data
accordingly.

6. FT-HP-6

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user uses custom sorting buttons to sort the
currencies in order of how they shall appear in the list.

Output/Result: The cryptocurrencies being displayed shall keep the
selected order and maintain the order on page refreshes.

How test will be performed: This test will be performed manually
to see if the displayed charts can be rearranged in a custom order.

3.1.2 Details Page

Front End Testing

1. FT-DP-1

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

5

Input/Condition: The user opens the detail page for a cryptocur-
rency.

Output/Result: The cryptocurrency’s hourly, weekly, monthly and
yearly historical pricing shall be displayed using a chart.

How test will be performed: This test will be performed using the
cypress library to verify if a chart is present along with options to
change the time range of the data.

3.1.3 Compare Page

Front End Testing

1. FT-CP-1

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user navigates to the compare page.

Output/Result: A chart shall be displayed along with options to
select different cryptocurrencies for comparison.

How test will be performed: This test will be performed using the
cypress library to verify if a chart is present along with options to
select different cryptocurrencies.

2. FT-CP-2

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the com-
pare page is opened in the web app.

Input/Condition: The user selects the first cryptocurrency for com-
parison.

Output/Result: After the first cryptocurrency is selected, the user
shall not be able to select the same cryptocurrency a second time.

How test will be performed: The cypress library will be used to
verify that the option to add the same cryptocurrency is removed.

6

3.1.4 Fetching Data

Front End Testing

1. FT-FD-1

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The data is fetched using HTTP protocol.

Output/Result: The data fetched should be cached for 1 minute and
refreshed after 1 minute.

How test will be performed: This test will be performed manually
to see if the data displayed refreshes on page change after 1 minute.

2. FT-FD-2

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The API call to fetch data results in an error.

Output/Result: An error dialog/toast shall be displayed to alert the
user of the error.

How test will be performed: This test will be performed by man-
ually creating API endpoints that result in an error to see if the error
message is shown.

3. FT-FD-3

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The API call to fetch data results in an error.

Output/Result: The system shall wait 10 seconds and retry the API
call.

How test will be performed: This test will be performed by man-
ually creating API endpoints that result in an error to see if the call is
made again after 10 seconds.

7

4. FT-FD-4

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The API call to fetch data takes longer than 10
seconds.

Output/Result: The system shall cancel the request and treat this
as an error.

How test will be performed: This test will be performed by manu-
ally creating API endpoints that result in a long turnaround times to
see if the API call is timed-out.

3.1.5 User Interface

Front End Testing

1. FT-UI-1

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user wants to change the theme of the web
app and clicks a theme toggle in the sidebar.

Output/Result: The system shall change the theme of all the el-
ements being displayed and remember these preferences for page re-
freshes.

How test will be performed: The cypress library will be used to
verify that toggling the theme option changes the theme from dark to
light and vice versa.

2. FT-UI-2

Type: Functional, Dynamic, Automated

Initial State: The server for the NextJS app is started.

Input/Condition: The user opens the web page or navigates to an-
other page.

8

Output/Result: The system shall display skeleton placeholders while
waiting for an API response for the data.

How test will be performed: The cypress library will be used to
verify that skeleton placeholders are being displayed while API is being
loaded.

3. FT-UI-3

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started.

Input/Condition: The user adds a filter or changes other options.

Output/Result: The system shall automatically save the changes to
local storage and load them automatically upon starting the product
in the future.

How test will be performed: Manual testing will be used to observe
if preferences are loaded back on page refreshes.

3.2 Tests for Nonfunctional Requirements

3.2.1 Look and Feel

1. NFT-LF-1

Type: Structural, Dynamic, Manual

Initial State: The server for the NextJS app is started.

Input/Condition: Users are asked to launch the web page.

Output/Result: At least 80% of users shall agree that the product
feels professional, trustworthy, and informative.

How test will be performed: A test group of people (that are
representative of the target audience) will be shown the application for
the first time and asked whether they feel the application is professional,
trustworthy, and informative. If more than 80% of people agree, it
should be considered a success.

9

3.2.2 Usability and Humanity

1. NFT-UH-1

Type: Structural, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page should be launched.

Input/Condition: Users are asked to navigate between different pages
and use the functionality.

Output/Result: At least 80% of users shall be able to navigate
through the different pages without any training.

How test will be performed: A test group of people with a basic
understanding of the English language and not prior training or ex-
perience with cryptocurrencies will be asked to navigate through the
different pages and components. If more than 80% of people are able
to perform the tasks, it should be considered a success.

2. NFT-UH-2

Type: Structural, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page should be launched.

Input/Condition: Users are asked the meaning of the icons they see
on the web page.

Output/Result: 95% of users shall be able to understand what the
icons represent.

How test will be performed: A diverse group of people will be
shown the web page and asked the meaning of the various icons on the
page. If more than 95% of people are able to correctly explain what
the icons represent, it should be considered a success.

3. NFT-UH-3

Type: Structural, Dynamic, Manual

Initial State: The server for the NextJS app is started.

Input/Condition: Testers will be asked to open the web page on
different devices with varying screen sizes.

10

Output/Result: The web page shall automatically adjust to the size
of the screen.

How test will be performed: A team of testers will be asked to open
the web page on different devices with varying screen sizes (desktop,
tablet and mobile devices). If the web page adjusts to the size of the
screen at least 95% of the times, it should be considered a success.

3.2.3 Performance

1. NFT-P-1

Type: Structural, Dynamic, Manual

Initial State: The server for the NextJS app is started.

Input/Condition: Testers are asked to launch the web page on dif-
ferent types of devices.

Output/Result: The product shall initialize and setup in less than
10 seconds.

How test will be performed: A team of testers will be asked to
launch the web page on devices varying from mobile to desktop, and
from slow to fast. Regardless of the device, if the web page opens up
in less than 10 seconds, it should be considered a success.

2. NFT-P-2

Type: Structural, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is launched.

Input/Condition: Testers are asked to navigate to different pages
and observe the time.

Output/Result: The product shall navigate to different pages within
1 second for 95% of times, and within 5 seconds for the rest of the
times.

How test will be performed: A team of testers will be asked to
navigate to different pages of the application on devices varying from
mobile to desktop, and from slow to fast. Regardless of the device, if
the web page successfully navigates to other pages in less than 1 second

11

for 95% of times and in less than 5 seconds for the rest of the times,
then it should be considered a success.

3.3 Traceability Between Test Cases and Requirements

Test Case ID Requirement ID
FT-HP-1 FR-1
FT-HP-2 FR-2
FT-HP-3 FR-2
FT-HP-4 FR-5
FT-HP-5 FR-5
FT-HP-6 FR-6
FT-DP-1 FR-3
FT-CP-1 FR-4
FT-CP-2 FR-4
FT-FD-1 FR-7
FT-FD-2 FR-8
FT-FD-3 FR-9
FT-FD-4 FR-11
FT-UI-1 FR-12
FT-UI-2 FR-10
FT-UI-3 FR-13
NFT-LF-11 NFR-3
NFT-UH-1 NFR-6
NFT-UI-2 NFR-9
NFT-UI-3 NFR-10
NFT-P-1 NFR-11
NFT-P-2 NFR-12

Table 4: Traceability Matrix

4 Tests for Proof of Concept

4.1 Table/Card View Testing

Table and Card View Tests

12

1. POC-TCV-1

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user clicks on the ’Table’ icon and then on the
time tag to toggle between 24h, last week, and last month, last year.

Output/Result: The system shall display every cryptocurrency’s rel-
evant information in a table-like manner based on the interval specified
in the time tag.

How test will be performed: This test will be performed manu-
ally by running the API calls separately to verify that the information
matches what is displayed in the table-view card appropriately.

2. POC-TCV-2

Type: Functional, Dynamic, Manual

Initial State: The server for the NextJS app is started and the web
page is opened.

Input/Condition: The user clicks on the ’Card’ icon and then on the
time tag to toggle between 24h, last week, and last month, last year.

Output/Result: The system shall display every cryptocurrency’s rel-
evant information in a card-like manner based on the interval specified
in the time tag.

How test will be performed: This test will be performed manu-
ally by running the API calls separately to verify that the information
matches what is displayed in the table-view card appropriately.

4.2 Search Feature Testing

POC-TCV-1
Type: Functional, Dynamic, Manual
Initial State: The server for the NextJS app is started and the web page

is opened with the Card view.
Input/Condition: The user clicks on the search bar and starts typing

their expected search term.

13

Output/Result: The system shall filter the cards according to the
search term entered in the search box and only the cards with matching
names would be displayed on the screen.

How test will be performed: The tests will be performed using the cy-
press library by comparing the data output of the search filter and comparing
it to the expected results.

5 Comparison to Existing Implementation

There have been several changes and new additions separating CryptoMet-
rics, our project, from Cryptodash, the existing implementation. The ex-
isting application primarily displayed a list of cryptocurrencies in tabular
form, whereas CryptoMetrics allows users to view this list in both a card
view and a table view containing even more columns of information and a
mini graph displaying cryptocurrency price changes in the past user specified
time. CryptoMetrics also added a product page which allows users to get a
detailed view of every cryptocurrency listed in the web app, which was not
a part of the existing implementation. Furthermore, the project also adds a
page dedicated to comparing cryptocurrencies with one another to indicate
changes in projected price increases and decreases to better advise users so
they make informed investment decisions. The original implementation did
not include any testing within the project’s files. Our implementation will
be verified rigorously through the use of a test report.

6 Unit Testing Plan

This project will use the Jest library to do unit testing.

6.1 Unit testing of internal functions

Unit testing will be done on internal utility methods that return a specific
output value. These methods will be given specific input values for normal,
edge, and boundary cases and the actual and expected outputs will be com-
pared for validation. Unit testing for this application does not require stubs,
drivers or coverage metrics.

14

6.2 Unit testing of output files

The application will not be generating any output files. Therefore, there will
be no unit testing of output files.

7 Appendix

7.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance. N/A

15

7.2 Usability Survey Questions

The following survey will be filled out by members of the survey group.

CryptoMetrics Survey

Please fill out the survey after using the application.

Time spent using software:

Provide a rating on a scale from 1 to 5 (where 1 represents a poor review
and 5 represents a strong review) in each of these questions by filling in
the number of circles corresponding to your desired rating.

How easy is the website to use?
1 2 3 4 5

How appealing is the app visually?
1 2 3 4 5

How intuitive is the website?
1 2 3 4 5

How responsive is the website?
1 2 3 4 5

How trustworthy does the website
look?

1 2 3 4 5

16

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Home Page
	Details Page
	Compare Page
	Fetching Data
	User Interface

	Tests for Nonfunctional Requirements
	Look and Feel
	Usability and Humanity
	Performance

	Traceability Between Test Cases and Requirements

	Tests for Proof of Concept
	Table/Card View Testing
	Search Feature Testing

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

