Blaze Brigade
- Test Plan -

SFWR ENG 3XA3 - Section L02
007 (Group 7)

Jeremy Klotz - klotzjj
Asad Mansoor - mansoa2
Thien Trandinh - trandit

Susan Yuen - yuens2

December 7, 2016

Contents

. Purposelo

...................
1.3 Acronyms, Abbreviations, and Symbols|

2 Planl

2.1 Software Description|

[2.3 _Automated Testing Approach|
2.4 Testing Tools|
2.5 Testing Schedule]

[3__System Test Description|

3.1 ests for Functional Requirements| . . .

3.1.4 Unit Attacking]
I;i.l.;i [Jllll :illll‘:l !lls:l
3.2 Tests for Nontunctional Requirements| .
B.2.1 Usability]
3.3 Performance Requirements|
3.4 Security Requirements|

4 Tests for Proot of Concept)|

|6 Unit Testing Plan|

6.1 Unit testing of internal tunctions|
6.2 Unit testing of output filesf.

List of Tables

I Revision History|.

2 Table of Abbreviationsl

10
12
13
16
17
17
17
18

19
19
20

21
21
21
21
21
21

22
22
22

[4 Description of the Test Team|.

List of Figures

Table 1: Revision History

0~ O

Date Version Notes
October 30, 2016 1.0 Completed Test Plan Rev 0
December 6, 2016 1.1 Revision 1 of Test Plan - Fixed a mis-

take within a test case, relabelled all
test cases with a test name and re-
viewed test execution and expected
output for all test cases.

1 General Information

1.1 Purpose

The purpose of this project is to recreate a tactical, turn based game similar to
Tactics Heroes. The game shall test the strategical skills of the user by present-
ing a large quantity of information to process in order to determine the best
course of action for the player’s turn. The game will progress based on user
inputs and decisions. However, such software will involve a wide variety of test
cases to ensure proper functionality. A specific category of testing includes auto-
mated unit testing, which will follow the Visual Studio Unit Testing Framework.
This document will provide a complete overview of test cases the software will
follow, and more specifically, provide information on the unit testing framework.

1.2 Scope

Software such as what Blaze Brigade aims to recreate has a complex interaction
with the user, giving the user many options for each decision they make. As
such, each one of these options, such as moving, attacking, equipping a different
weapon, and et cetera, must function properly. Each action requires a proper
test case in order to ensure their proper functionality. Other test cases based
on functional requirements include unit properties, menu navigation, structural
properties of the game, and handling user input. The non-functional require-
ments of this software project are based on usability, performance and security.
Proper test cases will be orchestrated to fulfil these requirements as well.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations
Abbreviation Definition

HP Health points

Str Strength

Int Intelligence

Def Defense

Res Resistance

GUI Graphical user interface

Table 3: Table of Definitions

Term Definition

Unit A movable character that the user will manipulate
to defeat the opponent’s army.

Class A category of unit type. Different classes have
different strengths, weaknesses, and attributes.

Stat A numerical value that belongs to a unit. There

Health Points
Strength
Intelligence
Defense

Resistance

Skill

Speed

Graphical User Interface
Hit Rate

Critical Hit

Critical Hit Rate

are a variety of stats that make each class unique.
A stat determining how much damage a unit can
take before it dies.

A stat used in calculating physical damage dealt
to opposing units.

A stat used in calculating magical damage dealt
to opposing units.

A stat that lessens the amount of physical damage
the unit takes.

A stat that lessens the amount of magic damage
the unit takes.

A stat that determines how skillful a unit is on
the battlefield. Used to determine hit rate and
critical hit rate.

A stat that determines how many times a unit
will get to attack in combat.

A system that interacts with the user through
visual representation.

The percent chance that unit A will successfully
hit unit B.

Multiplies the damage of a unit’s attack by a nu-
merical factor.

The percent chance that unit A will perform a
critical hit on unit B.

1.4 Overview of Document

This document will explain in depth the plans for testing of the project, Blaze
Brigade, and will provide a comparison to the existing implementation, Tactics
Heroes. In this document, a description for each test case is provided along with
the expected input and output for each case. This document will be referenced

by the team of the project when conducting tests on developer code.

This

document also provides a brief description of what automated testing is, and
the group’s chosen framework to simulate such automated tests.

2 Plan

2.1

Software Description

The software component of the project is governed by various actions such as
inputs required, outputs to be shown to the user, and certain task computation
to fulfill the desired set of requirements. To test the overall system of the
project and produce a stable build for the user to interact with, a set of software
descriptions need to be covered in this test plan to discuss the main functionality
and how they can be tested as outlined below.

Mouse input: This is the primary interaction between the user and
software to carry out actions within the gameplay. Such action include
starting the game, moving the units, and giving commands such as to at-
tack the opponent. A test will need to be devised to ensure all mouse clicks
are read and their accuracy of the position to ensure that the resulting
trigger is correct.

Gameplay window: The map will be created in the gameplay window, in
which all of the mouse trigger events would happen to provide interaction
with the game. The window would need to be tested on all the subtasks it
holds, such making best use of all the space allocated to it, and the ability
to close and minimize the window application.

Menu option: The menu is the first screen the users will see to select
an option to start a new game, learn how to play or exit the game. Each
selection will be tested to ensure that it directs the user to the correct use
case.

Map creation: When the terrain is constructed, it will display a field
which includes moveable positions and obstacles such as a tree, which
dictate positions that a unit may step on. Further testing will need to
be conducted on these obstacle nodes to ensure that an unit does not
accidentally take an illegal position, or that an unit may take a legal
position.

Movement of units: After a unit has been selected, there shall be a
limited amount of highlighted positions that it can move onto. The con-
straints within the path finding mechanism would need to be simulated as
a test case to ensure that the highlighted grid shows the correct layout and
the move onto a position is valid to abstain from any invalid operation.

Attack mechanism: During an attack, the affected unit’s stats and
health are taken into consideration to determine who shall be victorious
in killing the opponent’s unit. The test case will further breakdown the
attack mechanism to ensure that the correct drop of health is calculated
and presents a fair attack opportunity for both sides.

e Turn based selection: Both players will alternate turns upon complet-
ing their set of actions. A checker would need to be in place to determine
that a turn has successfully been completed and shifted to the correct
player.

2.2 Test Team

The test team includes all of the members from the development team to en-
courage that testing takes places at all stages of the development process to
meet the central objectives of the project. This requires the involvement of all
team members in regular code inspection, producing unit test cases, and the
design for suitable user interaction.

Table 4: Description of the Test Team
Team Member Testing Type

Thien Trandinh Structural Testing, Functional Testing

Susan Yuen Structural Testing, Automated Testing
Jeremy Klotz Dynamic Testing, Functional Testing
Asad Mansoor Manual Testing, Functional Testing

2.3 Automated Testing Approach

An automated testing approach will be introduced in the development process
of the project to ensure a new feature or code change does not affect the sta-
bility of the master build. Additionally, it would allow better use of resource
allocation to move the manual testers to work other aspects of the code or docu-
mentation. As the project grows, the automated testing approach would further
educate the team in producing more reliable code as well as minimizing the time
of manual testing.

Testing tools like Visual Studio Unit Testing Framework will play a big role
in the creation of the unit test cases, reflecting on the functions that impact
the logic behind the game. With reference to the functions, we can test for
desired output with the anticipated inputs and further elaborate the testing
scheme by checking for robustness by providing invalid inputs or extreme test
cases. Since automation can cover a large range of testing over a short period
of time, it would be feasible to conduct stress testing of the game and to run
the automated unit tests repeatedly over a long period of time. Furthermore,
the unit test cases are initially set to test features within each class, but a set
of these automated test scripts would eventually cover the system data flow to
better understand how the software is interacting with other pieces of code and
whether a more efficient design approach is needed in the next development
stage.

With the aid of automated testing, there will be less reliance on the team mem-
bers to constantly check whether a certain feature is correctly implemented for
a large magnitude of inputs. The best practice of this technology would be to
constantly develop new test cases in parallel to ongoing development process
and to run all test scripts multiple times before pushing the source code onto
GitLab. Since the nature of a game cannot be fully taken over by automated
testing approach, manual testing will still play a part to ensure that the game
behaves as it should and feels natural to the user.

2.4 Testing Tools

Visual Studio Unit Testing Framework will be the testing tool required to au-
tomate the unit test cases throughout each development phase and will cover a
wide range of functional and system analysis.

2.5 Testing Schedule

The following test schedule has been derived from the development plan to en-
sure that the product is functioning correctly as it continues to evolve. In that
regard, the schedule can be broken down into the test deliverable and test cases
schedule. The test deliverable schedule outlines the required test plans and test
reports to be made available for the team members and stakeholders. In con-
trast, the test case schedule focuses on the internal dynamic of the software,
outlining the testing period of each of the major development phases.

For additional detail, please consult the Gantt Chart| (link provided).

Table 5: Test Deliverable Schedule

Deliverable ID Test Deliverable Due Date
TP-0 Test Plan Revision 0 October 31
TP-1 Test Plan Revision 1 November 14
TP-2 Final Documentation - Test Plan December 7
TR-0 Final Documentation - Test Report December 7

https://gitlab.cas.mcmaster.ca/yuens2/Blaze-Brigade/tree/master/Doc/DevelopmentPlan

Table 6: Test Cases Schedule

Sprint # Due Date Task Test Case

0 Oct 19 Proof of Concept Initial testing to ensure proof
of concept demonstration
works as planned.

1 Oct 31 Menu creation Main menu re-direct to cor-
rect page. Sub menu of each
unit to show available com-

mands.

1 Oct 31 Unit highlight Highlight state is active when
an unit is selected.

1 Oct 31 Unit movement Unit movement works as de-
signed.

1 Oct 31 Unit animation Unit animation is visible
upon movement.

1 Oct 31 Full-scope testing Testing of Sprint 1 to ensure
the overall system is correct.

2 Nov 11 Add units Check to see which unit is se-
lected on which team.

2 Nov 11 Combat system Combat attributes work as
designed.

2 Nov 11 Unit collision Unit collision logic works as
designed.

2 Nov 11 Full-scope testing Testing of Sprint 2 to ensure
the overall system is correct.

3 Nov 16 Terrain obstacles Position = with obstacles
should not be valid moves for
units.

3 Nov 16 Full army Check the state of the unit

with full army specification
on which team.

3 Nov 16 Full-scope testing Testing of Sprint 3 to ensure
the overall system is correct.
3 Nov 16 Extensive testing Stress testing of the game as

a whole system.

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 GUI
Test 1: [FR-GI1] - GUI is controlled by the mouse.
Type: Structural Dynamic Manual Testing

Initial state:

Test execution:

The user clicks on any available game options that will
produce a result which changes the GUI.

Game is opened.

Initial state:

Test execution:

Input: User clicks on an action.

Output: The game behaves as expected according to the correct
behaviour triggered by the user’s mouse input.

Test 2: [FR-GI2] - Game will contain a main menu on
screen upon launch.

Type: Structural Dynamic Manual Testing

Program will be executed and the main menu will be
displayed, which will be checked by the test case upon
launch.

Game is not opened.

Initial state:
Input:
Output:

Test execution:

Input: Game executable is opened.

Output: Game menu pops up upon launch.

Test 3: [FR-GI3] - Select New Game from the main
menu.

Type: Structural Dynamic Manual Testing

New game button will be available to be selected and
a new game instance is formed.

Game is currently on main menu.
New game is selected.

New game is started.

Test 4:

Type:

Initial state:

Test execution:

[FR-GI4] - Select Load Game from the main
menu.

Structural Dynamic Manual Testing

Load game will be selected and checked if the pre-
existing game state is loaded.

Game is currently on main menu.

Initial state:

Test execution:

Input: Load Game is selected.

Output: Previous saved game state is executed.

Test 5: [FR-GI5] - Select How-To-Play from the main
menu.

Type: Structural Dynamic Manual Testing

How-To-Play will be selected which will show How-To-
Play instructions and checked if the How-To-Play menu
displays as expected.

Game is currently on main menu.

Initial state:

Input:

Output:

Test execution:

Input: How-To-Play is selected.

Output: How-To-Play is selected.

Test 6: [FR-GI6] - Select Exit Game from the main
menu.

Type: Structural Dynamic Manual Testing

Exit is selected which closes the program and checked
that the game is closed.

Game is currently on main menu.
Exit Game is selected.

Game is closed.

3.1.2 Game Structure

10

Test 7:

Type:

Test execution:

Initial state:

[FR-GS1] - The game is turn-based, and units
are only able to move and attack once per play-
ers turn.

Structural Dynamic Automated Testing

A user will click on a unit and have it perform its avail-
able actions. Immediately after, it will be checked that
the same unit is unable to perform any additional ac-
tions.

Unit X has not performed their action.

Input: Unit X performs their action.

Output: Unit X is no longer able to perform their action.

Test 8: [FR-GS2] - A player’s turn ends once all their
units have performed all available actions.

Type: Structural Dynamic Automated Testing

Test execution:

Initial state:

The available actions of all of Player 1’s units will be
set to none. Then, it will be checked that Player 1’s
turn has ended and it is now currently Player 2’s turn.

Currently is Player 1’s turn.

Input: Set all actions of units belonging to Player 1 to none.

Output: Player 1’s turn ends, and it is now Player 2’s turn.

Test 9: [FR-GS3] - During a unit’s turn, clicking a unit
will give a drop down menu with available ac-
tions of the unit.

Type: Structural Dynamic Manual Testing

Test execution:

Initial state:
Input:
Output:

A unit, which has not already performed an action, will
be right-clicked and checked that a drop down menu
appears with expected actions of that unit.

The unit is alive and has available actions.
The unit is selected.

A drop down menu with expected actions pops up.

11

Test 10:

Type:

Test execution:

Initial state:

Input:

Output:

[FR-GS4] - One side is victorious when the other
side has no playable units left.

Structural Dynamic Automatic Testing

The status of all live units belonging to Player 2 is set
to deceased. It is then checked that the game is over
and Player 1 is victorious.

Player 1 and Player 2 both have live units.
All live units belonging to Player 2 are killed.

Player 1 is victorious and the game is over.

3.1.3 Unit Movement

Test 11:

Type:

Test execution:

Initial state:

[FR-UM1] - Player can select move after select-
ing a unit that has yet to perform its action and
opening the drop down menu.

Structural Dynamic Manual Testing

The unit that has yet to move and is able to move is
selected, and it is observed that a pop-up menu con-
taining the "move” action appears.

The unit has not yet performed an action, and is avail-
able to move if required.

Input: The unit is selected and the drop down menu is opened

Output: Drop down menu containing the option "move” is visi-
ble.

Test 12: [FR-UMZ2] - Units are only able to move within
their move range.

Type: Functional Dynamic Manual testing

Test execution:

Initial state:

Input:

Output:

Attempt to move a unit to a tile outside of its move
range.

The unit is alive and able to move.

The unit is asked to move to a different tile outside of
its range.

Nothing happens since the requested move is not within
the unit’s move range.

12

Test 13:

Type:

Test execution:

Initial state:

Input:
Output:

[FR-UMS3] - Units are not be able to pass
through obstacles.

Functional Dynamic Manual Testing

Attempt to ask the unit to move to an area blocked off
by an obstacle.

The unit is within range of an area blocked off by an
impassable obstacle.

Ask unit to move to the area past the obstacle.

Unit is unable to move to the requested area.

3.1.4 Unit Attacking

Test 14:

Type:

Test execution:

Initial state:

Input:
Output:

[FR-UA1] - Player can select attack as an avail-
able option after selecting a player-owned unit
that has not attacked and an enemy unit is
within attack range.

Structural Dynamic Manual Testing

The owned unit that has yet to attack is selected, and it
is observed that a pop-up menu containing the ”attack”
action appears.

The player’s unit has not yet performed an attack, and
an enemy unit is within its attack range.

The unit is selected and the drop down menu is opened.

Drop down menu containing the option ”attack” is vis-
ible.

13

Test 15:

Type:

Test execution:

Initial state:

[FR-UAZ2| - Unit may only attack an opposing
unit within its attack range.

Functional Dynamic Automatic Testing

An automated test attempts to ask the program to
make a unit attack an enemy unit outside of its attack
range.

The unit that is available to attack and its enemy unit
are not within attack range of each other.

Input: The unit available to attack will attempt to attack the
enemy unit.

Output: Nothing will happen, as the attempted attack is not
valid due to the fact that the enemy unit is out of range.

Test 16: [FR-UAS3] - All playable units can attack enemy
units.

Type: Functional Dynamic Automatic Testing

Test execution:

Initial state:

Automated tests check that all units have required
states and functions that allow it to attack enemy units.

Units are initialized.

Input: Units are initialized.

Output: All units have the required states and functions that
allow them to attack enemy units.

Test 17: [FR-UAA4]| - Units are unable to move after at-
tacking.

Type: Structural Dynamic Manual Testing

Test execution:

Initial state:

Input:

Output:

Attempt to activate the drop down menu to move the
unit upon an owned unit that has already acted within
the turn.

The unit has already completed an action for the cur-
rent turn.

A player attempts to activate the drop down menu to
move a character after attacking.

Drop down menu will not appear.

14

Test 18:

Type:

Test execution:

Initial state:

[FR-UAS5] - Units will lose HP according to dam-
age calculations.

Functional Dynamic Automatic Testing

Automated tests will check that damage modifying the
character HP, calculated through the damage calcula-
tion class consisting of a calculation which takes en-
emy’s stats into consideration, is consistent with the
expected value.

The unit is alive and able to take damage.

Input: The unit takes damage.

Output: The value of the HP is reduced and is within range
of the damage calculation consisting of enemy’s attack
stats.

Test 19: [FR-UAG6] - Units that are deceased are no
longer active in the current battle.

Type: Functional Dynamic Automatic Testing

Test execution:

Initial state:

Automated test modifies a unit’s HP to 0.
The unit has more then 1 HP and is valid in battle.

Input: The unit’s HP is set to 0.

Output: The unit’s state will no longer be valid in the battle
and cannot be used in the game.

Test 20: [FR-UAT] - Player can select which weapon each
unit uses to perform an attack.

Type: Structural Dynamic Manual Testing

Test execution:

Initial state:
Input:
Output:

Attempt to change weapons by selecting weapons from
the unit drop down menu on a playable unit that has
yet to move, select a different weapon , and observe if
attack stats has changed in accordance to the newly
selected weapon.

A unit is available to perform an action.
Attempt to change the unit’s weapon

The unit changes weapons and gains different stat mod-
ifiers in accordance to the new weapon.

15

3.1.5 Unit Structure

Test 21:

Type:

Initial state:

Test execution:

[FR-US1] - All units shall have a corresponding
unit class.

Functional Static Automatic Testing

Automated tests check that units have a corresponding
unit type class that is viable in the game.

All units are instantiated.

Initial state:

Test execution:

Input: All units are instantiated.

Output: All classes correspond to a viable unit type class that
has already been pre-defined.

Test 22: [FR-US2] - All units have stat values corre-
sponding to their class.

Type: Functional Static Automatic Testing

Automated tests check that a unit’s stat correctly cor-
responds to the pre-determined stats of the specific unit
class.

All units are instantiated.

Initial state:
Input:
Output:

Test execution:

Input: All units are instantiated.

Output: All units have stats that correspond to their class that
has already been pre-defined.

Test 23: [FR-US3] - Classes include warrior, mage, and
archer.

Type: Functional Static Automatic Testing

Automated tests check for the existence of all three
classes in the program by instantiating units for all
three classes.

All three classes are existent in the game.
Units of all three classes are instantiated.

Units of all three classes exist and are of the correspond-
ing class that has been pre-defined.

16

Test 24:

Type:

Test execution:

Initial state:
Input:
Output:

[FR-US4] - The stats of the game include Str,
Int, Def, Res, Skill, Speed, and HP.

Functional Static Automatic Testing

Automated tests check that a unit has all of the listed
stats.

A unit is instantiated.
A unit is instantiated.

The unit owns all listed stats and only reflect that unit
according to their action.

3.2 Tests for Nonfunctional Requirements

3.2.1 Usability

Test 25:

Type:

Initial state:

Input:

Output:

Test execution:

[NFR-UB1] - Game runs on the operating sys-
tems specified in the requirements.

Structural Static Manual Testing

The program is executed on the specified operating sys-
tems to check whether it launches successfully with the
expected behaviour outlined.

Game is not yet executed.
Program is launched.

The game launches and functions as expected.

3.3 Performance Requirements

Test 26:

Type:

Initial state:

Input:

Output:

Test execution:

[NFR-PF1] - Program Response Time
Structural Dynamic Manual Testing

User clicks on option that produces a response from the
game.

Game is open.

Attempt to click on an option that should produce a
response.

The program responds to the user input in near instant
time.

17

Test 27:

Type:

Test execution:

Initial state:

Input:

Output:

[NFR-PF2] - Changes in statistics are accurately
reflected on the screen.

Structural Dynamic Manual Testing

User successfully attacks an enemy unit with a playable
unit.

An enemy unit is in range of a playable unit.
User attacks the enemy unit with the playable unit.

The enemy unit’s hit points decrease.

3.4 Security Requirements

Test 28:
Type:

Test execution:

Initial state:

Input:

Output:

[NFR-SC1] - Invalid user input
Structural Dynamic Manual Testing

Attempt to give invalid input to the game, such as key-
board input or clicking on invalid targets.

Game is initialized.

Attempt to give the game keyboard input and clicks on
invalid targets.

The game state does not change.

18

4 Tests for Proof of Concept

4.1 GUI
Test 29: [PC-GI1] - Terrain grid with an unit is con-
structed onto the GUI window.
Type: Structural Dynamic Manual Testing

Test execution:

Initial state:

Attempt to launch the game by the user, will prompt
a window in which a terrain shall be initialized for the
gameplay interactions.

Game is not yet opened.

Input: Program is launched.

Output: The game functions as expected and a gameplay win-
dow is prompted for user interaction.

Test 30: [PC-GI2] - The game will remain in its current
state when the application is minimized.

Type: Structural Dynamic Manual Testing

Test execution:

Initial state:

Attempt to minimize the game during the gameplay
and shortly after reopen the game to continue from the
same game state.

Game is initialized and showing the terrain grid.

Input: Attempt to minimize the application by clicking on the
minimize button on the top-right corner of the window.

Output: The game minimizes as expected and displays the same
game state when reopened.

Test 31: [PC-GI3] - The game and its operation will be
closed when the application is closed.

Type: Structural Dynamic Manual Testing

Test execution:

Initial state:

Input:

Output:

Attempt to close the gameplay window to end the game
and its operations.

Game is initialized and showing the terrain grid.

Attempt to close the application by clicking on the close
button on the top-right corner of the window.

The game ends all operations and closes the gameplay
window as expected.

19

4.2 Unit Movement

Test 32:

Type:

Initial state:

Test execution:

[PC-UML1] - Unit can be selected and deselected
when clicked.

Functional Static Automatic Testing

Attempt to trigger selection and deselection mode on
an unit when it is being clicked on from the user.

The game is opened and initialized.

Initial state:

Input:

Output:

Test execution:

Input: The unit is clicked on for selection and then clicked
again for deselection.

Output: The unit stays in the same position waiting to be se-
lected to be moved as expected.

Test 33: [PC-UM2] - Units are able to move onto any
grid position when selected.

Type: Functional Static Automatic Testing

Attempt to move units anywhere on the grid only when
they are selected by being clicked on from the user.

The game is opened and initialized.

The unit is clicked on by the user who then selects any
available grid position placed on the terrain.

The unit will take the new position and the old position
will be empty as expected.

20

5 Comparison to Existing Implementation

Blaze Brigade is based on the strategical, tactical, grid based RPG called Tac-
tics Heroes. All the functional requirements were derived from this existing
implementation, and can be categorized into 5 categories: GUI, game structure,
unit movement and unit attacking. The comparison between Tactics Heroes
and Blaze Brigade for each category are listed below:

5.1 GUI

The GUI structure is almost identical to Tactics Heroes, such as the interface,
and navigation menu. However, all the graphical assets used is original and
either obtained from open sources, or original assets made by the team.

5.2 Game Structure

The game structure involves players taking turns moving their units, and trying
to kill off all the opposing enemy units. This game structure is identical between
both the existing implementation and Blaze Brigade.

5.3 Unit Movement

Unit movement is done by selecting a unit, then clicking another tile within the
unit’s move range to move it to that location. This way of moving is consistent
between both versions.

5.4 Unit Attacking

Unit attacking is done by clicking on a unit, and selecting an enemy unit within
range to perform an attack. Both implementations are similar in this aspect,
however there is one major difference. In Blaze Brigade, after a unit performs an
attack, they receive a counterattack from the enemy should the enemy survive
the initial hit. In Tactic’s Heroes, no counter attacks are performed.

5.5 Unit Structure

The unit types are different between the two games. In Tactics Heroes, the
units are melee and ranged, with all damages only doing physical damage. In
Blaze Brigade, there are 3 units - Melee, Ranger (physical ranged), and mage
(magical ranged). The stat allocation in Blaze Brigade are also more intricate.
The stats that are the same are HP, where a unit dies when their HP falls
under 0, Strength which determines their physical attack, and Defense which
determines their physical defense. Tactics Heroes only has one more stat -
Dodge, which affects dodge rates for attack. In Blaze Brigade, this calculation
is calculated from the difference in skill between the two units. Futhermore,
there are 3 more additional stats. Firstly is Intelligence and Resistance, which

21

is used for magical damage calculation. The last is Speed which determines if a
unit performs consecutive attacks.

6 Unit Testing Plan

The Visual Studio Unit Testing Framework shall be used to write and execute
the game’s automated unit tests in C#.

6.1 Unit testing of internal functions

The automated unit tests will test internal functions of the program by passing
controlled input(s) into a function in order to ensure correct behaviour or output
of that single function. Each testable function in the program shall have corre-
sponding unit tests for each possible type of input, to ensure expected behaviour
and/or output of that function under possible edge, regular or abnormal cases.
Functions that return a value will have their output tested for the expected out-
put, and void functions shall be tested for correct behaviour, such as changes to
the model and its state variables. As such, the unit tests will provide thorough
whitebox testing of the game’s code. Test coverage tools, which are integrated
in Visual Studio 2015, will be used as a metric to determine the degree of unit
testing code coverage. The goal of the team is to achieve a minimum of 80%
code coverage to ensure that the majority of the code has undergone white box
testing, thus resulting in fewer errors regarding incorrect coding implementation
of the functional requirements.

6.2 Unit testing of output files

The only output file of the game are a collection of windows which comprises
the visual representation and graphical aspects of the game. This includes the
Main Menu, the How-To-Play, and Game window. To completely ensure proper
function of the output file, manual testing must also be taken into consideration
to test the expected behaviour of the game. In addition, the game engine XNA
Game Studio handles the majority of the rendition from code to output. Our
task does not involve testing proper functionality of the game studio, however
unit testing of the team’s code still plays a key role in ensuring proper output
and results. Unit tests for functions that call on the view, as well as unit
tests written for the view are necessary to ensuring proper output of the game’s
visual representation. The unit tests will additionally verify that proper method
calls to game studio methods are being executed, most likely with the use of
mock objects to simulate the actual game visuals, and to verify that these mock
objects are being called upon.

22

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	GUI
	Game Structure
	Unit Movement
	Unit Attacking
	Unit Structure

	Tests for Nonfunctional Requirements
	Usability

	Performance Requirements
	Security Requirements

	Tests for Proof of Concept
	GUI
	Unit Movement

	Comparison to Existing Implementation
	GUI
	Game Structure
	Unit Movement
	Unit Attacking
	Unit Structure

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

