
SE 3XA3: Software Requirements Specification
Title of Project

Team #, Team Name
Student 1 name and macid
Student 2 name and macid
Student 3 name and macid

November 8, 2016

Contents

1 Introduction 1

2 Anticipated and Unlikely Changes 2
2.1 Anticipated Changes . 2
2.2 Unlikely Changes . 2

3 Module Hierarchy 2

4 Connection Between Requirements and Design 4

5 Module Decomposition 4
5.1 Hardware Hiding Modules (M13) . 4
5.2 Behaviour-Hiding Module . 4

5.2.1 Input Format Module (M??) . 5
5.2.2 Etc. 5

5.3 Software Decision Module . 5
5.3.1 Etc. 5

6 Traceability Matrix 5

7 Use Hierarchy Between Modules 6

List of Tables

1 Revision History . i
2 Module Hierarchy . 3
3 Trace Between Requirements and Modules 5
4 Trace Between Anticipated Changes and Modules 6

List of Figures

1 Use hierarchy among modules . 6

Table 1: Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

i

1 Introduction

Decomposing a system into modules is a commonly accepted approach to developing soft-
ware. A module is a work assignment for a programmer or programming team (?). We
advocate a decomposition based on the principle of information hiding (?). This principle
supports design for change, because the “secrets” that each module hides represent likely
future changes. Design for change is valuable in SC, where modifications are frequent, es-
pecially during initial development as the solution space is explored. Our design follows the
rules layed out by ?, as follows:

• System details that are likely to change independently should be the secrets of separate
modules.

• Each data structure is used in only one module.

• Any other program that requires information stored in a module’s data structures must
obtain it by calling access programs belonging to that module.

After completing the first stage of the design, the Software Requirements Specification (SRS),
the Module Guide (MG) is developed (?). The MG specifies the modular structure of the
system and is intended to allow both designers and maintainers to easily identify the parts
of the software. The potential readers of this document are as follows:

• New project members: This document can be a guide for a new project member to
easily understand the overall structure and quickly find the relevant modules they are
searching for.

• Maintainers: The hierarchical structure of the module guide improves the maintainers’
understanding when they need to make changes to the system. It is important for a
maintainer to update the relevant sections of the document after changes have been
made.

• Designers: Once the module guide has been written, it can be used to check for consis-
tency, feasibility and flexibility. Designers can verify the system in various ways, such
as consistency among modules, feasibility of the decomposition, and flexibility of the
design.

The rest of the document is organized as follows. Section 2 lists the anticipated and unlikely
changes of the software requirements. Section 3 summarizes the module decomposition that
was constructed according to the likely changes. Section 4 specifies the connections between
the software requirements and the modules. Section 5 gives a detailed description of the
modules. Section 6 includes two traceability matrices. One checks the completeness of the
design against the requirements provided in the SRS. The other shows the relation between
anticipated changes and the modules. Section 7 describes the use relation between modules.

1

2 Anticipated and Unlikely Changes

This section identifies possible changes to the software system. These changes to the de-
sign choices are organized into two categories. Anticipated changes, and unlikely changes.
Anticipated changes are listed in Section 2.1, and the unlikely changes are listed in Section
2.2.

2.1 Anticipated Changes

The design decisions in this section are likely to change because they are hidden in modules.
When these changes are made, they can be done easily and not affect other modules of the
project.

AC1: All classes that implement the Class interface are likely to have their stats change
for balancing reasons.

AC2: All weapons that implement the Weapon interface are likely to have their stats
change for balancing reasons.

AC3: The getHitRate() and getCritRate() methods inside the DamageCalculations class
are likely to change for balancing reasons.

AC4: All sprites from outside sources. It has been determined that the project should
contain all original content.

2.2 Unlikely Changes

The following design decisions are unlikely to change because they affect many modules.
Since they affect multiple modules, changing these decisions may result in multiple changes
in the overall design of the project. Unless these changes are necessary, they will not occur.

UC1: Input/Output devices (Input: Mouse, Output: Updated Model and Screen).

UC2: The software implements the MVC (Model-View-Controller) architecture.

UC3: The Graph of nodes that represents the playable grid.

UC4: Nodes are identified by their x and y coordinates.

UC5: The path finding algorithm.

3 Module Hierarchy

This section provides an overview of the module design. Modules are summarized in a
hierarchy decomposed by secrets in Table 2. The modules listed below, which are leaves in
the hierarchy tree, are the modules that will actually be implemented.

2

M1: Hardware-Hiding Module

M2: Behaviour-Hiding Module

M3: Software Decision Module

M4: Graph Module

M5: Node Module

M6: Unit Module

M7: Weapon Module

M8: Player Module

M9: Game State Module

M10: Damage Calculations Module

M11: Game Function Module

M12: Game Construction Module

M13: Mouse Handler Module

Level 1 Level 2

Hardware-Hiding Module

Behaviour-Hiding Module

Graph Module
Node Module
Unit Module
Weapon Module
Player Module
Game State Module
Damage Calculations Module

Software Decision Module

Game Module
Game Function Module
Game Construction Module
Mouse Handler Module

Table 2: Module Hierarchy

Since Blaze-Brigade consists of purely software, M1 does not apply to the system. The
software never interfaces with the hardware itself. The lowest level of interfacing with the
software is the OS.

3

4 Connection Between Requirements and Design

The design of the system is intended to satisfy the requirements developed in the SRS. In
this stage, the system is decomposed into modules. The connection between requirements
and modules is listed in Table 3.

5 Module Decomposition

Modules are decomposed according to the principle of “information hiding” proposed by ?.
The Secrets field in a module decomposition is a brief statement of the design decision hidden
by the module. The Services field specifies what the module will do without documenting
how to do it. For each module, a suggestion for the implementing software is given under
the Implemented By title. If the entry is OS, this means that the module is provided by the
operating system or by standard programming language libraries. Also indicate if the module
will be implemented specifically for the software. Only the leaf modules in the hierarchy have
to be implemented. If a dash (–) is shown, this means that the module is not a leaf and will
not have to be implemented. Whether or not this module is implemented depends on the
programming language selected.

5.1 Hardware Hiding Modules (M13)

Secrets: The data structure and algorithm used to implement the virtual hardware.

Services: Serves as a virtual hardware used by the rest of the system. This module provides
the interface between the hardware and the software. So, the system can use it to
display outputs or to accept inputs.

Implemented By: OS

5.2 Behaviour-Hiding Module

Secrets: The contents of the required behaviours.

Services: Includes programs that provide externally visible behaviour of the system as
specified in the software requirements specification (SRS) documents. This module
serves as a communication layer between the hardware-hiding module and the software
decision module. The programs in this module will need to change if there are changes
in the SRS.

Implemented By: –

4

5.2.1 Input Format Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters
module.

Implemented By: [Your Program Name Here]

5.2.2 Etc.

5.3 Software Decision Module

Secrets: The design decision based on mathematical theorems, physical facts, or program-
ming considerations. The secrets of this module are not described in the SRS.

Services: Includes data structure and algorithms used in the system that do not provide
direct interaction with the user.

Implemented By: –

5.3.1 Etc.

6 Traceability Matrix

This section shows two traceability matrices: between the modules and the requirements
and between the modules and the anticipated changes.

Req. Modules

R1 M13, M??, M??, M??
R2 M??, M??
R3 M??
R4 M??, M??
R5 M??, M??, M??, M??, M??, M??
R6 M??, M??, M??, M??, M??, M??
R7 M??, M??, M??, M??, M??
R8 M??, M??, M??, M??, M??
R9 M??
R10 M??, M??, M??
R11 M??, M??, M??, M??

Table 3: Trace Between Requirements and Modules

5

AC Modules

AC?? M13
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??

Table 4: Trace Between Anticipated Changes and Modules

7 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. ? said of two programs A
and B that A uses B if correct execution of B may be necessary for A to complete the task
described in its specification. That is, A uses B if there exist situations in which the correct
functioning of A depends upon the availability of a correct implementation of B. Figure 1
illustrates the use relation between the modules. It can be seen that the graph is a directed
acyclic graph (DAG). Each level of the hierarchy offers a testable and usable subset of the
system, and modules in the higher level of the hierarchy are essentially simpler because they
use modules from the lower levels.

Figure 1: Use hierarchy among modules

6

	Introduction
	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules (M13)
	Behaviour-Hiding Module
	Input Format Module (M??)
	Etc.

	Software Decision Module
	Etc.

	Traceability Matrix
	Use Hierarchy Between Modules

