Newer
Older
%\documentclass[handout]{beamer}
\documentclass[t,12pt,numbers,fleqn]{beamer}
%\documentclass[ignorenonframetext]{beamer}
\newif\ifquestions
%\questionstrue
\questionsfalse
\usepackage{pgfpages}
\usepackage{hyperref}
\hypersetup{colorlinks=true,
linkcolor=blue,
citecolor=blue,
filecolor=blue,
urlcolor=blue,
unicode=false}
\urlstyle{same}
\usepackage{booktabs}
\usepackage{hhline}
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array}
\bibliographystyle{plain}
%\usetheme{Iimenau}
\useoutertheme{split} %so the footline can be seen, without needing pgfpages
%\pgfpagesuselayout{resize to}[letterpaper,border shrink=5mm,landscape] %if this is uncommented, the hyperref links do not work
\mode<presentation>{}
\input{../def-beamer}
\newcommand{\topic}{04 Requirements Continued}
\input{../titlepage}
\begin{document}
\input{../footline}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Requirements}
\bi
\item Administrative details
\item Questions?
\item Requirements documentation for scientific computing
\item A new requirements template
\item Advantages of new template and examples
\item The new template from a software engineering perspective
\item Concluding remarks
\item References
\ei
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Administrative Details}
\bi
\item Add me to your GitHub repos, my GitHub id is \texttt{smiths}
\item Assign me an issue to review your problem statements
\bi
\item Clearly state that you would like me to review your problem statement
\item Include a link to your problem statement
\ei
\item Do not put generated files under version control
\item Create a \texttt{.gitignore} file
\item SRS template in blank project folder should be good
\item The CA template will be revised soon
\ei
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Administrative Details: Deadlines}
~\newline
\begin{tabular}{l l l}
\textbf{Problem Statement} & Week 02 & Sept 14\\
\textbf{SRS Present} & Week 04 & Week of Sept 24\\
\textbf{SRS} & Week 05 & Oct 4\\
Syst.\ VnV Present & Week 06 & Week of Oct 15\\
System VnV Plan & Week 07 & Oct 22\\
MG Present & Week 08 & Week of Oct 29\\
MG & Week 09 & Nov 5\\
MIS Present & Week 10 & Week of Nov 12\\
MIS & Week 11 & Nov 19\\
Unit VnV or Impl.\ Present & Week 12 & Week of Nov 26\\
Unit VnV Plan & Week 13 & Dec 3\\
Final Doc & Week 14 & Dec 10\\
\end {tabular}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Administrative Details: Presentation Schedule}
\bi
\item Wednesday: Jennifer, Yang, Brooks
\item Friday: Vajiheh, Olu, Karol
\item Wednesday: Malavika, Robert, Qirui
\item Friday: Jian, Hanane
\ei
\item MG Present
\bi
\item Wednesday: Karol, Malavika, Robert, Quirui, Jian, Hanane
\item Friday: Vajiheh, Olu, Jennifer, Yang, Brooks
\ei
\item MIS Present
\bi
\item Wednesday: Malavika, Robert, Qirui
\item Friday: Jian, Hanane, Jennifer
\item Unit VnV Plan or Impl.\ Present
\item Wednesday: Yang, Brooks, Vajiheh
\item Friday: Olu, Karol
\ei
\ei
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Administrative Details: Presentations}
\bi
\item 3 presentations each
\item Presentations are about 30 minutes, except for MG, which is 15 minutes
\item Grading out of 3
\bi
\item Generate discussion, evidence of prior thought, organized 3/3
\item Any element missing from above 2/3
\item Any two elements missing from above 1/3
\item No presentation 0/3
\ei
\ei
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Questions?}
\begin{itemize}
\item Questions about project choices?
\item Questions about software tools?
\item Questions about problem statements?
\item Questions about software qualities?
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
\begin{frame}
\frametitle{Big Picture View of SRS/CA}
\begin{itemize}
\item Goal statement(s)
\item Inputs and outputs
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Goal Statements for SWHS}
\structure{What are the goal statement for the Solar Water Heating System?}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Goal Statements for SWHS}
\noindent Given the temperature of the heating coil, initial conditions for the
temperature of the water and the temperature of the phase change material, and
material properties, the goal statements are:
\begin{itemize}
\item[GS1:] Predict the water
temperature over time.
\item[GS2:] Predict the PCM
temperature over time.
\item[GS3:] Predict the
change in the energy of the water over time.
\item[GS4:] Predict the
change in the energy of the PCM over time.
\end{itemize}
(Consider using names instead of numbers for labels.)
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Goal Statements for GlassBR}
Given the dimensions of the glass plane, glass type, the characteristics of the explosion, and
the tolerable probability of breakage, the goal statements are:
\begin{itemize}
\item[GS1:] Analyze and predict whether the
glass slab under consideration will be able to withstand the explosion of a
certain degree which is calculated based on user input.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Goal Statements for Game Physics}
\begin{itemize}
\item[G\_linear:] Given the physical properties, initial positions and
velocities, and forces applied on a set of rigid bodies, determine their new
positions and velocities over a period of time (IM-IM\_FT).
\item[G\_ang:] Given the physical properties, initial orientations and
angular velocities, and forces applied on a set of rigid bodies, determine
their new orientations and angular velocities over a period of
time. (IM-IM\_FR).
\item[G\_dtcCol:] Given the initial positions and velocities of a set
of rigid bodies, determine if any of them will collide with one another over a
period of time.
\item[G\_Col:] Given the physical properties, initial linear and angular
positions and velocities, determine the new positions and velocities over a
period of time of rigid bodies that have undergone a collision (IM-IM\_C).
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Goal Statements for Linear Solver}
\structure{What would be a good goal statement for a library of linear solvers?}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Goal Statements for Linear Solver}
\begin{itemize}
\item[G1] Given a system of $n$ linear equations represented by matrix $A$ and
column vector $b$, return $x$ such that $Ax = b$, if possible
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
\begin{frame}
\frametitle{Problems with Developing Quality Scientific Computing Software}
\begin{itemize}
\item Need to know requirements to judge reliability
\item In many cases the only documentation is the code
\item Reuse is not as common as it could be
\begin{itemize}
\item \href{http://www.andrew.cmu.edu/user/sowen/softsurv.html}{\alert{Meshing software survey}}
\item \href{http://www.engr.usask.ca/~macphed/finite/fe_resources/node137.html}{\alert{Public domain finite element
programs}}
\item etc.
\end{itemize}
\item Many people develop ``from scratch''
\item Cannot easily reproduce the work of others
\item Neglect of simple software development technology~\cite{Wilson2006}
% such as version control software
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Adapt Software Engineering Methods}
\begin{itemize}
\item Software engineering improves and quantifies quality %purpose of software engineering
\item Successfully applied in other domains
\begin{itemize}
\item Business and information systems
\item Embedded real time systems
\end{itemize}
\item Systematic engineering process
\item Design through documentation
\item Use of mathematics
\item Reuse of components
\item Warranty rather than a disclaimer %goal of software engineering
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Developing Scientific Computing Software}
\begin{itemize}
\item Facilitators
\begin{itemize}
\item One user viewpoint for specifying a physical model
\item Assumptions can be used to distinguish models
\item High potential for reuse
\item Libraries
\item Already mathematical
\end{itemize}
\item Challenges
\begin{itemize}
\item Verification and Validation
\item Acceptance of software engineering methodologies
\item No existing templates or examples %explain that templates are a tool for doc req.
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Outline of Discussion of Requirements}
\begin{itemize}
\item Background on requirements elicitation, analysis and documentation
\item Why requirements analysis for engineering computation?
\item System Requirements Specification and template for beam analysis software
\begin{itemize}
\item Provides guidelines
\item Eases transition from general to specific
\item Catalyses early consideration of design
\item Reduces ambiguity
\item Identifies range of model applicability
\item Clear documentation of assumptions
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{A Rational Design Process}
%\begin{figure}
\begin{center}
\includegraphics[width=1.0\textwidth]{../Figures/reqSE.pdf}
\end{center}
%\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Sometimes Include Commonality Analysis}
%\begin{figure}
\begin{center}
\includegraphics[width=1.0\textwidth]{../Figures/Waterfall.pdf}
\end{center}
%\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Software Requirements Activities}
\begin{itemize}
\item A software requirement is a description of how the system should behave, or of a system property or attribute
\item Requirements should be unambiguous, complete, consistent, modifiable, verifiable and traceable
\item Requirements should express ``What'' not ``How''
\item Formal versus informal specification
\item Functional versus nonfunctional requirements
\item Software requirements specification (SRS)
\item Requirements template
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Why Requirements Analysis?}
%\begin{figure}
\begin{center}
\includegraphics[width=1.0\textwidth]{../Figures/StagesInSciCompErrors.pdf}
\end{center}
%\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Beam Analysis Software}
~\newline
~\newline
\begin{center}
\includegraphics[width=1.0\textwidth]{../Figures/beamFBD.pdf}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Proposed Template}
From \cite{SmithEtAl2007}
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
\scalebox{0.85}{
\begin{minipage}{1.2\textwidth}
\begin{enumerate}
\item Reference Material: a) Table of Symbols ...
\item Introduction: a) Purpose of the Document; b) Scope of the Software Product; c) Organization of the Document.
\item General System Description: a) System Context; b) User Characteristics; c) System Constraints.
\item Specific System Description:
\begin{enumerate}
\item Problem Description: i) Background Overview ...
\item Solution specification: i) Assumptions; ii) Theoretical Models; ...
\item Non-functional Requirements: i) Accuracy of Input Data; ii) Sensitivity ...
\end{enumerate}
\item{Traceability Matrix}
\item List of Possible Changes in the Requirements
\item{Values of Auxiliary Constants}
\end{enumerate}
\end{minipage}
}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Provides Guidance}
\begin{itemize}
\item Details will not be overlooked, facilitates multidisciplinary collaboration
\item Encourages a systematic process
\item Acts as a checklist
\item Separation of concerns
\begin{itemize}
\item Discuss purpose separately from organization
\item Functional requirements separate from non-functional
%\begin{itemize}
%\item solve for forces
%\item system responds within 1 second
%\end{itemize}
\end{itemize}
\item Labels for cross-referencing
\begin{itemize}
\item Sections, physical system description, goal statements, assumptions, etc.
\item PS1.a ``the shape of the beam is long and thin''
\end{itemize}
%\item Use of parameters instead of explicit values
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Eases Transition from General to Specific}
\begin{itemize}
\item ``Big picture'' first followed by details
\item Facilitates reuse
\item ``Introduction'' to ``General System Description'' to ``Specific System Description''
\item Refinement of abstract goals to theoretical model to instanced model
\begin{itemize}
\item \textbf{G1}. Solve for the unknown external forces applied to the beam
\item $ \textbf{T1}~
\textrm{$\sum{F_{xi}} = 0$,}~
\textrm{$\sum{F_{yi}} = 0$,}~
\textrm{$\sum{M_i} = 0$}$
\item \textbf{M1} \textrm{$F_{ax} - F_1\cdot \cos\theta_3 - F_2\cdot \cos\theta_4 - F_{bx} = 0$}
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Ensures Special Cases are Considered}
\scalebox{0.6}{
\begin{tabular}{| p{3.8cm} | p{1.7cm} | p{0.05cm} | p{9.0cm} | p{1.8cm} |}
\multicolumn{3}{c}{} & \multicolumn{2}{>{\large}c}{$H_1$} \\
\hhline{|~|~|~|-|-|}
\multicolumn{3}{c}{} & \multicolumn{1}{|c|}{$S_{GET} = S_{sym} - S_{unkF}$} & $S_{GET} \ne (S_{sym} - S_{unkF})$ \\
\hhline{|~|~|~|-|-|}
\hhline{|-|-|~|-|-|} $S_{unkF} \notin \mathbb{P}_3$ & - & & $(ErrorMsg'=InvalidUnknown)$ \newline
$\land ChangeOnly(ErrorMsg)$ &
\multirow{9}{2cm}{$FALSE$} \\
\hhline{|-|-|~|-|~|} $S_{unkF} = \newline \{@{F_{ax}}, @{F_{bx}}, @{F_{ay}} \}$ & - & & $ErrorMsg'=NoSolution$ \newline
$\land ChangeOnly(ErrorMsg)$ & \\
%\hhline{|-|-|~|-|~|} $S_{unkF} = \newline \{@{F_{ax}}, @{F_{bx}}, @{F_{by}} \}$ & - & & $ErrorMsg'=NoSolution$ \newline
%$\land ChangeOnly(ErrorMsg)$ & \\
%\hhline{|-|-|~|-|~|} $S_{unkF} = \newline \{@{F_{ax}}, @{F_{bx}}, @{F_1} \}$ & - & & $ErrorMsg'=NoSolution$ \newline
%$\land ChangeOnly(ErrorMsg)$ & \\
%\hhline{|-|-|~|-|~|} $S_{unkF} = \newline \{@{F_{ax}}, @{F_{bx}}, @{F_2} \}$ & - & & $ErrorMsg'=NoSolution$ \newline
%$\land ChangeOnly(ErrorMsg)$ & \\
\hhline{|-|-|~|-|~|}
%\multirow{3}{4.2cm}
{$S_{unkF} = \newline \{@{F_{ax}}, @{F_{ay}}, @{F_1}\}$} &
$x_1 \ne 0 $ \newline
$\land~\theta_3 \ne 0$ \newline
$\land~\theta_3 \ne 180$
& &
$F_{ax}' = $\newline
$\frac{-\cos\theta_3 F_2 x_2 \sin\theta_4 + \cos\theta_3 F_{by} L + F_2 \cos\theta_4 x_1 \sin\theta_3
+ F_{bx} x_1 \sin\theta_3}{x_1 \sin\theta_3}$\newline
$\land$\newline
$F_{ay}' = -\frac{F_2 x_2 \sin\theta_4 - F_{by} L - F_2 \sin\theta_4 x_1 + F_{by} x_1}{x_1}$\newline
{$\land~F_1' = \frac{-F_2 x_2 \sin\theta_4 + F_{by} L}{x_1 \sin\theta_3} \land ChangeOnly(S_{unkF})$}
& \\
\hhline{|~|-|~|-|~|} & $otherwise$ & & $(ErrorMsg'=Indeterminant)$\newline
$\land ChangeOnly(ErrorMsg)$ & \\
\hhline{|-|-|~|-|-|}
\multicolumn{5}{c}{} \\
\multicolumn{3}{>{\large}c}{$H_2$} & \multicolumn{2}{>{\large}c}{$G$} \\
\end{tabular} }
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Catalyses Early Consideration of Design}
\begin{itemize}
\item Identification of significant issues early will improve the design
\item Section for considering sensitivity
\begin{itemize}
\item Conditioning?
\item Buckling of beam
\end{itemize}
\item Non-functional requirements
\begin{itemize}
\item Tradeoffs in design
\item Speed efficiency versus accuracy
\end{itemize}
\item Tolerance allowed for solution: $|\sum{F_{xi}}| / \sqrt{\sum{F_{xi}}^2} \le \epsilon$
\item Solution validation strategies
\item List of possible changes in requirements
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Reduces Ambiguity}
\begin{itemize}
\item Unambiguous requirements allow communication between experts, requirements review, designers do not have to
make arbitrary decisions
\item Tabular expressions allow automatic verification of completeness
\item Table of symbols
\item Abbreviations and acronyms
\item Scope of software product and system context
\item User characteristics
\item Terminology definition and data definition
\item Ends arguments about the relative merits of different designs
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Identifies Range of Model Applicability}
\begin{itemize}
\item Clear documentation as to when model applies
\item Can make the design specific to the problem
\item Input data constraints are identified
\begin{itemize}
\item Physically meaningful: $0 \leq x_1 \leq L$
\item Maintain physical description: PS1.a, $0 < h \leq 0.1 L$
\item Reasonable requirements: $0 \leq \theta_3 \leq 180$
\end{itemize}
\item The constraints for each variable are documented by tables, which are later composed together
\item $(min_f \le |F_{ax}| \le max_f)
\land (|F_{ax}| \ne 0) \Rightarrow \forall ({FF}|{@{FF} \in S_F} \cdot {FF \ne 0
\land \frac{max\{{|F_{ax}|,|FF|}\}}{min\{{|F_{ax}|, |FF|}\}} \le 10 ^ {r_f}})$
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Summary of Variables}
\begin{table}
\begin{center}
\scalebox{0.9}{
\begin{tabular}{|l|l|p{3.0cm}|p{3.3cm}|l|}
\multicolumn{5}{c}{} \\
\hline
\textbf{Var} & \textbf{Type} & \textbf{Physical\newline Constraints} & \textbf{System\newline Constraints} &
\textbf{Prop} \\
\hline $x$ & $Real$ & $x\ge 0 \land x\le L$ & $min_d \le x \le max_d$ & NIV \\
\hline $x_1$ & $Real$ & $x_1\ge0 \land x_1\le L$ & $min_d \le x_1 \le max_d$ & IN \\
\hline $x_2$ & $Real$ & $x_2\ge0 \land x_2\le L$ & $min_d \le x_2 \le max_d$ & IN \\
\hline $e$ & $Real$ & $e>0 \land e \le h$ & $min_e \le e \le max_e$ & IN \\
\hline $h$ & $Real$ & $h>0 \land h\le 0.1L$ & $min_h \le h \le max_h$ & IN \\
\hline $L$ & $Real$ & $L>0$ & $min_d \le L \le max_d$ & IN \\
\hline $E$ & $Real$ & $E>0$ & $min_E \le E \le max_E$ & IN \\
\hline $\theta_3$ & $Real$ & $-\infty < \theta_3 < +\infty$ & $0 \le \theta_3 \le 180$ & IN \\
\hline $\theta_4$ & $Real$ & $-\infty < \theta_4 < +\infty$ & $0 \le \theta_4 \le 180$ & IN \\
\hline $V$ & $Real$ & $-\infty < V < +\infty$ & - & OUT \\
\hline $M$ & $Real$ & $-\infty < M < +\infty$ & - & OUT \\
\hline $y$ & $Real$ & $-\infty < y < +\infty$ & - & OUT \\
\hline $...$ & $...$ & $...$ & ... & ... \\
\hline
\end{tabular} }
\end{center}
\end{table}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Clear Documentation of Assumptions}
\scalebox{0.82}{
\begin{tabular}{| p{1.3cm} | p{1.3cm} | l | l | l | l | l | l | l | l | l | l | l | l |}
\hhline{--------------}
Phy. Sys. /Goal & Data /Model & \multicolumn{10}{c|}{Assumption} & \multicolumn{2}{c|}{Model} \\
\hhline{~~------------}
& & A1 & A2 & ... & A4 & ... & A8 & A9 & A10 & ... & A14 & \textbf{M1} & ... \\
\hhline{--------------}
\textbf{G1} & \textbf{T1} & $\surd$ & & ... & & ... & $\surd$ & $\surd$ & & ... & & $\surd$ & ...\\
\hhline{--------------}
\textbf{G2} & \textbf{T2} & $\surd$ & & ... & &... & $\surd$ & $\surd$ & & ... & & & ... \\
\hhline{--------------}
\textbf{G3} & \textbf{T3} & $\surd$ & & ... & &... & & $\surd$ & $\surd$ & ... & & & ...\\
\hhline{--------------}
~ & \textbf{M1} & & $\surd$ & ... & & ... & & & & ... & & $\surd$ &... \\
\hhline{--------------}
PS1.a & $L$ & & &... & &... & & & $\surd$ & ... & & ... & ... \\
\hhline{--------------}
... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... \\
\hhline{--------------}
\end{tabular}
}
~\newline
~\newline
\textbf{A10}. The deflection of the beam is caused by bending moment only, the shear does not contribute.\\
%\textbf{A15}. The beam behaves as a rigid body
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frame{\frametitle{More on the Template}
\begin{itemize}%[<+-| alert@+>]%[iacolor=gray]
\item Why a new template?
\item The new template
\begin{itemize}
\item Overview of changes from existing templates
\item Goal $\rightarrow$ Theoretical Model $\rightarrow$ Instanced Model hierarchy
\item Traceability matrix
\item System behaviour, including input constraints
\end{itemize}
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frame{\frametitle{Why a New Template?}
From \cite{SmithAndLai2005}
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
\begin{enumerate}%[<+-| alert@+>]%[iacolor=gray]
%\item Reasons for a new template also form principles for its design
\item One user viewpoint for the physical model
\item Assumptions distinguish models
\item High potential for reuse of functional requirements
\item Characteristic hierarchical nature facilitates change
\item Continuous mathematics presents a challenge
\end{enumerate}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frame{\frametitle{Overview of the New Template}
\begin{itemize}
\item{Reference Material}
\item{Introduction:}
{a) Purpose of the Document}
{b) Scope of the Software Product}
{c) Organization of the Document}
\item General System Description:
{a) System Context}
{b) User Characteristics}
{c) System Constraints}
\item \structure<2->{Specific System Description:
a) Problem Description
b) Solution Characteristics Specification
c) Non-functional Requirements}
\item{Other System Issues}
\item \structure<2->{Traceability Matrix}
\item List of Possible Changes in the Requirements
\item{Values of Auxiliary Constants}
\item{References}
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Excerpts from Specific System Description}
\begin{itemize}
\item Problem Description
\begin{itemize}
\item Physical system description (\textbf{PS})
\item Goals (\textbf{G})
\end{itemize}
\item Solution Characteristics Specification
\begin{itemize}
\item Assumptions (\textbf{A})
\item Theoretical models (\textbf{T})
\item Data definitions
\item Instanced models (\textbf{M})
\item Data constraints
\item System behaviour
\end{itemize}
\item Non-functional Requirements
\begin{itemize}
\item Accuracy of input data
\item Sensitivity of the model
\item Tolerance of the solution
\item Solution validation strategies
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Refinement from Abstract to Concrete}
\begin{overlayarea}{\textwidth}{5.3cm}
\begin{figure}[H]
\includegraphics<1>[scale=0.41]{../Figures/RefinementHierarchy.pdf}
\includegraphics<2>[scale=0.41]{../Figures/RefinementG1.pdf}
\includegraphics<3>[scale=0.41]{../Figures/RefinementT11.pdf}
\includegraphics<4>[scale=0.41]{../Figures/RefinementM111.pdf}
\includegraphics<5>[scale=0.41]{../Figures/RefinementT12.pdf}
\end{figure}
\end{overlayarea}
\begin{overlayarea}{\textwidth}{1cm}
\only<2>{\textbf{G1}: Solve for unknown forces}
\only<3>{
\begin{center}
$%\begin{displaymath}
\mathbf{(T1_1)}~\left\{
\begin{array}{lll}
\textrm{$\sum{F_{xi}} = 0$}\\
\textrm{$\sum{F_{yi}} = 0$}\\
\textrm{$\sum{M_i} = 0$}\\
\end{array} \right. $%\end{displaymath}
\end{center}
}
\only<4>{
\begin{center} $%\begin{displaymath}
\textbf{(M1)}~\left\{
\begin{array}{lll}
\textrm{$F_{ax} - F_1\cdot \cos\theta_3 - F_2\cdot \cos\theta_4 - F_{bx} = 0$} \\
\textrm{$F_{ay} - F_1\cdot \sin\theta_3 - F_2\cdot \sin\theta_4 + F_{by} = 0$}\\
\textrm{$- F_1\cdot x_1\sin\theta_3 - F_2\cdot x_2\sin\theta_4 + F_{by}\cdot L = 0$}\\
\end{array} \right.
$%\end{displaymath}
\end{center}
}
\only<5>{
The virtual work done by all the external forces and couples acting on the system is zero for each independent virtual
displacement of the system, or mathematically $\delta U = 0$
}
\end{overlayarea}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Other goals and models}
\begin{itemize}
\item \textbf{G2}: Solve for the functions of shear force and bending moment along the beam
\item \textbf{G3}: Solve for the function of deflection along the beam
\item $\mathbf{T3_1}$: $\frac{d^2 y}{d x^2} = \frac{M}{EI}$, $y(0) = y(L) = 0$
\item $\mathbf{T3_2}$: $y$ determined by moment area method
\item $\mathbf{T3_3}$: $y$ determined using Castigliano's theorem
\item $\mathbf{M3_{11}}$: $y = \frac{12 \int_0^L (\int_0^L M dx) dx}{Eeh^3}$, $y(0) = y(L) = 0$
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Kreyman and Parnas Five Variable Model}
\begin{itemize}
\item See \cite{KreymanAndParnas2002}
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
\item An alternative approach
\item Unfortunately the numerical algorithm is not hidden in the requirements specification
\item The analogy with real-time systems leads to some confusion
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Examples}
\begin{itemize}
\item \href{https://github.com/smiths/swhs}{Solar Water Heating System}
\item \href{https://github.com/JacquesCarette/literate-scientific-software/tree/master/CaseStudies/glass/Documentation/SRS}{GlassBR}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Summary of Template}
\begin{itemize}
\item Quality is a concern for scientific computing software
\item Software engineering methodologies can help
\item Motivated, justified and illustrated a method of writing requirements specification for engineering computation
to improve reliability
\item Also improve quality with respect to usability, verifiability, maintainability, reusability and portability
\item Tabular expressions to reduce ambiguity, encourage systematic approach
\item Conclusions can be generalized because other computation problems follow the same pattern of \emph{Input} then
\emph{Calculate} then \emph{Output}
\item Benefits of approach should increase as the number of details and the number of people involved increase
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Summary of Template (Continued)}
\begin{itemize}
\item A new template for scientific computing has been developed
\item Characteristics of scientific software guided the design
\item Designed for reuse
\item Functional requirements split into ``Problem Description'' and ``Solution Characteristics Specification''
\item Traceability matrix
\item Addresses nonfunctional requirements (but room for improvement)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[allowframebreaks]
\frametitle{References}
\bibliography{../../ReferenceMaterial/References}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%