
Blaze Brigade
- Test Plan -

SFWR ENG 3XA3 - Section L02
007 (Group 7)

Jeremy Klotz - klotzjj
Asad Mansoor - mansoa2
Thien Trandinh - trandit
Susan Yuen - yuens2

October 22, 2016



Contents

List of Tables

List of Figures

Table 1: Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

1



1 General Information

1.1 Purpose

1.2 Scope

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

Abbreviation1 Definition1
Abbreviation2 Definition2

Table 3: Table of Definitions

Term Definition

Term1 Definition1
Term2 Definition2

1.4 Overview of Document

1



2 Plan

2.1 Software Description

2.2 Test Team

2.3 Automated Testing Approach

2.4 Testing Tools

2.5 Testing Schedule

See Gantt Chart at the following url ...

2



3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Area of Testing1

Test 1: Game will contain a main menu on screen upon
launch.

Type: Structural Dynamic Manual Testing

Test execution: Program will be executed, then checked if a main menu
appears upon launch.

Initial state: Game is not opened.

Input: Game executable is opened.

Output: Game menu pops up upon launch.

Test 2: Select New Game from the main menu.

Type: Structural Dynamic Manual Testing

Test execution: New game will be selected and checked that a new game
instance is formed.

Initial state: Game is currently on main menu.

Input: New game is selected.

Output: New game is started.

Test 3: Select Load Game from the main menu.

Type: Structural Dynamic Manual Testing

Test execution: Load game will be selected and checked if the pre-
existing game state is loaded.

Initial state: Structural Dynamic Manual Testing

Input: Load Game is selected.

Output: Previous saved game state is executed.

3



Test 4: Select How-To-Play from the main menu.

Type: Structural Dynamic Manual Testing

Test execution: How-To-Play will be selected and checked if the How-
To-Play menu displays as expected.

Initial state: Game is currently on main menu.

Input: How-To-Play is selected.

Output: How-To-Play is selected.

Test 5: Select Exit Game from the main menu.

Type: Structural Dynamic Manual Testing

Test execution: Exit is selected and checked that the game is closed.

Initial state: Game is currently on main menu.

Input: Exit Game is selected.

Output: Game is closed.

Test 6: The game is turn-based, and units are only able
to move and attack once per players turn.

Type: Structural Dynamic Automated Testing

Test execution: A user will click on a unit and have it perform its avail-
able actions. Immediately after, it will be checked that
the same unit is unable to perform any additional ac-
tions.

Initial state: Unit X has not performed their action.

Input: Unit X performs their action.

Output: Unit X is no longer able to perform their action.

4



Test 7: A player’s turn ends once all their units have
performed all available actions.

Type: Structural Dynamic Automated Testing

Test execution: The available actions of all of Player 1’s units will be
set to none. Then, it will be checked that Player 1’s
turn has ended and it is now currently Player 2’s turn.

Initial state: Currently is Player 1’s turn.

Input: Set all actions of units belonging to Player 1 to none.

Output: Player 1’s turn ends, and it is now Player 2’s turn.

Test 8: During a unit’s turn, clicking a unit will give a
drop down menu with available actions of the
unit.

Type: Structural Dynamic Manual Testing

Test execution: A unit, which has not already performed an action, will
be right-clicked and checked that a drop down menu
appears with expected actions of that unit.

Initial state: The unit is alive and has available actions.

Input: The unit is selected.

Output: A drop down menu with expected actions pops up.

Test 9: One side is victorious when the other side has
no playable units left.

Type: Structural Dynamic Automatic Testing

Test execution: The status of all live units belonging to Player 2 is set
to deceased. It is then checked that the game is over
and Player 1 is victorious.

Initial state: Player 1 and Player 2 both have live units.

Input: All live units belonging to Player 2 are killed.

Output: Player 1 is victorious and the game is over.

5



Test 10: Player can select move after selecting a unit that
has yet to perform its action and opening the
drop down menu.

Type: Structural Dynamic Manual Testing

Test execution: The unit that has yet to move and is able to move is
selected, and it is observed that a pop-up menu con-
taining the ”move” action appears.

Initial state: The unit has not yet performed an action, and is avail-
able to move if required.

Input: The unit is selected and the drop down menu is opened

Output: Drop down menu containing the option ”move” is visi-
ble.

Test 11: Units are only able to move within their move
range.

Type: Functional Dynamic Manual testing

Test execution: Attempt to move a unit to a tile outside of its move
range.

Initial state: The unit is alive and able to move.

Input: The unit is asked to move to a different tile outside of
its range.

Output: Nothing happens since the requested move is not within
the unit’s move range.

Test 12: Units are not be able to pass through obstacles.

Type: Functional Dynamic Manual Testing

Test execution: Attempt to ask the unit to move to an area blocked off
by an obstacle.

Initial state: The unit is within range of an area blocked off by an
impassable obstacle.

Input: Ask unit to move to the area past the obstacle.

Output: Unit is unable to move to the requested area.

6



Test 13: Player can select attack as an available option af-
ter selecting a player-owned unit that has not at-
tacked and an enemy unit is within attack range.

Type: Structural Dynamic Manual Testing

Test execution: The owned unit that has yet to attack is selected, and it
is observed that a pop-up menu containing the ”attack”
action appears.

Initial state: The player’s unit has not yet performed an attack, and
an enemy unit is within its attack range.

Input: The unit is selected and the drop down menu is opened.

Output: Drop down menu containing the option ”attack” is vis-
ible.

Test 14: Unit may only attack an opposing unit within
its attack range.

Type: Functional Dynamic Automatic Testing

Test execution: An automated test attempts to ask the program to
make a unit attack an enemy unit outside of its attack
range.

Initial state: The unit that is available to attack and its enemy unit
are not within attack range of each other.

Input: The unit available to attack will attempt to attack the
enemy unit.

Output: Nothing will happen, as the attempted attack is not
valid due to the fact that the enemy unit is out of range.

Test 15: All playable units can attack enemy units.

Type: Functional Dynamic Automatic Testing

Test execution: Automated tests check that all units have required
states and functions that allow it to attack enemy units.

Initial state: Units are initialized.

Input: Units are initialized.

Output: All units have required states and functions that allow
them to attack enemy units.

7



Test 16: Units are unable to move after attacking.

Type: Structural Dynamic Manual Testing

Test execution: Attempt to activate the drop down menu to move the
unit upon an owned unit that has already acted within
the turn.

Initial state: The unit has already completed an action for the cur-
rent turn.

Input: A player attempts to activate the drop down menu to
move a character after attacking.

Output: Drop down menu will not appear.

Test 17: Units will lose HP according to damage calcula-
tions.

Type: Functional Dynamic Automatic Testing

Test execution: Automated tests will check that damage modifying the
character HP, calculated through the damage calcula-
tion class, is consistent with the expected value.

Initial state: The unit is alive and able to take damage.

Input: The unit takes damage.

Output: The HP lost by the unit should correspond to what is
calculated during the damage calculation step.

Test 18: Units that are deceased are no longer active in
the current battle.

Type: Functional Dynamic Automatic Testing

Test execution: Automated test modifies a unit’s HP to 0.

Initial state: The unit has more then 1 HP and is valid in battle.

Input: The unit’s HP is set to 0.

Output: The unit’s state shall reflect that it is no longer valid
in the battle and can no longer be used in the game.

8



Test 19: Player can select which weapon each unit uses
to perform an attack.

Type: Structural Dynamic Manual Testing

Test execution: Attempt to change weapons by selecting weapons from
the unit drop down menu on a playable unit that has
yet to move, select a different weapon , and observe if
attack stats has changed in accordance to the newly
selected weapon. initialState

Initial state: The unit has more then 1 HP and is valid in battle.

Input: Attempt to change the unit’s weapon

Output: The unit changes weapons and gains different stat mod-
ifiers in accordance to the new weapon.

Test 20: All units shall have a corresponding unit class.

Type: Functional Static Automatic Testing

Test execution: Automated tests check that units have a corresponding
unit type class that is viable in the game.

Initial state: All units are instantiated.

Input: All units are instantiated.

Output: All classes correspond to a viable unit type class.

Test 21: All units have stat values corresponding to their
class.

Type: Functional Static Automatic Testing

Test execution: Automated tests check that a unit’s stat correctly cor-
responds to the pre-determined stats of the specific unit
class.

Initial state: All units are instantiated.

Input: All units are instantiated.

Output: All units have stats that correspond to their class.

9



Test 22: Classes include warrior, mage, and archer.

Type: Functional Static Automatic Testing

Test execution: Automated tests check for the existence of all three
classes in the program by instantiating units for all
three classes.

Initial state: All three classes are existent in the game.

Input: Units of all three classes are instantiated.

Output: Units of all three classes exist and are of the correspond-
ing class.

Test 23: The stats of the game include Str, Int, Def, Res,
Skill, Speed, and HP.

Type: Functional Static Automatic Testing

Test execution: Automated tests check that a unit has all of the listed
stats.

Initial state: A unit is instantiated.

Input: A unit is instantiated.

Output: The unit owns all listed stats.

3.1.2 Area of Testing2

...

3.2 Tests for Nonfunctional Requirements

3.2.1 Area of Testing1

...

3.2.2 Area of Testing2

...

10



4 Tests for Proof of Concept

4.1 Area of Testing1

...

4.2 Area of Testing2

...

11



5 Comparison to Existing Implementation

12



6 Unit Testing Plan

The Visual Studio Unit Testing Framework shall be used to write and execute
the game’s automated unit tests in C#.

6.1 Unit testing of internal functions

The automated unit tests will test internal functions of the program by passing
controlled input(s) into a function in order to ensure correct behaviour or output
of that single function. Each testable function in the program shall thus have
corresponding unit tests that test each possible type of input to ensure expected
behaviour and/or output of that function under possible edge cases, regular
cases, or abnormal cases. Functions that return a value will have their output
tested for the expected output, and void functions shall be tested for correct
behaviour, such as changes to the model and its state variables. As such, the
unit tests will provide thorough whitebox testing of the game’s code. Test
coverage tools, which are integrated in Visual Studio 2015, will be used as a
metric to determine the degree of unit testing code coverage. The goal of the
team is to achieve a minimum of 80% code coverage to ensure that the majority
of the code has undergone white box testing, resulting in fewer errors regarding
incorrect coding implementation of the functional requirements.

6.2 Unit testing of output files

The only output file of the game is a window which comprises the visual rep-
resentation and graphical aspects of the game. To completely ensure proper
function of the output file, manual testing must also be taken into consideration
to test expected behaviour of the game. In addition, the game engine, XNA
Game Studio, handles the majority of the rendition from code to output. Our
task does not involve testing proper functionality of the game studio, however,
unit testing of the team’s code still plays a key role in ensuring proper output.
Unit tests for functions that call on the view, as well as unit tests written for
the view are necessary to ensuring proper output of the game’s visual represen-
tation. The unit tests will additionally verify that proper method calls to game
studio methods are being executed, most likely with the use of mock objects to
mock the actual game visuals, and to verify that these mock objects are being
called upon.

13



7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

7.2 Usability Survey Questions?

This is a section that would be appropriate for some teams.

14


