
Blaze Brigade
- Test Report -

SFWR ENG 3XA3 - Section L02
007 (Group 7)

Jeremy Klotz - klotzjj
Asad Mansoor - mansoa2
Thien Trandinh - trandit
Susan Yuen - yuens2

December 7, 2016

Contents

1 Functional Requirements Evaluation 1
1.1 GUI . 1
1.2 Game Structure . 1
1.3 Unit Movement . 1
1.4 Unit Attacking . 2
1.5 Unit Structure . 2

2 Nonfunctional Requirements Evaluation 2
2.1 Look and Feel . 2
2.2 Usability . 2
2.3 Performance . 3
2.4 Operational . 3
2.5 Maintainability . 3
2.6 Security . 3
2.7 Cultural . 3
2.8 Legal . 3
2.9 Health and Safety . 3

3 Comparison to Existing Implementation 3
3.1 Differences from Existing Implementation 4
3.2 Intended Differences . 4

4 Unit Testing 4
4.1 Unit Testing Tools . 4
4.2 Limitations . 5
4.3 Unit Testing Approach . 5

5 Changes Due to Testing 6
5.1 Issue Handling . 6
5.2 User Feedback . 6

6 Automated Testing 6

7 Trace to Requirements 7

8 Trace to Modules 8

9 Code Coverage Metrics 8

List of Tables

1 Revision History . i
2 Trace Between Requirements and Test Cases 7
3 Trace Between Modules and Test Cases 8

i

List of Figures

Table 1: Revision History

Date Version Notes

December 1, 2016 1.0 Completed Test Report

ii

1 Functional Requirements Evaluation

All functional requirements were met. They will be evaluated in detailed sections
below:

1.1 GUI

The Graphical User Interface is fully functional and allows the user to navigate
through and access all of the game’s features using mouse input. A main menu
appears upon launching the executable. From the main menu, users are able to
select New Game, How-To-Play and Exit via mouse input. A player is also able
to control a unit and select all of its possible actions from the drop down menu
from mouse input. Therefore all GUI functional requirements successfully been
met.

1.2 Game Structure

A trace of 2 players with player 1 controlling 1 warrior, and player 2 controlling
1 mage would be as follow.

Player 1 selects a unit with the mouse, and a drop down menu containing
Attack, Move, Item, and Wait appears. The player then selects item from drop
down menu. From the drop down menu in items, the player selects Iron Sword
to equip it. The player then selects move and clicks on a tile within range.
The unit moves to that location and the move button disappears. The player
then selects attack from the drop down menu and selects a valid attack target,
resulting in neither targets dying. The attack button then disappears from drop
down menu, and the player selects wait. Player 1’s turn then automatically ends
and switches to player 2. Player selects their unit, and selects attack from drop
down menu, then selects player 1’s warrior. The attack kills the warrior and the
game ends.

The above trace of the game shows that the game is turn based, and consists
of 2 players alternating turns. It also demonstrates that a unit can select from
4 available actions, with the additional requirement that it can only move and
attack once per turn, and wait ends all of the unit’s available actions. Fur-
thermore the trace shows that when a player has no controllable units left, the
game ends. Therefore all Game Structure functional requirements have accu-
rately been fulfilled.

1.3 Unit Movement

Players are able to select move from drop down menu after selecting a unit. All
movable nodes calculated from BFS and accounting for obstacles are highlighted
blue. The player is then able then able to select one of the blue highlighted nodes

1

to move the unit to that location. Therefore all Unit Movement functional
requirements are implemented.

1.4 Unit Attacking

A player can select attack from drop down menu after selecting a unit. All
attack-able nodes calculated from BFS and accounting for weapon attack range
are highlighted red. The player is then able to select an enemy unit within a red
highlighted node to attack. Upon successfully selecting an enemy unit, an at-
tack confirmation button will appear along with all relevant attack information.
Clicking attack will execute the action, and result in getting counter attacked
(assuming the unit attacked initially survived). The damage displayed in attack
info will then be subtracted from each unit’s health, and units with less then 0
HP are removed from the game. The unit that just attacked will then only have
the Wait option left to choose from. Therefore all Unit Attacking functional
Requirements are met as intended.

1.5 Unit Structure

The game implements the stats Strength, intelligence, defense, resistance, skill,
speed, health, and utilizes them for damage calculations. Strength and Defense
are used in physical damage calculations, intelligence and resistance in magical
damage calculations, speed determines if a unit performs a double attack, and
skill affects crit and hit rate on a unit. The 3 required units are also implemented
and follows the requirements of each unit’s stat build as follow: Warriors have
high Attack and Defense, Archers have a high Strength, Skill and Speed, and
Mages have a high Magic and Resistance. Each unit also has their own HP bar
that updates corresponding to their current HP vs max HP. Therefore all unit
structure requirements are successfully fulfilled.

2 Nonfunctional Requirements Evaluation

2.1 Look and Feel

The Main Menu page background and music successfully conveys a melodic and
soothing atmosphere. The rest of the game’s visual assets and interface also
conveys a nostalgic feel similar to classic pixelated tactical RPGs such as Fire
Emblem. Therefore the Look and Feed requirement are adequately met.

2.2 Usability

All people asked to test the game with a Windows computer with a screen size
greater then 960x640, and access to a desktop pointing device have successfully
managed to play the game. Therefore the usability requirement of the game has
been fulfilled.

2

2.3 Performance

All algorithms and structures used in the game are executed in near instant time
thereby fulfilling speed and latency requirements. All event driven game aspect
behave exactly as expected, supports exactly 2 players and no player input
to game can cause it to crash. Therefore precision, robustness and capacity
requirements are met.

2.4 Operational

Following the README on how to run the game, all testers on a windows PC
were successful in finding the location of the game executable, and in running
Blaze Brigade. Therefore operational requirements were fulfilled.

2.5 Maintainability

A player is able to access all of Blaze Brigade’s intended features from the
released executable, therefore not needing any further maintenance. This results
in meeting the maintainability requirement.

2.6 Security

The game’s code and structure are not able to be modified from any user input
while playing the game, thereby fulfilling security requirement.

2.7 Cultural

The game does not contain any content that is found to be offensive to any
religious or ethnic group, which results in completing the cultural requirement.

2.8 Legal

The game does not contain any content nor is distributed in any way that
conflicts with any known law. Therefore it fulfils all legal requirements.

2.9 Health and Safety

The health and safety warning covers the most probable symptom (albeit un-
likely) that could result from playing the game. Therefore health and safety
requirements are met.

3 Comparison to Existing Implementation

The existing implementation of this project is an open-source game called Tac-
tics Heroes. It has helped develop the requirements of this software system.
Due to this, Blaze Brigade is very similar to Tactics Heroes. Both games are

3

tactical, and turn based. The objective of both games is also identical. Each
player is assigned a team with a variety of units. Using these units, the players
develop a plan in order to eliminate the enemy force. Both games use a grid
that is broken into squares that represent the structure of the playing field.

3.1 Differences from Existing Implementation

Although the two systems are similar, there are a few differences. These dif-
ferences are: Animations, unit movement and navigation, sound effects, and a
working inventory. Unlike Tactics Heroes, Blaze Brigade features animations
that make the game look more fluid. In Tactics heroes, units are forced to move
before making another action. The process is click the unit then move the unit
then attack, or wait, or manage items. In Blaze Brigade, the process is click
the unit, decide to move, attack, or interact with the items in their inventory.
Blaze Brigade features sound effects where Tactics Heroes did not. Playing Tac-
tics Heroes, it became boring because there were no sound effects. Quickly, it
was decided that Blaze Brigade should have some. Lastly, Blaze Brigade has a
working inventory for each unit. Tactics Heroes did not have this, and having
it in the Blaze Brigade will be crucial for future development.

3.2 Intended Differences

If time was not a constraint on the project, then the two systems would have a lot
more differences. Blaze Brigade was initially intended to have a story, feature
complex maps, an experience system, and interact able objects like treasure
chests.

4 Unit Testing

4.1 Unit Testing Tools

The unit tests were implemented using Microsoft’s Visual Studio Unit Testing
Framework in C#. Our decision to implement the unit tests in Visual Studio
was largely impacted by Microsoft’s comprehensive support of its unit testing
framework for Visual Studio, as well as the fact that our unit test suite would
also seamlessly integrate into our code, which was already done in Visual Stu-
dio in C#. This also aided in diminishing the learning curve required, as the
team was already familiar with the IDE and language, further supporting our
decision in the testing framework. In addition, Microsoft offered an extensive
unit testing guide, complete with tutorials, documentation on test methods, and
examples, which further lowered the learning curve.

In addition to Visual Studio’s Unit Testing Framework, our unit tests also
make use of Moq - a mocking framework. We felt the use of this framework to
be necessary in order to allow for a more thorough testing of the game’s code
as it opened up more possibilities and options within unit testing. A specific

4

example of this would be the Verify() method, allowing for the verification of
a function call which would not be possible without the using of a mocking
framework. In addition, Moq allows for much simpler and more controlled
instantiation of objects and dependencies outside of the unit under test. Due
to its ability to cause mock objects to return anything given, mocking allows
for easier control on the environment for the unit under test, and expands the
options and conditions of the unit tests.

4.2 Limitations

Due to the nature of the software and tools used in the creation of our game,
not all parts of the code are testable with unit testing. Functions pertaining
to the view (such as animation, sound, graphics, and game windows) could not
be tested, as these functions had high dependency on the XNA Game Studio
Framework. Such functions are untestable because the game itself can only be
initialized upon running the game, which is impossible in the environment of
unit testing. In addition, the complexity of the XNA Game Studio Framework
also causes it to be unmockable, eliminating this workaround and rendering
testing of this dependency impossible. Other items affected by this include the
main game loop, mouse handling, and the camera.

4.3 Unit Testing Approach

The objective of implementing unit tests is to integrate automated whitebox
testing of the code through passing controlled input(s) into each function in
order to ensure correct behaviour and/or output of the function. As such, mul-
tiple unit tests covering multiple test cases were written for each function, which
include regular, edge, and abnormal cases. A specific example of such include
testing negative, zero, and positive numbers for integer input, as well as null ob-
jects for object parameters. This also included null attributes of objects which
could possibly adversely affect the function under test. Through this approach,
the overall robustness of the system was improved as a result of putting the
system under unexpected input, which led to improving upon the system upon
undesirable results.

The testing approach was different for dissimilar functions. Functions that
returned a value were checked to ensure that the value returned corresponded to
the expected value. Void functions were tested to ensure for correct behaviour,
such as changes in the parameters it took, changes to the state of the game, or
verification of calls to other functions (using the mocking framework).

Thus, unit testing results in lowering errors regarding incorrect coding im-
plementation of logic and the functional requirements. Unit testing also exposes
improper software design, as it forces one to modularize one’s code enough so
that each function acts as a single unit, thus making unit testing easier, less
complex, and diminishes the setup of the environment of the unit under test.

5

5 Changes Due to Testing

Throughout the course of its development, Blaze Brigade has seen some changes
and will continue to see more. Specifically, the game has been adapted to meet
user needs and suggestions, based off user survey feedback. Such changes include
ensuring proper balancing and general bug fixes.

5.1 Issue Handling

One of the biggest changes made to Blaze Brigade is how it calculated the path
of a moving unit. This change occurred due to an issue where units could not
reach squares that were within range. To fix this, the algorithm was reworked
entirely to implement a breadth-first search algorithm.

5.2 User Feedback

A survey was constructed and presented to a small sample of Blaze Brigade’s
target audience. The purpose of this survey was to encourage feedback
from potential users. This feedback has helped determine what changes
should be made to the software system, and is listed below. Note that
some changes are meant for the future, as time is a constraint on this
project.

A Clear View → Addition to the colour scheme to distinguish between the
red and blue team, as well as additional details that allow the user to
determine which units have moved and which units have not yet moved.

Logical Naming Convention → The items that control magic in Blaze
Brigade should be renamed to tomes since equipping a fireball does not
make sense, logically.

Unit Balancing → Naturally, each type of unit should have their own strengths
and weaknesses. However, Blaze Brigade was initially created without the
idea of balancing in mind. Players found that certain unit types would
dominate the game and ruin the fun. To fix this, we enabled a triangular
relation between the three units. Warriors hit hard, are tough but are slow
and weak to magical damage. This means that warriors are strong against
archers, but weak against mages. Archers are fast but fragile with high
magical resistance. This makes Archers strong against mages but weak to
warriors. Mages have been altered so that they have average stats. Mages
are now strong against warriors but weak to archers since they are resilient
to magic.

6 Automated Testing

The extent of our automated testing includes our unit tests, containing 153 test
cases across all game code. The unit tests allow for automated whitebox test-

6

ing, and can be run periodically to ensure that the code is behaving as expected.

Unfortunately, due to the time constraint of the project, no additional au-
tomated testing mechanisms have been implemented.

7 Trace to Requirements

The role of the testing process is to ensure that all the requirements that
have been initialized in the Software Requirements Specification are validated
through a series of test cases. Since these define the main functionality of the
software, testing them will ensure whether the main objectives of the system
are met. With the accordance to the unit testing approaches taken in the devel-
opment, actions such as testing for invalid inputs and behaviour as well as the
predefined valid test cases were analyzed to ensure the system shows the valid
output to the user and is in the correct state of the game internally. In order
to achieve this, a test model has been structured to match the corresponding
requirements with the specific test cases. Requirements that revolve around the
graphical interface can be matched up with various test surrounding the game-
play interaction, which may also be associated with various other requirements
that have a similar trace to it. The following table 2 entails the requirements
set in the Software Requirements Specification with the test cases planned in
the Test Plan.

Requirement Test Cases

FR1 FR-GI1, FR-GI2, FR-GI3, FR-GI4, FR-GI5
FR2 FR-GS1, FR-GS2, FR-GS3, FR-GS4
FR3 FR-UM1, FR-UM2, FR-UM3
FR4 FR-UA1, FR-UA2, FR-UA3, FR-UA4, FR-

UA5, FR-UA6, FR-UA7
FR5 FR-US1, FR-US2, FR-US3, FR-US4
— —
NFR1 FR-GI1, FR-GI2, FR-GI5
NFR2 NFR-UB1
NFR3 NFR-PF1, NFR-PF2
NFR4 NFR-UB1
NFR5 N/A
NFR6 NFR-SC1

Table 2: Trace Between Requirements and Test Cases

7

8 Trace to Modules

Similarly to the traces of requirements, the system design can be tested in means
of analyzing the traces to the modules. The decomposition of the modules were
executed during the Module Guide and Module Interface Specification process as
a means of defining the design pattern. These modules helped categorize various
parts of the system and abstract them in such a way that if any future changes
were to occur in the design, it would obstruct the design of other modules and
can be implemented independently. Considering on how a test case might verify
the correctness of a particular feature, modules are equipped with a larger scope
of requirements that can be tested by observing how they interact with other
modules or even sub-modules. This is essential due to the fact that a function
might output the intended result, but the interaction between other function
within the scope might also help verify the overall design of the system. The
following table 3 entails the modules decomposed in the Module Guide and
Module Interface Specification with the test cases planned in the Test Plan.

Modules Test Cases

M1 FR-GI1, FR-GI6
M2 FR-GS1, FR-GS2, FR-GS3, FR-GS4, FR-US1,

FR-US2, FR-US3, FR-US4
M3 FR-GI2, FR-GI3, FR-GI4, FR-GI5, FR-UM1,

FR-UM2, FR-UM3
M4 FR-UA1, FR-UA2, FR-UA3, FR-UA4, FR-

UA5, FR-UA6, FR-UA7

Table 3: Trace Between Modules and Test Cases

9 Code Coverage Metrics

The code coverage metric is essential to check whether the testing process is
accurate and complete. Structuring the test cases to specific requirements and
modules helps the system to achieve a high code coverage metric to ensure every
bit of the software is tested whether it be the means of manual or automated
testing. In regards to the number of test files in the BlazeBrigadeTest directory,
the scope of these test cases cover the game state, unit specification, objective
calculations and graphical representation aspects of the overall game. Within
the cases, various subcategories of the test include the process of inserting invalid
inputs or behaviours to the function and analyzing how stable the system is
within its metric. The game state is also tested to an extent, such to be sure
that the gameplay proceeds in the correct manner. As the game is structured
with a MVC architecture, testing various game scenarios such of an instance
of handling a full army could be represented with a model approach to test

8

the class that the instance of each unit refers to. Since all of these units are
part of one of the unit classes, testing the class itself will cover the scope of the
overall test. This proved to be an effective means of calculating the metric of
the code coverage as well as reduced the number of lines within the development
and testing process. Another means of calculating the code coverage metric is to
inspect that all functions that correspond to the requirements and modules that
were initialized in the previous documentation are referred to and analyzed to
such an extent. Minor behaviours that were not documented such the connected
between requirements and modules, are covered through an extensive gameplay
session of manual testing to ensure that the game feels natural to the users.
Any unusual behaviour through these stress testing will indicate areas that the
code coverage may not extend to, followed up with a code inspection to further
enlarge the code coverage scope of the game. As the system tends to grow within
this test driven development process, the number of test files will also increase
to maintain the code coverage metric to its maximum ensuring to encapsulate
and regulate the correct behaviour onto the software system.

9

	Functional Requirements Evaluation
	GUI
	Game Structure
	Unit Movement
	Unit Attacking
	Unit Structure

	Nonfunctional Requirements Evaluation
	Look and Feel
	Usability
	Performance
	Operational
	Maintainability
	Security
	Cultural
	Legal
	Health and Safety

	Comparison to Existing Implementation
	Differences from Existing Implementation
	Intended Differences

	Unit Testing
	Unit Testing Tools
	Limitations
	Unit Testing Approach

	Changes Due to Testing
	Issue Handling
	User Feedback

	Automated Testing
	Trace to Requirements
	Trace to Modules
	Code Coverage Metrics

