
Blaze Brigade
- Module Guide -

SFWR ENG 3XA3 - Section L02
007 (Group 7)

Jeremy Klotz - klotzjj
Asad Mansoor - mansoa2
Thien Trandinh - trandit
Susan Yuen - yuens2

November 12, 2016

Contents

1 Introduction 3
1.1 Summary of Project . 3
1.2 Context of Module Guide . 3
1.3 Design Principle . 4
1.4 Outline of Module Guide . 4
1.5 Definitions, Acronyms, Abbreviations, Symbols 4

2 Anticipated and Unlikely Changes 5
2.1 Anticipated Changes . 5
2.2 Unlikely Changes . 5

3 Module Hierarchy 6

4 Connection Between Requirements and Design 6

5 Module Decomposition 7
5.1 System Architecture . 7
5.2 Underlaying Architecture . 7
5.3 Leaf-level Decomposition . 7
5.4 Summary of Leaf Modules . 7

5.4.1 Hardware Hiding Modules (M1) 7
5.4.2 Behaviour-Hiding Module(M2) 7
5.4.3 Software Decision Module(M3) 8
5.4.4 GUI Module (M6) . 8
5.4.5 Menu Module (M4) . 8
5.4.6 Model Module (M5) . 8

6 Traceability Matrix 9

7 Use Hierarchy Between Modules 9

List of Tables

1 Revision History . 2
2 List of Definitions, Acronyms, Abbreviations and Symbols 5
3 Module Hierarchy . 6
4 Trace Between Functional Requirements and Modules 9
5 Trace Between Non-Functional Requirements and Modules 9
6 Trace Between Anticipated Changes and Modules 9

List of Figures

1 Use hierarchy among modules . 10

1

Table 1: Revision History

Date Version Notes

Nov 13, 2016 1.0 Completed Design Document

2

1 Introduction

1.1 Summary of Project

Blaze Brigade is a tactical simulation role-playing game that combines the
strategic challenges as a form of interactive entertainment for its users. This
turn-based game allows users to advance their units into enemy territory, par-
ticipate in combat and strive to eliminate all of the opposing units. In adaption
to the open-source freeware, Tactics Heroes, Blaze Brigade will incorporate new
functional and design enhancements that may not be available on the existing
open-source project. Such enhancements include the implementation of new
features within the unit movement, combat and strategy aspects of the game as
well as improved graphical representations of the menu menu and gameplay to
improve the overall experience of the game.

1.2 Context of Module Guide

The system is fully devised and presents all of its functional and non-functional
requirements in the Software Requirement Specification (SRS). As these re-
quirements state the desirable properties of the system, the design documents
will further evaluate on how these requirements are identified and achieved.
The Module Guide (MG) will serve as a tool to decompose the following sys-
tem into a modular structure adhering to the principle of information hiding.
Upon reaching the finalized version of this document, the Module Guide can be
distributed amongst various groups in order to learn and identify parts of the
software that is being presented. These various groups are as follows:

• Developers and maintainers: Decomposing the system and document-
ing into the Module Guide will aid the developers and maintainers to un-
derstand the system-as-is and recognize what areas of the software are
likely to be changed. In addition, a sense of the overall design will be
structured and will be maintained in the following developments phases
yet to come.

• Designers: In addition to the design pattern being documented, designers
are able to determine whether the designs are constructed as initially spec-
ified. With the following anticipated changes to be happening, which areas
of software is flexible and feasible to accommodate new design changes.

• New recruits or outsourced resources: The documentation will on-
board the new recruits in familiarizing the overall structure of the im-
plementation adhering to a specific design principle. This will reduce the
downtime of debugging and have an advantage of multiple groups working
on the system at once. Furthermore, if an external team were to imple-
ment the system or would like to carry out further improvements after
the project timeline, this document will serve as an aid to determine the
existing framework and how further implementation can take place.

3

In addition to the Module Guide, the Module Interface Specification (MIS) is
also a product of the design documentation. The specification defines the syn-
tax and semantics that are associated with the functions provided in the source
code. Tools like Doxygen have been utilized to generate a set of documentation
that will indicate the characteristics of the functions in terms of the correspond-
ing inputs, outputs, assumptions, exceptions, state and environment variables.
These characteristics will further aid in observing how the implementation is
taken place and how the design constitutes from these functions.

1.3 Design Principle

The design principle taken into consideration revolves around the decomposition
of the overall system into a modular structure of subsystems. These subsystems
are observed in an abstract manner, hiding any details that may complicate the
process. This act of information hiding and encapsulation ensures that each
modules hides some design aspect from the rest of the system and analyzes
which areas are expected to change. Hence, this document follows a design for
change pattern and will be in the best interest throughout all of the subsystems
presented in the system. For instance, the anticipated changes within the system
would have been encapsulated in this process to ensure that any further changes
to the design does not disrupt the main design interface of the system. As
a principle for the decomposition into modular structure, the instance of low
coupling is desired as the result is given as independent modules. In the same
respect, high cohesion within the modules is highly desired since the elements of
the module are strongly related to the module’s characteristics. Therefore, this
process is motivated around the concept of design for change as an exercise and
validation to protect other modules of the system if any major changes occur in
the overall design.

1.4 Outline of Module Guide

The Module Guide is organized in the given order. Section 2 lists all of the
anticipated and unlikely changes that the software system might contain. Sec-
tion 3 decomposes the system into a list of modules into the module hierarchy.
Section 4 establishes the connection between the software requirements with
the modules. Section 5 gives a detailed insight on how the modules have been
decomposed with their corresponding descriptions. Section 6 includes three
traceability matrices comparing the modules with the software requirements
and anticipated changes as referenced earlier in Section 4. At last, section 7
pinpoints the use hierarchy between the modules initialized to establish connec-
tion between the independent modules.

1.5 Definitions, Acronyms, Abbreviations, Symbols

The following definitions and symbols are defined in Table 2 and will be refer-
enced throughout the remainder of the Module Guide.

4

Symbol Description

SRS Software Requirements Specifi-
cation document

MG Module Guide document

MIS Module Interface Specification
document

Module A decomposed subsystem of the
overall software system

AC Anticipated Changes

UC Unlikely Changes

MVC Model-View-Controller

FR Functional Requirements

NFR Non-Functional Requirements

Table 2: List of Definitions, Acronyms, Abbreviations and Symbols

2 Anticipated and Unlikely Changes

2.1 Anticipated Changes

The design decisions in this section are likely to change because they are hidden
in modules. When these changes are made, they can be done easily and not
affect other modules of the project.

AC1: All classes that implement the Class interface are likely to have their
stats change for balancing reasons.

AC2: All weapons that implement the Weapon interface are likely to have
their stats change for balancing reasons.

AC3: The getHitRate() and getCritRate() methods inside the DamageCalcu-
lations class are likely to change for balancing reasons.

AC4: All sprites from outside sources. It has been determined that the project
should contain all original content.

2.2 Unlikely Changes

The following design decisions are unlikely to change because they affect many
modules. Since they affect multiple modules, changing these decisions may
result in multiple changes in the overall design of the project. Unless these
changes are necessary, they will not occur.

5

UC1: Input/Output devices (Input: Mouse, Output: Updated Model and
Screen).

UC2: The software implements the MVC (Model-View-Controller) architec-
ture.

UC3: The Graph of nodes that represents the playable grid.

UC4: Nodes are identified by their x and y coordinates.

UC5: The path finding algorithm.

3 Module Hierarchy

M1: Hardware-Hiding Module

M2: Behaviour-Hiding Module

M3: Software Decision Module

M4: Menu Module

M5: Model Module

M6: GUI Module

Level 1 Level 2

Hardware-Hiding Module

Behaviour-Hiding Module Menu Module, GUI Module

Software Decision Module Model Module

Table 3: Module Hierarchy

Since Blaze-Brigade consists of purely software, M1 does not apply to the
system. The software never interfaces with the hardware itself. The lowest level
of interfacing with the software is the OS.

4 Connection Between Requirements and De-
sign

The system is intended to satisfy all of the functional and nonfunctional re-
quirements that were initially specified in the SRS. In this section, the system
is decomposed into modules and assess the connections between the decom-
posed requirements with the corresponding requirements. These are shown in
the Table 4 and Table 5 under Section 6.

6

Most of the requirements can be categorized as one of the modules provided
in the Module Hierarchy. For instance, the Menu Model extends through all
of the requirements that initiate the menu option in one way or another. The
model module encapsulate the model classes that represent the structure of
the source code. The GUI module is primarily what users get to see as a
final product which includes various parameters within the game. The design
decisions that are needed to accommodate these requirements heavily rely on
the main function criteria that the system holds. For instance, the appearance
requirements specify the look and feel that the user should be expecting from
the product and heavily focuses on the menu and GUI aspect. These modules
initialized will cover those aspects and model this case scenario is such a manner
that each module or submodules will be independent and protected if there is
design change in the other part of the system.

5 Module Decomposition

Module Decomposition summary TODO

5.1 System Architecture

5.2 Underlaying Architecture

5.3 Leaf-level Decomposition

5.4 Summary of Leaf Modules

5.4.1 Hardware Hiding Modules (M1)

Secrets: The algorithms and format structures used to provide an interface
between hardware and software.

Services: This module provides an interface for users to interact with the soft-
ware. The module will convert the raw input data from the mouse
into data that can be used by controller to update the current game
state. The view will also be implemented through this, allowing for
users to correctly interact with the software.

Implemented By: Mouse, MouseHandler, M2

5.4.2 Behaviour-Hiding Module(M2)

Secrets: The behavioural process of the software.

Services: This module functions as the controller in MVC, and handles all the
software decision making of Blaze Brigade. This includes all visible

7

behavior of the system specified in the SRS. Hence any changes to
the SRS will hereby result in modifications to this module.

Implemented By: Computer, game.cs

5.4.3 Software Decision Module(M3)

Secrets: The design decisions that determine how the software updates.

Services: This module extends the Model Module, and stores the state of the
overall game, and contains the state of how everything in the game
should currently behave. These results determine what is displayed
in the GUI Module (view).

Implemented By: M2

5.4.4 GUI Module (M6)

Secrets: How and when what is displayed.

Services: This module is the main View in MVC, and displays data to users
in the form of graphics according to what the current game state is.

Implemented By: Draw methods, M??, Buttons.cs

5.4.5 Menu Module (M4)

Secrets: The navigational structure for different menu options.

Services: This module handles the main menu layout, navigation and controls.

Implemented By: M5

5.4.6 Model Module (M5)

Secrets: The design decisions that implement the structure of the software.

Services: This module is the main Model in MVC, and contains most the
structure of the game. Most of the elements in this module are simply
data, with most methods simply being a C# property (combination
of getter and setter).

Implemented By: Game.cs, Graph.cs, Node.cs, Unit.cs, Weapon.cs, Player.cs

8

6 Traceability Matrix

This section show three traceability matrices outlining the comparison between
the modules with either the functional requirements, non-functional require-
ments and anticipated changes.

Req. Modules

FR1 M1, M4, M6
FR2 M2, M5
FR3 M5, M6
FR4 M3, M5, M6
FR5 M5

Table 4: Trace Between Functional Requirements and Modules

Req. Modules

NFR1 M1, M2, M6
NFR2 M3, M5
NFR3 M3, M6
NFR4 M1, M3
NFR5 M3, M5, M6
NFR6 M1, M2
NFR7 M6
NFR8 M1, M3

Table 5: Trace Between Non-Functional Requirements and Modules

AC Modules

AC1 M2, M3, M5
AC2 M4, M5
AC3 M5
AC4 M6

Table 6: Trace Between Anticipated Changes and Modules

7 Use Hierarchy Between Modules

In this section of the Module Guide, the system has already been decomposed
into the desired modular structure and characterized by determining the connec-
tion between the initial requirements and anticipated changes to those modules.
The uses hierarchy presented in this section compares the independent modules

9

with each other to find the common grounds on which modules uses the instance
of another. This practice ensures the correctness of the program when it comes
to testing as well as a reference to the integration procedure if the design of
the system experiences a major change. For instance, if we model a scenario
where Module A uses Module B, then all of the parameters that rely on both
module have to be specified to ensure that the valid output of Module B can be
efficiently used in Module A to proceed with the execution of the design. This
hierarchy also represents the testing environment, as Module A and Module
B would first be tested independently then the correlation between the shared
parameters of both modules. In theory, Module A would present a similar mod-
ule entity as it is categorized in the higher level of the hierarchy and relies on
Module B on the lower level to provide some set of specified work assignment.
The following user hierarchy of the current system is shown in Figure 1. Notice
how the representation is described as a Directed Acyclic Graph, a finite set of
modules in phase from the higher levels to the lower levels of the hierarchy with
no apparent recurring cycles. Hence the design pattern ensure that the decom-
position has been done correctly and the definition of the design can now be
distributed amongst the various groups that relate to the context of the Module
Guide.

Figure 1: Use hierarchy among modules

10

	Introduction
	Summary of Project
	Context of Module Guide
	Design Principle
	Outline of Module Guide
	Definitions, Acronyms, Abbreviations, Symbols

	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	System Architecture
	Underlaying Architecture
	Leaf-level Decomposition
	Summary of Leaf Modules
	Hardware Hiding Modules (M1)
	Behaviour-Hiding Module(M2)
	Software Decision Module(M3)
	GUI Module (M6)
	Menu Module (M4)
	Model Module (M5)

	Traceability Matrix
	Use Hierarchy Between Modules

