
Blaze Brigade
- Module Guide -

SFWR ENG 3XA3 - Section L02
007 (Group 7)

Jeremy Klotz - klotzjj
Asad Mansoor - mansoa2
Thien Trandinh - trandit
Susan Yuen - yuens2

November 11, 2016



Contents

1 Introduction 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Design Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Anticipated and Unlikely Changes 4
2.1 Anticipated Changes . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Unlikely Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Module Hierarchy 5

4 Connection Between Requirements and Design 6

5 Module Decomposition 6
5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Underlaying Architecture . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Leaf-level Decomposition . . . . . . . . . . . . . . . . . . . . . . . 6
5.4 Summary of Leaf Modules . . . . . . . . . . . . . . . . . . . . . . 6

5.4.1 Hardware Hiding Modules (M1) . . . . . . . . . . . . . . 6
5.4.2 Behaviour-Hiding Module(M2) . . . . . . . . . . . . . . . 6
5.4.3 Software Decision Module(M3) . . . . . . . . . . . . . . . 7
5.4.4 GUI Module (M6) . . . . . . . . . . . . . . . . . . . . . . 7
5.4.5 Menu Module (M4) . . . . . . . . . . . . . . . . . . . . . 7
5.4.6 Model Module (M5) . . . . . . . . . . . . . . . . . . . . . 7

6 Traceability Matrix 7

7 Use Hierarchy Between Modules 8

List of Tables

1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Module Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Trace Between Functional Requirements and Modules . . . . . . 8
4 Trace Between Non-Functional Requirements and Modules . . . . 8
5 Trace Between Anticipated Changes and Modules . . . . . . . . . 8

List of Figures

1 Use hierarchy among modules . . . . . . . . . . . . . . . . . . . . 9

1



Table 1: Revision History

Date Version Notes

Nov 13, 2016 1.0 Completed Design Document

2



1 Introduction

1.1 Overview

Blaze Brigade is a tactical simulation role-playing game that combines the
strategic challenges as a form of interactive entertainment for its users. This
turn-based game allows users to advance their units into enemy territory, par-
ticipate in combat and strive to eliminate all of the opposing units. In adaption
to the open-source freeware, Tactics Heroes, Blaze Brigade will incorporate new
functional and design enhancements that may not be available to the existing
open-source project. Such enhancements include the implementation of new
features within the unit movement, combat and strategy aspect of the game as
well as improved graphical representations of the menu menu and gameplay to
improve the overall experience of the game.

1.2 Context

The system is fully devised and presents all of its functional and non-functional
requirements in the Software Requirement Specification (SRS). As these re-
quirements state the desirable properties of the system, the design documents
will further evaluate on how these requirements are identified and achieved.
The Module Guide (MG) will serve as a tool to decompose the following sys-
tem into a modular structure adhering to the principle of information hiding.
Upon reaching the finalized version of this document, the Module Guide can be
distributed amongst various groups in order to learn and identify parts of the
software that is being presented. These various groups are as follows:

• Developers and maintainers: Decomposing the system and document-
ing into the Module Guide will aid the developers and maintainers to un-
derstand the system-as-is and recognize what areas of the software are
likely to be changed. In addition, a sense of the overall design will be
structured and will be maintained in the following developments phases
yet to come.

• Designers: In addition to the design pattern being documented, designers
are able to determine whether the designs are constructed as initially spec-
ified. With the following anticipated changes to be happening, which areas
of software is flexible and feasible to accommodate new design changes.

• New recruits or outsourced resources: The documentation will on-
board the new recruits in familiarizing the overall structure of the im-
plementation adhering to a specific design principle. This will reduce the
downtime of debugging and have an advantage of multiple groups working
on the system at once. Furthermore, if an external team were to imple-
ment the system or would like to carry out further improvements after
the project timeline, this document will serve as an aid to determine the
existing framework and how further implementation can take place.

3



In addition to the Module Guide, the Module Interface Specification (MIS) is
also a product of the design documentation. The specification defines the syn-
tax and semantics that are associated with the functions provided in the source
code. Tools like Doxygen have been utilized to generate a set of documentation
that will indicate the characteristics of the functions in terms of the correspond-
ing inputs, outputs, assumptions, exceptions, state and environment variables.
These characteristics will further aid in observing how the implementation is
taken place and how the design constitutes from these functions.

1.3 Design Principle

The design principle taken into consideration revolves around the decomposition
of the overall system into a modular structure of subsystems. These subsystems
are observed in an abstract manner, hiding any details that may complicate the
process. This act of information hiding and encapsulation ensures that each
modules hides some design aspect from the rest of the system and analyzing
which areas are expected to change. This process plans for the following sub-
systems to be changed, hence protecting other subsystems of the software from
major changes if the design decision is changed.

1.4 Outline

The Module Guide is organized in the given order. Section 2 lists the antici-
pated and unlikely changes of the software requirements. Section 3 decomposes
the system into a module hierarchy of the likely changes. Section 4 establishes
the connection between the software requirements with the modules. Section 5
gives a detailed insight on how the modules have been decomposed with their
corresponding descriptions. Section 6 includes two traceability matrices com-
paring the modules with the software requirements and anticipated changes. At
last, section 7 pinpoints the use hierarchy between the modules.

2 Anticipated and Unlikely Changes

2.1 Anticipated Changes

The design decisions in this section are likely to change because they are hidden
in modules. When these changes are made, they can be done easily and not
affect other modules of the project.

AC1: All classes that implement the Class interface are likely to have their
stats change for balancing reasons.

AC2: All weapons that implement the Weapon interface are likely to have
their stats change for balancing reasons.

AC3: The getHitRate() and getCritRate() methods inside the DamageCalcu-
lations class are likely to change for balancing reasons.

4



AC4: All sprites from outside sources. It has been determined that the project
should contain all original content.

2.2 Unlikely Changes

The following design decisions are unlikely to change because they affect many
modules. Since they affect multiple modules, changing these decisions may
result in multiple changes in the overall design of the project. Unless these
changes are necessary, they will not occur.

UC1: Input/Output devices (Input: Mouse, Output: Updated Model and
Screen).

UC2: The software implements the MVC (Model-View-Controller) architec-
ture.

UC3: The Graph of nodes that represents the playable grid.

UC4: Nodes are identified by their x and y coordinates.

UC5: The path finding algorithm.

3 Module Hierarchy

M1: Hardware-Hiding Module

M2: Behaviour-Hiding Module

M3: Software Decision Module

M4: Menu Module

M5: Model Module

M6: GUI Module Module

Level 1 Level 2

Hardware-Hiding Module

Behaviour-Hiding Module Menu Module, GUI Module

Software Decision Module Game State Module

Table 2: Module Hierarchy

Since Blaze-Brigade consists of purely software, M1 does not apply to the
system. The software never interfaces with the hardware itself. The lowest level
of interfacing with the software is the OS.

5



4 Connection Between Requirements and De-
sign

The design of the system is intended to satisfy the requirements developed in
the SRS. In this stage, the system is decomposed into modules. The connection
between requirements and modules is listed in Table 3 and Table 4.

5 Module Decomposition

Module Decomposition summary TODO

5.1 System Architecture

5.2 Underlaying Architecture

5.3 Leaf-level Decomposition

5.4 Summary of Leaf Modules

5.4.1 Hardware Hiding Modules (M1)

Secrets: The algorithms and format structures used to provide an interface
between hardware and software.

Services: This module provides an interface for users to interact with the soft-
ware. The module will convert the raw input data from the mouse
into data that can be used by controller to update the current game
state. The view will also be implemented through this, allowing for
users to correctly interact with the software.

Implemented By: Mouse, MouseHandler, M2

5.4.2 Behaviour-Hiding Module(M2)

Secrets: The behavioural process of the software.

Services: This module functions as the controller in MVC, and handles all the
software decision making of Blaze Brigade. This includes all visible
behavior of the system specified in the SRS. Hence any changes to
the SRS will hereby result in modifications to this module.

Implemented By: Computer, game.cs

6



5.4.3 Software Decision Module(M3)

Secrets: The design decisions that determine how the software updates.

Services: This module extends the Model Module, and stores the state of the
overall game, and contains the state of how everything in the game
should currently behave. These results determine what is displayed
in the GUI Module (view).

Implemented By: M2

5.4.4 GUI Module (M6)

Secrets: How and when what is displayed.

Services: This module is the main View in MVC, and displays data to users
in the form of graphics according to what the current game state is.

Implemented By: Draw methods, M??, Buttons.cs

5.4.5 Menu Module (M4)

Secrets: The navigational structure for different menu options.

Services: This module handles the main menu layout, navigation and controls.

Implemented By: M5

5.4.6 Model Module (M5)

Secrets: The design decisions that implement the structure of the software.

Services: This module is the main Model in MVC, and contains most the
structure of the game. Most of the elements in this module are simply
data, with most methods simply being a C# property (combination
of getter and setter).

Implemented By: Game.cs, Graph.cs, Node.cs, Unit.cs, Weapon.cs, Player.cs

6 Traceability Matrix

This section shows two traceability matrices: between the modules and the
requirements and between the modules and the anticipated changes.

7



Req. Modules

FR1 M1, M4, M5
FR2 M6, M??
FR3 M4, M5
FR4 M4, M5, M6
FR5 M6

Table 3: Trace Between Functional Requirements and Modules

Req. Modules

NFR1 M1, M2, M5
NFR2 M3, M4
NFR3 M3, M6
NFR4 M3, M6
NFR5 M3, M6, M??
NFR6 M1, M2
NFR7 M5
NFR8 M1, M3

Table 4: Trace Between Non-Functional Requirements and Modules

AC Modules

AC1 M2, M6, M??
AC2 M6, M??
AC3 M??
AC4 M5

Table 5: Trace Between Anticipated Changes and Modules

7 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. Parnas1978 said
of two programs A and B that A uses B if correct execution of B may be neces-
sary for A to complete the task described in its specification. That is, A uses B
if there exist situations in which the correct functioning of A depends upon the
availability of a correct implementation of B. Figure 1 illustrates the use relation
between the modules. It can be seen that the graph is a directed acyclic graph
(DAG). Each level of the hierarchy offers a testable and usable subset of the
system, and modules in the higher level of the hierarchy are essentially simpler
because they use modules from the lower levels.

8



Figure 1: Use hierarchy among modules

9


	Introduction
	Overview
	Context
	Design Principle
	Outline

	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	System Architecture
	Underlaying Architecture
	Leaf-level Decomposition
	Summary of Leaf Modules
	Hardware Hiding Modules (M1)
	Behaviour-Hiding Module(M2)
	Software Decision Module(M3)
	GUI Module (M6)
	Menu Module (M4)
	Model Module (M5)


	Traceability Matrix
	Use Hierarchy Between Modules

