-
W. Spencer Smith authored
a commonality analysis.
W. Spencer Smith authoreda commonality analysis.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
SRS.tex 26.66 KiB
\documentclass[12pt]{article}
\usepackage{amsmath, mathtools}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{colortbl}
\usepackage{xr}
\usepackage{hyperref}
\usepackage{longtable}
\usepackage{xfrac}
\usepackage{tabularx}
\usepackage{float}
\usepackage{siunitx}
\usepackage{booktabs}
\usepackage{caption}
\usepackage{pdflscape}
\usepackage{afterpage}
\usepackage[round]{natbib}
%\usepackage{refcheck}
\hypersetup{
bookmarks=true, % show bookmarks bar?
colorlinks=true, % false: boxed links; true: colored links
linkcolor=red, % color of internal links (change box color with linkbordercolor)
citecolor=green, % color of links to bibliography
filecolor=magenta, % color of file links
urlcolor=cyan % color of external links
}
\input{../Comments}
% For easy change of table widths
\newcommand{\colZwidth}{1.0\textwidth}
\newcommand{\colAwidth}{0.13\textwidth}
\newcommand{\colBwidth}{0.82\textwidth}
\newcommand{\colCwidth}{0.1\textwidth}
\newcommand{\colDwidth}{0.05\textwidth}
\newcommand{\colEwidth}{0.8\textwidth}
\newcommand{\colFwidth}{0.17\textwidth}
\newcommand{\colGwidth}{0.5\textwidth}
\newcommand{\colHwidth}{0.28\textwidth}
% Used so that cross-references have a meaningful prefix
\newcounter{defnum} %Definition Number
\newcommand{\dthedefnum}{GD\thedefnum}
\newcommand{\dref}[1]{GD\ref{#1}}
\newcounter{datadefnum} %Datadefinition Number
\newcommand{\ddthedatadefnum}{DD\thedatadefnum}
\newcommand{\ddref}[1]{DD\ref{#1}}
\newcounter{theorynum} %Theory Number
\newcommand{\tthetheorynum}{T\thetheorynum}
\newcommand{\tref}[1]{T\ref{#1}}
\newcounter{tablenum} %Table Number
\newcommand{\tbthetablenum}{T\thetablenum}
\newcommand{\tbref}[1]{TB\ref{#1}}
\newcounter{assumpnum} %Assumption Number
\newcommand{\atheassumpnum}{P\theassumpnum}
\newcommand{\aref}[1]{A\ref{#1}}
\newcounter{goalnum} %Goal Number
\newcommand{\gthegoalnum}{P\thegoalnum}
\newcommand{\gsref}[1]{GS\ref{#1}}
\newcounter{instnum} %Instance Number
\newcommand{\itheinstnum}{IM\theinstnum}
\newcommand{\iref}[1]{IM\ref{#1}}
\newcounter{reqnum} %Requirement Number
\newcommand{\rthereqnum}{P\thereqnum}
\newcommand{\rref}[1]{R\ref{#1}}
\newcounter{lcnum} %Likely change number
\newcommand{\lthelcnum}{LC\thelcnum}
\newcommand{\lcref}[1]{LC\ref{#1}}
\newcommand{\progname}{ProgName} % PUT YOUR PROGRAM NAME HERE
\usepackage{fullpage}
\begin{document}
\title{Project Title}
\author{Author Name}
\date{\today}
\maketitle
\pagenumbering{roman}
\tableofcontents
\begin{table}[bp]
\caption{\bf Revision History}
\begin{tabularx}{\textwidth}{p{3cm}p{2cm}X}
\toprule {\bf Date} & {\bf Version} & {\bf Notes}\\
\midrule
Date 1 & 1.0 & Notes\\
Date 2 & 1.1 & Notes\\
\bottomrule
\end{tabularx}
\end{table}
\section{Reference Material}
This section records information for easy reference.
\subsection{Table of Units}
Throughout this document SI (Syst\`{e}me International d'Unit\'{e}s) is employed
as the unit system. In addition to the basic units, several derived units are
used as described below. For each unit, the symbol is given followed by a
description of the unit and the SI name.
~\newline
\renewcommand{\arraystretch}{1.2}
%\begin{table}[ht]
\noindent \begin{tabular}{l l l}
\toprule
\textbf{symbol} & \textbf{unit} & \textbf{SI}\\
\midrule
\si{\metre} & length & metre\\
\si{\kilogram} & mass & kilogram\\
\si{\second} & time & second\\
\si{\celsius} & temperature & centigrade\\
\si{\joule} & energy & Joule\\
\si{\watt} & power & Watt (W = \si{\joule\per\second})\\
\bottomrule
\end{tabular}
% \caption{Provide a caption}
%\end{table}
\wss{Only include the units that your SRS actually uses}
\subsection{Table of Symbols}
The table that follows summarizes the symbols used in this document along with
their units. The choice of symbols was made to be consistent with the heat
transfer literature and with existing documentation for solar water heating
systems. The symbols are listed in alphabetical order.
\renewcommand{\arraystretch}{1.2}
%\noindent \begin{tabularx}{1.0\textwidth}{l l X}
\noindent \begin{longtable*}{l l p{12cm}} \toprule
\textbf{symbol} & \textbf{unit} & \textbf{description}\\
\midrule
$A_C$ & \si[per-mode=symbol] {\square\metre} & coil surface area
\\
$A_\text{in}$ & \si[per-mode=symbol] {\square\metre} & surface area over
which heat is transferred in
\\
\bottomrule
\end{longtable*}
\wss{Use your problems actual symbols. The si package is a good idea to use for
units.}
\subsection{Abbreviations and Acronyms}
\renewcommand{\arraystretch}{1.2}
\begin{tabular}{l l}
\toprule
\textbf{symbol} & \textbf{description}\\
\midrule
A & Assumption\\
DD & Data Definition\\
GD & General Definition\\
GS & Goal Statement\\
IM & Instance Model\\
LC & Likely Change\\
PS & Physical System Description\\
R & Requirement\\
SRS & Software Requirements Specification\\
\progname{} & \wss{put your program name here}\\
T & Theoretical Model\\
\bottomrule
\end{tabular}\\
\wss{Add any other abbreviations or acronyms that you add}
\newpage
\pagenumbering{arabic}
\section{Introduction}
\wss{This SRS template is based on \citet{SmithAndLai2005, SmithEtAl2007}. It
will get you started, but you will have to make changes. Any changes to
section headings should be approved by the instructor, since that implies a
deviation from the template. Although the bits shown below do not include
type information, you may need to add this information for your problem.}
\wss{Feel free to change the appearance of the report by modifying the LaTeX
commands.}
\wss{If you are documenting a family of models, you can start from this same
template, but you will have to add a section for variabilities. For program
families you should look at \cite{Smith2006, SmithMcCutchanAndCarette2017}.
You should be able to do one document that captures the commonality analysis
and the requirements.}
\subsection{Purpose of Document}
\subsection{Scope of Requirements}
\subsection{Characteristics of Intended Reader}
\subsection{Organization of Document}
\section{General System Description}
This section identifies the interfaces between the system and its environment,
describes the user characteristics and lists the system constraints.
\subsection{System Context}
\wss{Your system context will likely include an explicit list of user and system
responsibilities}
\begin{itemize}
\item User Responsibilities:
\begin{itemize}
\item
\end{itemize}
\item \progname{} Responsibilities:
\begin{itemize}
\item Detect data type mismatch, such as a string of characters instead of a
floating point number
\item
\end{itemize}
\end{itemize}
\subsection{User Characteristics} \label{SecUserCharacteristics}
The end user of \progname{} should have an understanding of undergraduate Level
1 Calculus and Physics.
\subsection{System Constraints}
\wss{You may not have any system constraints}
\section{Specific System Description}
This section first presents the problem description, which gives a high-level
view of the problem to be solved. This is followed by the solution characteristics
specification, which presents the assumptions, theories, definitions and finally
the instance models. \wss{Add any project specific details that are relevant
for the section overview.}
\subsection{Problem Description} \label{Sec_pd}
\progname{} is \wss{what problem does your program solve?}
\subsubsection{Terminology and Definitions}
This subsection provides a list of terms that are used in the subsequent
sections and their meaning, with the purpose of reducing ambiguity and making it
easier to correctly understand the requirements:
\begin{itemize}
\item
\end{itemize}
\subsubsection{Physical System Description}
The physical system of \progname{}, as shown in Figure~?,
includes the following elements:
\begin{itemize}
\item[PS1:]
\item[PS2:] ...
\end{itemize}
\wss{A figure here may make sense for most SRS documents}
% \begin{figure}[h!]
% \begin{center}
% %\rotatebox{-90}
% {
% \includegraphics[width=0.5\textwidth]{<FigureName>}
% }
% \caption{\label{<Label>} <Caption>}
% \end{center}
% \end{figure}
\subsubsection{Goal Statements}
\noindent Given the \wss{inputs}, the goal statements are:
\begin{itemize}
\item[GS\refstepcounter{goalnum}\thegoalnum \label{G_meaningfulLabel}:] \wss{One
sentence description of the goal. There may be more than one. Each Goal
should have a meaningful label.}
\end{itemize}
\subsection{Solution Characteristics Specification}
The instance models that govern \progname{} are presented in
Subsection~\ref{sec_instance}. The information to understand the meaning of the
instance models and their derivation is also presented, so that the instance
models can be verified.
\subsubsection{Assumptions}
This section simplifies the original problem and helps in developing the
theoretical model by filling in the missing information for the physical
system. The numbers given in the square brackets refer to the theoretical model
[T], general definition [GD], data definition [DD], instance model [IM], or
likely change [LC], in which the respective assumption is used.
\begin{itemize}
\item[A\refstepcounter{assumpnum}\theassumpnum \label{A_meaningfulLabel}:]
\wss{Short description of each assumption. Each assumption
should have a meaningful label. Use cross-references to identify the
appropriate traceability to T, GD, DD etc., using commands like dref, ddref etc.}
\end{itemize}
\subsubsection{Theoretical Models}\label{sec_theoretical}
This section focuses on the general equations and laws that \progname{} is based
on. \wss{Modify the examples below for your problem, and add additional models
as appropriate.}
~\newline
\noindent
\begin{minipage}{\textwidth}
\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{| p{\colAwidth} | p{\colBwidth}|}
\hline
\rowcolor[gray]{0.9}
Number& T\refstepcounter{theorynum}\thetheorynum \label{T_COE}\\
\hline
Label&\bf Conservation of thermal energy\\
\hline
Equation& $-{\bf \nabla \cdot q} + g$ = $\rho C \frac{\partial T}{\partial t}$\\
\hline
Description &
The above equation gives the conservation of energy for transient heat transfer in a material
of specific heat capacity $C$ (\si{\joule\per\kilogram\per\celsius}) and density $\rho$
(\si{\kilogram\per\cubic\metre}), where $\bf q$ is the thermal flux vector (\si{\watt\per\square\metre}),
$g$ is the volumetric heat generation
(\si{\watt\per\cubic\metre}), $T$ is the temperature
(\si{\celsius}), $t$ is time (\si{\second}), and $\nabla$ is
the gradient operator. For this equation to apply, other forms
of energy, such as mechanical energy, are assumed to be negligible in the
system (\aref{A_OnlyThermalEnergy}). In general, the material properties ($\rho$ and $C$) depend on temperature.\\
\hline
Source &
\url{http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm}\\
% The above web link should be replaced with a proper citation to a publication
\hline
Ref.\ By & \dref{ROCT}\\
\hline
\end{tabular}
\end{minipage}\\
~\newline
\subsubsection{General Definitions}\label{sec_gendef}
This section collects the laws and equations that will be used in deriving the
data definitions, which in turn are used to build the instance models.
\wss{Some projects may not have any content for this section, but the section
heading should be kept.} \wss{Modify the examples below for your problem, and
add additional definitions as appropriate.}
~\newline
\noindent
\begin{minipage}{\textwidth}
\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{| p{\colAwidth} | p{\colBwidth}|}
\hline
\rowcolor[gray]{0.9}
Number& GD\refstepcounter{defnum}\thedefnum \label{NL}\\
\hline
Label &\bf Newton's law of cooling \\
\hline
% Units&$MLt^{-3}T^0$\\
% \hline
SI Units&\si{\watt\per\square\metre}\\
\hline
Equation&$ q(t) = h \Delta T(t)$ \\
\hline
Description &
Newton's law of cooling describes convective cooling from a surface. The law is
stated as: the rate of heat loss from a body is proportional to the difference
in temperatures between the body and its surroundings.
\\
& $q(t)$ is the thermal flux (\si{\watt\per\square\metre}).\\
& $h$ is the heat transfer coefficient, assumed independent of $T$ (\aref{A_hcoeff})
(\si{\watt\per\square\metre\per\celsius}).\\
&$\Delta T(t)$= $T(t) - T_{\text{env}}(t)$ is the time-dependent thermal gradient
between the environment and the object (\si{\celsius}).
\\
\hline
Source &~\cite[p.\ 8]{Incropera2007}\\
\hline
Ref.\ By & \ddref{FluxCoil}, \ddref{FluxPCM}\\
\hline
\end{tabular}
\end{minipage}\\
\subsubsection*{Detailed derivation of simplified rate of change of temperature}
\wss{This may be necessary when the necessary information does not fit in the
description field.}
\subsubsection{Data Definitions}\label{sec_datadef}
This section collects and defines all the data needed to build the instance
models. The dimension of each quantity is also given. \wss{Modify the examples
below for your problem, and add additional definitions as appropriate.}
~\newline
\noindent
\begin{minipage}{\textwidth}
\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{| p{\colAwidth} | p{\colBwidth}|}
\hline
\rowcolor[gray]{0.9}
Number& DD\refstepcounter{datadefnum}\thedatadefnum \label{FluxCoil}\\
\hline
Label& \bf Heat flux out of coil\\
\hline
Symbol &$q_C$\\
\hline
% Units& $Mt^{-3}$\\
% \hline
SI Units & \si{\watt\per\square\metre}\\
\hline
Equation&$q_C(t) = h_C (T_C - T_W(t))$, over area $A_C$\\
\hline
Description &
$T_C$ is the temperature of the coil (\si{\celsius}). $T_W$ is the temperature of the water (\si{\celsius}).
The heat flux out of the coil, $q_C$ (\si{\watt\per\square\metre}), is found by
assuming that Newton's Law
of Cooling applies (\aref{A_Newt_coil}). This law (\dref{NL}) is used on the surface of
the coil, which has area $A_C$ (\si{\square\metre}) and heat
transfer coefficient $h_C$
(\si{\watt\per\square\metre\per\celsius}). This equation
assumes that the temperature of the coil is constant over time (\aref{A_tcoil}) and that it does not vary along the length
of the coil (\aref{A_tlcoil}).
\\
\hline
Sources&~\cite{Lightstone2012} \\
\hline
Ref.\ By & \iref{ewat}\\
\hline
\end{tabular}
\end{minipage}\\
\subsubsection{Instance Models} \label{sec_instance}
This section transforms the problem defined in Section~\ref{Sec_pd} into
one which is expressed in mathematical terms. It uses concrete symbols defined
in Section~\ref{sec_datadef} to replace the abstract symbols in the models
identified in Sections~\ref{sec_theoretical} and~\ref{sec_gendef}.
The goals \wss{reference your goals} are solved by \wss{reference your instance
models}. \wss{other details, with cross-references where appropriate.}
\wss{Modify the examples below for your problem, and add additional models as
appropriate.}
~\newline
%Instance Model 1
\noindent
\begin{minipage}{\textwidth}
\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{| p{\colAwidth} | p{\colBwidth}|}
\hline
\rowcolor[gray]{0.9}
Number& IM\refstepcounter{instnum}\theinstnum \label{ewat}\\
\hline
Label& \bf Energy balance on water to find $T_W$\\
\hline
Input&$m_W$, $C_W$, $h_C$, $A_C$, $h_P$, $A_P$, $t_\text{final}$, $T_C$,
$T_\text{init}$, $T_P(t)$ from \iref{epcm}\\
& The input is constrained so that $T_\text{init} \leq T_C$ (\aref{A_charge})\\
\hline
Output&$T_W(t)$, $0\leq t \leq t_\text{final}$, such that\\
&$\frac{dT_W}{dt} = \frac{1}{\tau_W}[(T_C - T_W(t)) + {\eta}(T_P(t) - T_W(t))]$,\\
&$T_W(0) = T_P(0) = T_\text{init}$ (\aref{A_InitTemp}) and $T_P(t)$ from \iref{epcm} \\
\hline
Description&$T_W$ is the water temperature (\si{\celsius}).\\
&$T_P$ is the PCM temperature (\si{\celsius}).\\
&$T_C$ is the coil temperature (\si{\celsius}).\\
&$\tau_W = \frac{m_W C_W}{h_C A_C}$ is a constant (\si{\second}).\\
&$\eta = \frac{h_P A_P}{h_C A_C}$ is a constant (dimensionless).\\
& The above equation applies as long as the water is in liquid form,
$0<T_W<100^o\text{C}$, where $0^o\text{C}$ and $100^o\text{C}$ are the melting
and boiling points of water, respectively (\aref{A_OpRange}, \aref{A_Pressure}).
\\
\hline
Sources&~\cite{Lightstone2012} \ \\
\hline
Ref.\ By & \iref{epcm}\\
\hline
\end{tabular}
\end{minipage}\\
%~\newline
\subsubsection*{Derivation of ...}
\wss{May be necessary to include this subsection in some cases.}
\subsubsection{Data Constraints} \label{sec_DataConstraints}
Tables~\ref{TblInputVar} and \ref{TblOutputVar} show the data constraints on the
input and output variables, respectively. The column for physical constraints gives
the physical limitations on the range of values that can be taken by the
variable. The column for software constraints restricts the range of inputs to
reasonable values. The constraints are conservative, to give the user of the
model the flexibility to experiment with unusual situations. The column of
typical values is intended to provide a feel for a common scenario. The
uncertainty column provides an estimate of the confidence with which the
physical quantities can be measured. This information would be part of the
input if one were performing an uncertainty quantification exercise.
The specification parameters in Table~\ref{TblInputVar} are listed in
Table~\ref{TblSpecParams}.
\begin{table}[!h]
\caption{Input Variables} \label{TblInputVar}
\renewcommand{\arraystretch}{1.2}
\noindent \begin{longtable*}{l l l l c}
\toprule
\textbf{Var} & \textbf{Physical Constraints} & \textbf{Software Constraints} &
\textbf{Typical Value} & \textbf{Uncertainty}\\
\midrule
$L$ & $L > 0$ & $L_{\text{min}} \leq L \leq L_{\text{max}}$ & 1.5 \si[per-mode=symbol] {\metre} & 10\%
\\
\bottomrule
\end{longtable*}
\end{table}
\noindent
\begin{description}
\item[(*)] \wss{you might need to add some notes or clarifications}
\end{description}
\begin{table}[!h]
\caption{Specification Parameter Values} \label{TblSpecParams}
\renewcommand{\arraystretch}{1.2}
\noindent \begin{longtable*}{l l}
\toprule
\textbf{Var} & \textbf{Value} \\
\midrule
$L_\text{min}$ & 0.1 \si{\metre}\\
\bottomrule
\end{longtable*}
\end{table}
\begin{table}[!h]
\caption{Output Variables} \label{TblOutputVar}
\renewcommand{\arraystretch}{1.2}
\noindent \begin{longtable*}{l l}
\toprule
\textbf{Var} & \textbf{Physical Constraints} \\
\midrule
$T_W$ & $T_\text{init} \leq T_W \leq T_C$ (by~\aref{A_charge})
\\
\bottomrule
\end{longtable*}
\end{table}
\subsubsection{Properties of a Correct Solution} \label{sec_CorrectSolution}
\noindent
A correct solution must exhibit \wss{fill in the details}
\section{Requirements}
This section provides the functional requirements, the business tasks that the
software is expected to complete, and the nonfunctional requirements, the
qualities that the software is expected to exhibit.
\subsection{Functional Requirements}
\noindent \begin{itemize}
\item[R\refstepcounter{reqnum}\thereqnum \label{R_Inputs}:] \wss{Requirements
for the inputs that are supplied by the user. This information has to be
explicit.}
\item[R\refstepcounter{reqnum}\thereqnum \label{R_OutputInputs}:] \wss{It isn't
always required, but often echoing the inputs as part of the output is a
good idea.}
\item[R\refstepcounter{reqnum}\thereqnum \label{R_Calculate}:] \wss{Calculation
related requirements.}
\item[R\refstepcounter{reqnum}\thereqnum \label{R_VerifyOutput}:]
\wss{Verification related requirements.}
\item[R\refstepcounter{reqnum}\thereqnum \label{R_Output}:] \wss{Output related
requirements.}
\end{itemize}
\subsection{Nonfunctional Requirements}
\wss{List your nonfunctional requirements. You may consider using a fit
criterion to make them verifiable.}
\section{Likely Changes}
\noindent \begin{itemize}
\item[LC\refstepcounter{lcnum}\thelcnum\label{LC_meaningfulLabel}:] \wss{Give
the likely changes, with a reference to the related assumption (aref), as appropriate.}
\end{itemize}
\section{Traceability Matrices and Graphs}
The purpose of the traceability matrices is to provide easy references on what
has to be additionally modified if a certain component is changed. Every time a
component is changed, the items in the column of that component that are marked
with an ``X'' may have to be modified as well. Table~\ref{Table:trace} shows the
dependencies of theoretical models, general definitions, data definitions, and
instance models with each other. Table~\ref{Table:R_trace} shows the
dependencies of instance models, requirements, and data constraints on each
other. Table~\ref{Table:A_trace} shows the dependencies of theoretical models,
general definitions, data definitions, instance models, and likely changes on
the assumptions.
\wss{You will have to modify these tables for your problem.}
\afterpage{
\begin{landscape}
\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& \aref{A_OnlyThermalEnergy}& \aref{A_hcoeff}& \aref{A_mixed}& \aref{A_tpcm}& \aref{A_const_density}& \aref{A_const_C}& \aref{A_Newt_coil}& \aref{A_tcoil}& \aref{A_tlcoil}& \aref{A_Newt_pcm}& \aref{A_charge}& \aref{A_InitTemp}& \aref{A_OpRangePCM}& \aref{A_OpRange}& \aref{A_htank}& \aref{A_int_heat}& \aref{A_vpcm}& \aref{A_PCM_state}& \aref{A_Pressure} \\
\hline
\tref{T_COE} & X& & & & & & & & & & & & & & & & & & \\ \hline
\tref{T_SHE} & & & & & & & & & & & & & & & & & & & \\ \hline
\tref{T_LHE} & & & & & & & & & & & & & & & & & & & \\ \hline
\dref{NL} & & X& & & & & & & & & & & & & & & & & \\ \hline
\dref{ROCT} & & & X& X& X& X& & & & & & & & & & & & & \\ \hline
\ddref{FluxCoil} & & & & & & & X& X& X& & & & & & & & & & \\ \hline
\ddref{FluxPCM} & & & X& X& & & & & & X& & & & & & & & & \\ \hline
\ddref{D_HOF} & & & & & & & & & & & & & & & & & & & \\ \hline
\ddref{D_MF} & & & & & & & & & & & & & & & & & & & \\ \hline
\iref{ewat} & & & & & & & & & & & X& X& & X& X& X& & & X \\ \hline
\iref{epcm} & & & & & & & & & & & & X& X& & & X& X& X& \\ \hline
\iref{I_HWAT} & & & & & & & & & & & & & & X& & & & & X \\ \hline
\iref{I_HPCM} & & & & & & & & & & & & & X& & & & & X & \\ \hline
\lcref{LC_tpcm} & & & & X& & & & & & & & & & & & & & & \\ \hline
\lcref{LC_tcoil} & & & & & & & & X& & & & & & & & & & & \\ \hline
\lcref{LC_tlcoil} & & & & & & & & & X& & & & & & & & & & \\ \hline
\lcref{LC_charge} & & & & & & & & & & & X& & & & & & & & \\ \hline
\lcref{LC_InitTemp} & & & & & & & & & & & & X& & & & & & & \\ \hline
\lcref{LC_htank} & & & & & & & & & & & & & & & X& & & & \\
\hline
\end{tabular}
\caption{Traceability Matrix Showing the Connections Between Assumptions and Other Items}
\label{Table:A_trace}
\end{table}
\end{landscape}
}
\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& \tref{T_COE}& \tref{T_SHE}& \tref{T_LHE}& \dref{NL}& \dref{ROCT} & \ddref{FluxCoil}& \ddref{FluxPCM} & \ddref{D_HOF}& \ddref{D_MF}& \iref{ewat}& \iref{epcm}& \iref{I_HWAT}& \iref{I_HPCM} \\
\hline
\tref{T_COE} & & & & & & & & & & & & & \\ \hline
\tref{T_SHE} & & & X& & & & & & & & & & \\ \hline
\tref{T_LHE} & & & & & & & & & & & & & \\ \hline
\dref{NL} & & & & & & & & & & & & & \\ \hline
\dref{ROCT} & X& & & & & & & & & & & & \\ \hline
\ddref{FluxCoil} & & & & X& & & & & & & & & \\ \hline
\ddref{FluxPCM} & & & & X& & & & & & & & & \\ \hline
\ddref{D_HOF} & & & & & & & & & & & & & \\ \hline
\ddref{D_MF} & & & & & & & & X& & & & & \\ \hline
\iref{ewat} & & & & & X& X& X& & & & X& & \\ \hline
\iref{epcm} & & & & & X& & X& & X& X& & & X \\ \hline
\iref{I_HWAT} & & X& & & & & & & & & & & \\ \hline
\iref{I_HPCM} & & X& X& & & & X& X& X& & X& & \\
\hline
\end{tabular}
\caption{Traceability Matrix Showing the Connections Between Items of Different Sections}
\label{Table:trace}
\end{table}
\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
& \iref{ewat}& \iref{epcm}& \iref{I_HWAT}& \iref{I_HPCM}& \ref{sec_DataConstraints}& \rref{R_RawInputs}& \rref{R_MassInputs} \\
\hline
\iref{ewat} & & X& & & & X& X \\ \hline
\iref{epcm} & X& & & X& & X& X \\ \hline
\iref{I_HWAT} & & & & & & X& X \\ \hline
\iref{I_HPCM} & & X& & & & X& X \\ \hline
\rref{R_RawInputs} & & & & & & & \\ \hline
\rref{R_MassInputs} & & & & & & X& \\ \hline
\rref{R_CheckInputs} & & & & & X& & \\ \hline
\rref{R_OutputInputs} & X& X& & & & X& X \\ \hline
\rref{R_TempWater} & X& & & & & & \\ \hline
\rref{R_TempPCM} & & X& & & & & \\ \hline
\rref{R_EnergyWater} & & & X& & & & \\ \hline
\rref{R_EnergyPCM} & & & & X& & & \\ \hline
\rref{R_VerifyOutput} & & & X& X& & & \\ \hline
\rref{R_timeMeltBegin} & & X& & & & & \\ \hline
\rref{R_timeMeltEnd} & & X& & & & & \\
\hline
\end{tabular}
\caption{Traceability Matrix Showing the Connections Between Requirements and Instance Models}
\label{Table:R_trace}
\end{table}
The purpose of the traceability graphs is also to provide easy references on
what has to be additionally modified if a certain component is changed. The
arrows in the graphs represent dependencies. The component at the tail of an
arrow is depended on by the component at the head of that arrow. Therefore, if a
component is changed, the components that it points to should also be
changed. Figure~\ref{Fig_ATrace} shows the dependencies of theoretical models,
general definitions, data definitions, instance models, likely changes, and
assumptions on each other. Figure~\ref{Fig_RTrace} shows the dependencies of
instance models, requirements, and data constraints on each other.
% \begin{figure}[h!]
% \begin{center}
% %\rotatebox{-90}
% {
% \includegraphics[width=\textwidth]{ATrace.png}
% }
% \caption{\label{Fig_ATrace} Traceability Matrix Showing the Connections Between Items of Different Sections}
% \end{center}
% \end{figure}
% \begin{figure}[h!]
% \begin{center}
% %\rotatebox{-90}
% {
% \includegraphics[width=0.7\textwidth]{RTrace.png}
% }
% \caption{\label{Fig_RTrace} Traceability Matrix Showing the Connections Between Requirements, Instance Models, and Data Constraints}
% \end{center}
% \end{figure}
\newpage
\bibliographystyle {plainnat}
\bibliography {../../ReferenceMaterial/References}
\newpage
\section{Appendix}
\wss{Your report may require an appendix. For instance, this is a good point to
show the values of the symbolic parameters introduced in the report.}
\subsection{Symbolic Parameters}
\wss{The definition of the requirements will likely call for SYMBOLIC\_CONSTANTS.
Their values are defined in this section for easy maintenance.}
\end{document}