Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
se2aa4_cs2me3
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
W. Spencer Smith
se2aa4_cs2me3
Commits
83302f4a
Commit
83302f4a
authored
7 years ago
by
W. Spencer Smith
Browse files
Options
Downloads
Patches
Plain Diff
Revisions to A2 - not complete
parent
0f8cfa51
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Assignments/A2/A2.pdf
+0
-0
0 additions, 0 deletions
Assignments/A2/A2.pdf
Assignments/A2/A2.tex
+99
-314
99 additions, 314 deletions
Assignments/A2/A2.tex
with
99 additions
and
314 deletions
Assignments/A2/A2.pdf
+
0
−
0
View file @
83302f4a
No preview for this file type
This diff is collapsed.
Click to expand it.
Assignments/A2/A2.tex
+
99
−
314
View file @
83302f4a
...
...
@@ -201,6 +201,13 @@ on the first deadline will be the ones that are graded.
Don't have to doxygen test driver program.
Questions - rewrite isInBounds not assuming ascending
- why isInBounds for Data, not for CurveT?
- maybe add derivatives? integration?
- explain index notation and notation for types
\begin{enumerate}
\item
Your git repo will be organizes with the following directories at the
top level:
{
\tt
A1
}
,
{
\tt
A2
}
,
{
\tt
A3
}
, and
{
\tt
A4
}
.
...
...
@@ -244,7 +251,7 @@ Don't have to doxygen test driver program.
\begin{itemize}
\item
The exceptions in the specification should be implemented via Python
exceptions. Your exceptions should have exactly the same name as given in the
specification (F
ULL
, EMPTY). Your exceptions should inherit from the
specification (F
ull
, EMPTY). Your exceptions should inherit from the
Exception class and they should only be used with one argument, a string
explaining what problem has occurred.
\item
For the Python implementation of the abstract module, your access programs
...
...
@@ -270,21 +277,21 @@ Don't have to doxygen test driver program.
\newpage
\section*
{
Point
ADT Module
}
\section*
{
Curve Interpolation
ADT Module
}
\subsection*
{
Template Module
}
point
ADT
CurveInterp
ADT
\subsection*
{
Uses
}
N/A
SeqServicesModule for isAscending, interp1d and index
\subsection*
{
Syntax
}
\subsubsection*
{
Exported Types
}
Point
T = ?
CurveInterp
T = ?
\subsubsection*
{
Exported Access Programs
}
...
...
@@ -292,204 +299,84 @@ PointT = ?
\hline
\textbf
{
Routine name
}
&
\textbf
{
In
}
&
\textbf
{
Out
}
&
\textbf
{
Exceptions
}
\\
\hline
new
PointT
&
real, real
&
PointT
&
~
\\
new
CurveInterpT
&
$
X:
\mathbb
{
R
}^
n
$
,
$
Y:
\mathbb
{
R
}^
n
$
&
CurveInterpT
&
IndepVarNotAscending
\\
\hline
xcrd
&
~
&
real
&
~
\\
minD
&
~
&
$
\mathbb
{
R
}$
&
~
\\
\hline
ycrd
&
~
&
real
&
~
\\
maxD
&
~
&
$
\mathbb
{
R
}$
&
~
\\
\hline
dist
&
PointT
&
real
&
~
\\
eval
&
$
x:
\mathbb
{
R
}$
&
$
\mathbb
{
R
}$
&
OutOfDomain
\\
\hline
rot
&
real
&
~
&
~
\\
\hline
\end{tabular}
\subsection*
{
Semantics
}
\subsubsection*
{
State Variables
}
$
xc
$
: real
\\
$
yc
$
: real
minx:
$
\mathbb
{
R
}$
\\
maxx:
$
\mathbb
{
R
}$
\\
f:
$
\mathbb
{
R
}
\rightarrow
\mathbb
{
R
}$
\subsubsection*
{
State Invariant
}
None
\subsubsection*
{
Assumptions
}
None
\subsubsection*
{
Access Routine Semantics
}
new PointT (
$
x, y
$
):
\begin{itemize}
\item
transition:
$
xc, yc :
=
x, y
$
\item
output:
$
out :
=
\mathit
{
self
}$
\item
exception: none
\end{itemize}
\noindent
xcrd:
\begin{itemize}
\item
output:
$
out :
=
xc
$
\item
exception: none
\end{itemize}
\noindent
ycrd:
\begin{itemize}
\item
output:
$
out :
=
yc
$
\item
exception: none
\end{itemize}
\noindent
dist(
$
p
$
):
\begin{itemize}
\item
output:
$
out :
=
\sqrt
{
(
xc
-
p.
\mbox
{
xcrd
()
}
)
^
2
+
(
yc
-
p.
\mbox
{
ycrd
()
}
)
^
2
}$
\item
exception: none
\end{itemize}
\noindent
rot(
$
\phi
$
):
\begin{itemize}
\item
$
\phi
$
is in radians
\item
transition:
$$
\left
[
\begin
{
array
}{
c
}
xc
\\
yc
\\
\end
{
array
}
\right
]
:
=
\left
[
\begin
{
array
}{
r r
}
\cos
\phi
&
-
\sin
\phi\\
\sin
\phi
&
\cos
\phi\\
\end
{
array
}
\right
]
\left
[
\begin
{
array
}{
c
}
xc
\\
yc
\\
\end
{
array
}
\right
]
$$
\item
exception: none
\end{itemize}
\newpage
\section*
{
Line Module
}
\subsection*
{
Template Module
}
lineADT
\subsection*
{
Uses
}
pointADT
\subsection*
{
Syntax
}
\subsubsection*
{
Exported Types
}
LineT = ?
\subsubsection*
{
Exported Access Programs
}
\begin{tabular}
{
| l | l | l | l |
}
\hline
\textbf
{
Routine name
}
&
\textbf
{
In
}
&
\textbf
{
Out
}
&
\textbf
{
Exceptions
}
\\
\hline
new LineT
&
PointT, PointT
&
LineT
&
~
\\
\hline
beg
&
~
&
PointT
&
~
\\
\hline
end
&
~
&
PointT
&
~
\\
\hline
len
&
~
&
real
&
~
\\
\hline
mdpt
&
~
&
PointT
&
~
\\
\hline
rot
&
real
&
~
&
~
\\
\hline
\end{tabular}
\subsection*
{
Semantics
}
\subsubsection*
{
State Variables
}
$
b
$
: PointT
\\
$
e
$
: PointT
\subsubsection*
{
State Invariant
}
None
\subsubsection*
{
Assumptions
}
None
\subsubsection*
{
Access Routine Semantics
}
\noindent
new
LineT (
$
p
_
1
, p
_
2
$
):
\noindent
new
CurveInterpT(
$
X, Y
$
):
\begin{itemize}
\item
transition:
$
b, e :
=
p
_
1
, p
_
2
$
\item
output:
$
out :
=
\mathit
{
self
}$
\item
exception: none
\end{itemize}
\item
transition:
$
\mbox
{
minx
}
,
\mbox
{
maxx
}
, f :
=
X
_
0
, X
_{
|X|
-
1
}
,
(
\lambda
v:
\mbox
{
interp
}
(
X, Y, v
))
$
\noindent
beg:
\begin{itemize}
\item
output:
$
out :
=
b
$
\item
exception: none
\item
output:
$
out :
=
\mbox
{
self
}$
\item
exception:
$
(
\neg
\mbox
{
isAscending
}
(
X
)
\Rightarrow
\mbox
{
IndepVarNotAscending
}
)
$
\end{itemize}
\noindent
end
:
\noindent
minD()
:
\begin{itemize}
\item
output:
$
out :
=
e
$
\item
exception:
n
one
\item
output:
$
out :
=
\mbox
{
minx
}
$
\item
exception:
N
one
\end{itemize}
\noindent
len
:
\noindent
maxD()
:
\begin{itemize}
\item
output:
$
out :
=
b.
\mbox
{
dist
}
(
e
)
$
\item
exception:
n
one
\item
output:
$
out :
=
\mbox
{
maxx
}
$
\item
exception:
N
one
\end{itemize}
\noindent
mdpt
:
\noindent
eval(
$
x
$
)
:
\begin{itemize}
\item
output:
$$
out :
=
\mbox
{
new~
}
\mbox
{
PointT
}
(
\mbox
{
avg
}
(
b.
\mbox
{
xcrd
()
}
,
e.
\mbox
{
xcrd
()
}
)
,
\mbox
{
avg
}
(
b.
\mbox
{
ycrd
()
}
, e.
\mbox
{
ycrd
()
}
))
$$
\item
exception: none
\item
output:
$
out :
=
f
(
x
)
$
\item
exception:
$
(
\neg
(
\mbox
{
minx
}
\leq
x
\leq
\mbox
{
maxx
}
)
\Rightarrow
\mbox
{
OutOfDomain
}
))
$
\end{itemize}
\noindent
rot (
$
\phi
$
):
\begin{itemize}
\item
$
\phi
$
is in radians
\item
transition:
$
b.
\mbox
{
rot
}
(
\phi
)
, e.
\mbox
{
rot
}
(
\phi
)
$
\item
exception: none
\end{itemize}
\subsection*
{
Local Functions
}
\subsubsection*
{
Local Functions
}
avg: real
$
\times
$
real
$
\rightarrow
$
real
\noindent
avg(
$
x
_
1
, x
_
2
$
)
$
\equiv
\frac
{
x
_
1
+
x
_
2
}{
2
}$
interp:
$
\mathbb
{
R
}^
n
\times
\mathbb
{
R
}^
n
\rightarrow
\mathbb
{
R
}$
\\
interp(
$
X
$
,
$
Y
$
,
$
v
$
)
$
\equiv
\mbox
{
interp
1
d
}
(
X
_
i, Y
_
i, X
_{
i
+
1
}
, Y
_{
i
+
1
}
, v
)
$
where
$
i
=
\mbox
{
index
}
(
X, v
)
$
\\
\newpage
\section*
{
Circle
Module
}
\section*
{
Data
Module
}
\subsection*
{
Template
Module
}
\subsection*
{
Module
}
circleADT
DataModule
\subsection*
{
Uses
}
pointADT, lineADT
CurveInterpT, SeqServicesModule for interp1d and index
\subsection*
{
Syntax
}
\subsubsection*
{
Exported
Type
s
}
\subsubsection*
{
Exported
Constant
s
}
CircleT
=
?
MAX
\_
SIZE
=
10
\subsubsection*
{
Exported Access Programs
}
...
...
@@ -497,19 +384,13 @@ CircleT = ?
\hline
\textbf
{
Routine name
}
&
\textbf
{
In
}
&
\textbf
{
Out
}
&
\textbf
{
Exceptions
}
\\
\hline
new CircleT
&
PointT, real
&
CircleT
&
~
\\
Data
\_
init
&
~
&
~
&
~
\\
\hline
cen
&
~
&
PointT
&
~
\\
Data
\_
add
&
c: CurveInterpT,
$
z:
\mathbb
{
R
}$
&
~
&
Full, IndepVarNotAscending
\\
\hline
rad
&
~
&
real
&
~
\\
\hline
area
&
~
&
real
&
~
\\
\hline
intersect
&
CircleT
&
boolean
&
~
\\
eval
&
$
x:
\mathbb
{
R
}
, z:
\mathbb
{
R
}$
&
~
&
~
\\
\hline
connection
&
CircleT
&
LineT
&
~
\\
\hline
force
&
real
$
\rightarrow
$
real
&
CircleT
$
\rightarrow
$
real
&
~
\\
slice
&
$
x:
\mathbb
{
R
}$
&
CurveInterpT
&
~
\\
\hline
\end{tabular}
...
...
@@ -518,83 +399,66 @@ force & real $\rightarrow$ real & CircleT $\rightarrow$ real & ~\\
\subsubsection*
{
State Variables
}
$
c
$
:
Point
T
\\
$
r
$
:
real
$
s
$
:
sequence of CurveInterp
T
\\
$
Z
$
:
sequence of
$
\mathbb
{
R
}$
\subsubsection*
{
State Invariant
}
None
\subsubsection*
{
Assumptions
}
None
$
| s |
\leq
\mbox
{
MAX
\_
SIZE
}$
\\
$
| Z |
\leq
\mbox
{
MAX
\_
SIZE
}$
\subsubsection*
{
A
ccess Routine Semantic
s
}
\subsubsection*
{
A
ssumption
s
}
\noindent
new CircleT (
$
\mathit
{
cin
}
,
\mathit
{
rin
}$
):
\begin{itemize}
\item
transition:
$
c, r :
=
\mathit
{
cin
}
,
\mathit
{
rin
}$
\item
output:
$
out :
=
\mathit
{
self
}$
\item
exception: none
\end{itemize}
Data
\_
init() is called before any other access program.
\noindent
cen:
\begin{itemize}
\item
output:
$
out :
=
c
$
\item
exception: none
\end{itemize}
\noindent
rad:
\begin{itemize}
\item
output:
$
out :
=
r
$
\item
exception: none
\end{itemize}
\subsubsection*
{
Access Routine Semantics
}
\noindent
area
:
Data
\_
init()
:
\begin{itemize}
\item
output:
$
out :
=
\pi
r
^
2
$
\item
transition:
$
s, Z :
=
< >, <>
$
\item
exception: none
\end{itemize}
\noindent
intersect(
$
ci
$
):
\noindent
Data
\_
add(
$
c, z
$
):
\begin{itemize}
\item
output:
$
\exists
(
p:
\mbox
{
PointT
}
|
\mbox
{
insideCircle
}
(
p, ci
)
:
\mbox
{
insideCircle
}
(
p,
\mathit
{
self
}
))
$
\item
exception: none
\item
transition:
$
s, Z :
=
s || <c>, Z || <z>
$
\item
exception:
$
exc :
=
(
|s|
=
\mbox
{
MAX
\_
SIZE
}
\Rightarrow
\mbox
{
Full
}
| z
\leq
Z
_{
|Z|
-
1
}
\Rightarrow
\mbox
{
IndepVarNotAscending
}
)
$
\end{itemize}
\noindent
connection(
$
ci
$
):
\noindent
Data
\_
eval(
$
x, z
$
):
\begin{itemize}
\item
output:
$
out :
=
\mbox
{
new~
}
\mbox
{
LineT
}
(
c, ci.
\mathit
{
cen
()
}
)
$
\item
exception: none
\item
output:
$
out :
=
\mbox
{
interp
1
d
}
(
z
_
j, s
_
j.
\mbox
{
eval
}
(
x
)
, z
_{
j
+
1
}
,
s
_{
j
+
1
}
.
\mbox
{
eval
}
(
x
)
, z
)
$
, where
$
j
=
\mbox
{
index
}
(
Z, z
)
$
\item
exception:
$
exc :
=
(
\neg
\mbox
{
isInBounds
}
(
Z, z
)
\Rightarrow
\mbox
{
OutOfDomain
}
)
$
\end{itemize}
\noindent
for
ce(
$
f
$
):
\noindent
Data
\_
sli
ce(
$
x
$
):
\begin{itemize}
\item
output:
$
out :
=
\lambda
x
\rightarrow
\mathit
{
self
}
.
\mbox
{
area
()
}
\cdot
x.
\mbox
{
area
()
}
\cdot
f
(
\mathit
{
self
}
.
\mbox
{
connection
}
(
x
)
.
\mbox
{
len
}
())
$
\item
exception: none
\item
output:
$
out :
=
\mbox
{
CurveInterpT
}
(
Z, Y
)
$
, where
$
Y
=
||
(
i:
\mathbb
{
N
}
| i
\in
[
0
.. |Z|
-
1
]
:
\langle
s
_
i.
\mbox
{
eval
}
(
x
)
\rangle
)
$
or
$
Y
=
\mbox
{
map
}
\mbox
{
eval
}
(
x
)
\mbox
{
}
s
$
\textit
{
\#
in both cases
there is an abuse of notation
}
\item
exception: None
\end{itemize}
\subsubsection*
{
Local Functions
}
insideCircle: PointT
$
\times
$
CircleT
$
\rightarrow
$
boolean
\noindent
insideCircle(
$
p, c
$
)
$
\equiv
p.
\mbox
{
dist
}
(
c.
\mbox
{
cen
()
}
)
\leq
c.
\mbox
{
rad
()
}$
\newpage
%\subsubsection*{Local Functions}
\section*
{
D
eque
Of Circl
es Module
}
\section*
{
S
eque
nce Servic
es Module
}
\subsection*
{
Module
}
D
eq
ueCircle
Module
S
eq
Services
Module
\subsection*
{
Uses
}
circleADT
None
\subsection*
{
Syntax
}
\subsubsection*
{
Exported Constants
}
MAX
\_
SIZE = 20
None
\subsubsection*
{
Exported Access Programs
}
...
...
@@ -602,29 +466,15 @@ MAX\_SIZE = 20
\hline
\textbf
{
Routine name
}
&
\textbf
{
In
}
&
\textbf
{
Out
}
&
\textbf
{
Exceptions
}
\\
\hline
Deq
\_
init
&
~
&
~
&
~
\\
\hline
Deq
\_
pushBack
&
CircleT
&
~
&
FULL
\\
\hline
Deq
\_
pushFront
&
CircleT
&
~
&
FULL
\\
\hline
Deq
\_
popBack
&
~
&
~
&
EMPTY
\\
\hline
Deq
\_
popFront
&
~
&
~
&
EMPTY
\\
\hline
Deq
\_
back
&
~
&
CircleT
&
EMPTY
\\
\hline
Deq
\_
front
&
~
&
CircleT
&
EMPTY
\\
\hline
Deq
\_
size
&
~
&
integer
&
~
\\
isAscending
&
$
x:
\mathbb
{
R
}^
n
$
&
$
\mathbb
{
B
}$
&
~
\\
\hline
Deq
\_
disjoint
&
~
&
boolean
&
EMPTY
\\
isInBounds
&
$
x:
\mathbb
{
R
}^
n,
\mathbb
{
R
}$
&
$
\mathbb
{
B
}$
&
~
\\
\hline
Deq
\_
sumFx
&
real
$
\rightarrow
$
real
&
real
&
EMPTY
\\
interp1d
&
$
x
_
1
:
\mathbb
{
R
}
, y
_
1
:
\mathbb
{
R
}
, x
_
2
:
\mathbb
{
R
}
, y
_
2
:
\mathbb
{
R
}
,
x:
\mathbb
{
R
}$
&
$
\mathbb
{
R
}$
&
~
\\
\hline
Deq
\_
totalArea
&
~
&
real
&
EMPTY
\\
\hline
Deq
\_
averageRadius
&
~
&
real
&
EMPTY
\\
index
&
$
X:
\mathbb
{
R
}^
n, x:
\mathbb
{
R
}$
&
$
\mathbb
{
N
}$
&
~
\\
\hline
\end{tabular}
...
...
@@ -632,107 +482,42 @@ Deq\_averageRadius & ~ & real & EMPTY\\
\subsection*
{
Semantics
}
\subsubsection*
{
State Variables
}
$
s
$
: sequence of CircleT
None
\subsubsection*
{
State Invariant
}
$
| s |
\leq
\mbox
{
MAX
\_
SIZE
}$
None
\subsubsection*
{
Assumptions
}
Deq
\_
init() is called before any other access program.
None, unless noted with a particular access program
\subsubsection*
{
Access Routine Semantics
}
Deq
\_
init():
\noindent
isAscending(
$
x
$
)
\begin{itemize}
\item
transition:
$
s :
=
< >
$
\item
output:
$
out :
=
\exists
(
i | i
\in
[
0
..|x|
-
2
]
: x
_{
i
+
1
}
\leq
x
_
i
)
$
\item
exception: none
\end{itemize}
\noindent
Deq
\_
pushBack(
$
c
$
):
\begin{itemize}
\item
transition:
$
s :
=
s || <c>
$
\item
exception:
$
exc :
=
(
|s|
=
\mbox
{
MAX
\_
SIZE
}
\Rightarrow
\mbox
{
FULL
}
)
$
\end{itemize}
\noindent
Deq
\_
pushFront(
$
c
$
):
\begin{itemize}
\item
transition:
$
s :
=
<c> || s
$
\item
exception:
$
exc :
=
(
|s|
=
\mbox
{
MAX
\_
SIZE
}
\Rightarrow
\mbox
{
FULL
}
)
$
\end{itemize}
\noindent
Deq
\_
popBack():
\begin{itemize}
\item
transition:
$
s :
=
s
[
0
..|s|
-
2
]
$
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\end{itemize}
\noindent
Deq
\_
popFront():
\begin{itemize}
\item
transition:
$
s :
=
s
[
1
..|s|
-
1
]
$
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\end{itemize}
\noindent
Deq
\_
back():
\noindent
isInBounds(
$
X, x
$
)
\textit
{
\#
assuming isAscending is True
}
\begin{itemize}
\item
output:
$
out :
=
s
[
|s|
-
1
]
$
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\end{itemize}
\noindent
Deq
\_
front():
\begin{itemize}
\item
output:
$
out :
=
s
[
0
]
$
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\end{itemize}
\noindent
Deq
\_
size():
\begin{itemize}
\item
output:
$
out :
=
| s |
$
\item
output:
$
out :
=
X
_
0
\leq
x
\leq
X
_{
|X|
-
1
}$
\item
exception: none
\end{itemize}
\noindent
Deq
\_
disjoint():
\begin{itemize}
\item
output
$$
out :
=
\forall
(
i, j:
\mathbb
{
N
}
| i
\in
[
0
.. |s|
-
1
]
\wedge
j
\in
[
0
.. |s|
-
1
]
\wedge
i
\neq
j:
\neg
s
[
i
]
.
\mbox
{
intersect
}
(
s
[
j
]))
$$
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\end{itemize}
\noindent
Deq
\_
sumFx(f):
\noindent
interp1d(
$
x
_
1
, y
_
1
, x
_
2
, y
_
2
, x
$
)
\textit
{
\#
assuming isAscending is True
}
\begin{itemize}
\item
output
$$
out :
=
+(
i:
\mathbb
{
N
}
| i
\in
([
1
.. |s|
-
1
])
:
\mbox
{
Fx
}
(
f, s
[
i
]
, s
[
0
]))
$$
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\end{itemize}
\noindent
Deq
\_
totalArea():
\begin{itemize}
\item
output
$$
out :
=
?
$$
[The total area is the sum of the area of all of the
circles in the deque. You do not need to worry about overlap between
circles. The assignment asks you to provide the missing
equation, but you do not have to implement this access program.]
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\item
output:
$
out :
=
\frac
{
(
y
_
2
-
y
_
1
)
}{
(
x
_
2
-
x
_
1
)
}
(
x
-
x
_
1
)
+
y
_
1
$
\item
exception: none
\end{itemize}
\noindent
Deq
\_
averageRadius():
\noindent
index(
$
X, x
$
)
\textit
{
\#
assuming isAscending is True and isInBounds
is True
}
\begin{itemize}
\item
output
$$
out :
=
?
$$
[The assignment asks you to provide the missing
equation, but you do not have to implement this access program.]
\item
exception:
$
exc :
=
(
|s|
=
0
\Rightarrow
\mbox
{
EMPTY
}
)
$
\item
output:
$
out :
=
i
\mbox
{
such that
}
X
_
i
\leq
x
\leq
X
_{
i
+
1
}$
\item
exception: none
\end{itemize}
\subsubsection*
{
Local Functions
}
Fx: (real
$
\rightarrow
$
real)
$
\times
$
CircleT
$
\times
$
CircleT
$
\rightarrow
$
real
\noindent
Fx(
$
f, ci, cj
$
)
$
\equiv
\mbox
{
xcomp
}
(
ci.
\mbox
{
force
}
(
f
)
(
cj
)
, ci, cj
)
$
~
\newline
\noindent
xcomp: real
$
\times
$
CircleT
$
\times
$
CircleT
$
\rightarrow
$
real
~
\newline
\noindent
$$
\mbox
{
xcomp
}
(
F, ci, cj
)
\equiv
F
\left
[
\frac
{
ci.
\mbox
{
cen
()
}
.
\mbox
{
xcrd
()
}
-
cj.
\mbox
{
cen
()
}
.
\mbox
{
xcrd
()
}}
{
ci.
\mbox
{
connection
}
(
cj
)
.
\mbox
{
len
}
()
}
\right
]
$$
\end
{
document
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment