Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • liangb30/cas-741-boliang
  • pignierb/cas741
  • jimoha1/cas741
  • huoy8/cas741
  • grandhia/cas741
  • chenq84/cas741
  • yex33/cas741
  • xuey45/cas741
  • garcilau/cas-741-uriel-garcilazo-msa
  • schankuc2/cas741
  • ahmady3/cas741
  • saadh/cas741
  • singhk56/cas741
  • lin523/cas741
  • fangz58/cas741
  • tranp30/cas741
  • ceranich/cas741
  • norouf1/cas741
  • mirzam48/cas741
  • djavahet/cas741
  • hossaa27/cas741
  • yiding_el/cas-741-upate-name
  • sayadia/cas741
  • elmasn2/cas741
  • cheemf8/cas741
  • cheny997/cas741
  • ma209/cas741
  • mousas26/cas741
  • liuy363/cas741
  • wongk124/cas741
  • dua11/cas741
  • zhoug28/cas741
  • courses/cas-741-tst
  • liy443/cas-741-fork-csv
  • sochania/cas741
  • liy443/cas-741-update-csv-old
  • mahdipoa/cas741
  • wangz892/cas741
  • wangn14/cas741
  • defourej/cas741
  • zhaox183/cas741
  • smiths/cas741
42 results
Show changes
Commits on Source (606)
Showing
with 5 additions and 2181 deletions
......@@ -22,6 +22,8 @@ cabal.config
*.nav
*.out
*.snm
*.fdb_latexmk
*.fls
*-nup.pdf
.DS_Store
.iTeXMac
......@@ -30,3 +32,6 @@ cabal.config
html
latex
*.class
# Temporary Excel files
~$*
LICENSE Information
\ No newline at end of file
# Project Name
Developer Name:
This project is a reimplementation of ...
The folders and files for this project are as follows:
Doc - Documentation for the project
Code - Implementation
\ No newline at end of file
%% Comments
\usepackage{color}
\newif\ifcomments\commentstrue
\ifcomments
\newcommand{\authornote}[3]{\textcolor{#1}{[#3 ---#2]}}
\newcommand{\todo}[1]{\textcolor{red}{[TODO: #1]}}
\else
\newcommand{\authornote}[3]{}
\newcommand{\todo}[1]{}
\fi
\newcommand{\wss}[1]{\authornote{blue}{SS}{#1}}
\newcommand{\an}[1]{\authornote{magenta}{Author}{#1}}
File deleted
\documentclass[12pt, titlepage]{article}
\usepackage{fullpage}
\usepackage[round]{natbib}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{tabularx}
\usepackage{graphicx}
\usepackage{float}
\usepackage{hyperref}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=red,
urlcolor=blue
}
\input{../../Comments}
\newcounter{acnum}
\newcommand{\actheacnum}{AC\theacnum}
\newcommand{\acref}[1]{AC\ref{#1}}
\newcounter{ucnum}
\newcommand{\uctheucnum}{UC\theucnum}
\newcommand{\uref}[1]{UC\ref{#1}}
\newcounter{mnum}
\newcommand{\mthemnum}{M\themnum}
\newcommand{\mref}[1]{M\ref{#1}}
\begin{document}
\title{Module Guide: Project Title \wss{include software's name}}
\author{Author Name}
\date{\today}
\maketitle
\pagenumbering{roman}
\section{Revision History}
\begin{tabularx}{\textwidth}{p{3cm}p{2cm}X}
\toprule {\bf Date} & {\bf Version} & {\bf Notes}\\
\midrule
Date 1 & 1.0 & Notes\\
Date 2 & 1.1 & Notes\\
\bottomrule
\end{tabularx}
\newpage
\tableofcontents
\listoftables
\listoffigures
\newpage
\pagenumbering{arabic}
\section{Introduction}
Decomposing a system into modules is a commonly accepted approach to developing
software. A module is a work assignment for a programmer or programming
team~\citep{ParnasEtAl1984}. We advocate a decomposition
based on the principle of information hiding~\citep{Parnas1972a}. This
principle supports design for change, because the ``secrets'' that each module
hides represent likely future changes. Design for change is valuable in SC,
where modifications are frequent, especially during initial development as the
solution space is explored.
Our design follows the rules layed out by \citet{ParnasEtAl1984}, as follows:
\begin{itemize}
\item System details that are likely to change independently should be the
secrets of separate modules.
\item Each data structure is used in only one module.
\item Any other program that requires information stored in a module's data
structures must obtain it by calling access programs belonging to that module.
\end{itemize}
After completing the first stage of the design, the Software Requirements
Specification (SRS), the Module Guide (MG) is developed~\citep{ParnasEtAl1984}. The MG
specifies the modular structure of the system and is intended to allow both
designers and maintainers to easily identify the parts of the software. The
potential readers of this document are as follows:
\begin{itemize}
\item New project members: This document can be a guide for a new project member
to easily understand the overall structure and quickly find the
relevant modules they are searching for.
\item Maintainers: The hierarchical structure of the module guide improves the
maintainers' understanding when they need to make changes to the system. It is
important for a maintainer to update the relevant sections of the document
after changes have been made.
\item Designers: Once the module guide has been written, it can be used to
check for consistency, feasibility and flexibility. Designers can verify the
system in various ways, such as consistency among modules, feasibility of the
decomposition, and flexibility of the design.
\end{itemize}
The rest of the document is organized as follows. Section
\ref{SecChange} lists the anticipated and unlikely changes of the software
requirements. Section \ref{SecMH} summarizes the module decomposition that
was constructed according to the likely changes. Section \ref{SecConnection}
specifies the connections between the software requirements and the
modules. Section \ref{SecMD} gives a detailed description of the
modules. Section \ref{SecTM} includes two traceability matrices. One checks
the completeness of the design against the requirements provided in the SRS. The
other shows the relation between anticipated changes and the modules. Section
\ref{SecUse} describes the use relation between modules.
\section{Anticipated and Unlikely Changes} \label{SecChange}
This section lists possible changes to the system. According to the likeliness
of the change, the possible changes are classified into two
categories. Anticipated changes are listed in Section \ref{SecAchange}, and
unlikely changes are listed in Section \ref{SecUchange}.
\subsection{Anticipated Changes} \label{SecAchange}
Anticipated changes are the source of the information that is to be hidden
inside the modules. Ideally, changing one of the anticipated changes will only
require changing the one module that hides the associated decision. The approach
adapted here is called design for
change.
\begin{description}
\item[\refstepcounter{acnum} \actheacnum \label{acHardware}:] The specific
hardware on which the software is running.
\item[\refstepcounter{acnum} \actheacnum \label{acInput}:] The format of the
initial input data.
\item ...
\end{description}
\subsection{Unlikely Changes} \label{SecUchange}
The module design should be as general as possible. However, a general system is
more complex. Sometimes this complexity is not necessary. Fixing some design
decisions at the system architecture stage can simplify the software design. If
these decision should later need to be changed, then many parts of the design
will potentially need to be modified. Hence, it is not intended that these
decisions will be changed.
\begin{description}
\item[\refstepcounter{ucnum} \uctheucnum \label{ucIO}:] Input/Output devices
(Input: File and/or Keyboard, Output: File, Memory, and/or Screen).
\item[\refstepcounter{ucnum} \uctheucnum \label{ucInput}:] There will always be
a source of input data external to the software.
\item ...
\end{description}
\section{Module Hierarchy} \label{SecMH}
This section provides an overview of the module design. Modules are summarized
in a hierarchy decomposed by secrets in Table \ref{TblMH}. The modules listed
below, which are leaves in the hierarchy tree, are the modules that will
actually be implemented.
\begin{description}
\item [\refstepcounter{mnum} \mthemnum \label{mHH}:] Hardware-Hiding Module
\item ...
\end{description}
\begin{table}[h!]
\centering
\begin{tabular}{p{0.3\textwidth} p{0.6\textwidth}}
\toprule
\textbf{Level 1} & \textbf{Level 2}\\
\midrule
{Hardware-Hiding Module} & ~ \\
\midrule
\multirow{7}{0.3\textwidth}{Behaviour-Hiding Module} & ?\\
& ?\\
& ?\\
& ?\\
& ?\\
& ?\\
& ?\\
& ?\\
\midrule
\multirow{3}{0.3\textwidth}{Software Decision Module} & {?}\\
& ?\\
& ?\\
\bottomrule
\end{tabular}
\caption{Module Hierarchy}
\label{TblMH}
\end{table}
\section{Connection Between Requirements and Design} \label{SecConnection}
The design of the system is intended to satisfy the requirements developed in
the SRS. In this stage, the system is decomposed into modules. The connection
between requirements and modules is listed in Table \ref{TblRT}.
\section{Module Decomposition} \label{SecMD}
Modules are decomposed according to the principle of ``information hiding''
proposed by \citet{ParnasEtAl1984}. The \emph{Secrets} field in a module
decomposition is a brief statement of the design decision hidden by the
module. The \emph{Services} field specifies \emph{what} the module will do
without documenting \emph{how} to do it. For each module, a suggestion for the
implementing software is given under the \emph{Implemented By} title. If the
entry is \emph{OS}, this means that the module is provided by the operating
system or by standard programming language libraries. Also indicate if the
module will be implemented specifically for the software.
Only the leaf modules in the
hierarchy have to be implemented. If a dash (\emph{--}) is shown, this means
that the module is not a leaf and will not have to be implemented. Whether or
not this module is implemented depends on the programming language
selected.
\subsection{Hardware Hiding Modules (\mref{mHH})}
\begin{description}
\item[Secrets:]The data structure and algorithm used to implement the virtual
hardware.
\item[Services:]Serves as a virtual hardware used by the rest of the
system. This module provides the interface between the hardware and the
software. So, the system can use it to display outputs or to accept inputs.
\item[Implemented By:] OS
\end{description}
\subsection{Behaviour-Hiding Module}
\begin{description}
\item[Secrets:]The contents of the required behaviours.
\item[Services:]Includes programs that provide externally visible behaviour of
the system as specified in the software requirements specification (SRS)
documents. This module serves as a communication layer between the
hardware-hiding module and the software decision module. The programs in this
module will need to change if there are changes in the SRS.
\item[Implemented By:] --
\end{description}
\subsubsection{Input Format Module (\mref{mInput})}
\begin{description}
\item[Secrets:]The format and structure of the input data.
\item[Services:]Converts the input data into the data structure used by the
input parameters module.
\item[Implemented By:] [Your Program Name Here]
\end{description}
\subsubsection{Etc.}
\subsection{Software Decision Module}
\begin{description}
\item[Secrets:] The design decision based on mathematical theorems, physical
facts, or programming considerations. The secrets of this module are
\emph{not} described in the SRS.
\item[Services:] Includes data structure and algorithms used in the system that
do not provide direct interaction with the user.
% Changes in these modules are more likely to be motivated by a desire to
% improve performance than by externally imposed changes.
\item[Implemented By:] --
\end{description}
\subsubsection{Etc.}
\section{Traceability Matrix} \label{SecTM}
This section shows two traceability matrices: between the modules and the
requirements and between the modules and the anticipated changes.
% the table should use mref, the requirements should be named, use something
% like fref
\begin{table}[H]
\centering
\begin{tabular}{p{0.2\textwidth} p{0.6\textwidth}}
\toprule
\textbf{Req.} & \textbf{Modules}\\
\midrule
R1 & \mref{mHH}, \mref{mInput}, \mref{mParams}, \mref{mControl}\\
R2 & \mref{mInput}, \mref{mParams}\\
R3 & \mref{mVerify}\\
R4 & \mref{mOutput}, \mref{mControl}\\
R5 & \mref{mOutput}, \mref{mODEs}, \mref{mControl}, \mref{mSeqDS}, \mref{mSolver}, \mref{mPlot}\\
R6 & \mref{mOutput}, \mref{mODEs}, \mref{mControl}, \mref{mSeqDS}, \mref{mSolver}, \mref{mPlot}\\
R7 & \mref{mOutput}, \mref{mEnergy}, \mref{mControl}, \mref{mSeqDS}, \mref{mPlot}\\
R8 & \mref{mOutput}, \mref{mEnergy}, \mref{mControl}, \mref{mSeqDS}, \mref{mPlot}\\
R9 & \mref{mVerifyOut}\\
R10 & \mref{mOutput}, \mref{mODEs}, \mref{mControl}\\
R11 & \mref{mOutput}, \mref{mODEs}, \mref{mEnergy}, \mref{mControl}\\
\bottomrule
\end{tabular}
\caption{Trace Between Requirements and Modules}
\label{TblRT}
\end{table}
\begin{table}[H]
\centering
\begin{tabular}{p{0.2\textwidth} p{0.6\textwidth}}
\toprule
\textbf{AC} & \textbf{Modules}\\
\midrule
\acref{acHardware} & \mref{mHH}\\
\acref{acInput} & \mref{mInput}\\
\acref{acParams} & \mref{mParams}\\
\acref{acVerify} & \mref{mVerify}\\
\acref{acOutput} & \mref{mOutput}\\
\acref{acVerifyOut} & \mref{mVerifyOut}\\
\acref{acODEs} & \mref{mODEs}\\
\acref{acEnergy} & \mref{mEnergy}\\
\acref{acControl} & \mref{mControl}\\
\acref{acSeqDS} & \mref{mSeqDS}\\
\acref{acSolver} & \mref{mSolver}\\
\acref{acPlot} & \mref{mPlot}\\
\bottomrule
\end{tabular}
\caption{Trace Between Anticipated Changes and Modules}
\label{TblACT}
\end{table}
\section{Use Hierarchy Between Modules} \label{SecUse}
In this section, the uses hierarchy between modules is
provided. \citet{Parnas1978} said of two programs A and B that A {\em uses} B if
correct execution of B may be necessary for A to complete the task described in
its specification. That is, A {\em uses} B if there exist situations in which
the correct functioning of A depends upon the availability of a correct
implementation of B. Figure \ref{FigUH} illustrates the use relation between
the modules. It can be seen that the graph is a directed acyclic graph
(DAG). Each level of the hierarchy offers a testable and usable subset of the
system, and modules in the higher level of the hierarchy are essentially simpler
because they use modules from the lower levels.
\begin{figure}[H]
\centering
%\includegraphics[width=0.7\textwidth]{UsesHierarchy.png}
\caption{Use hierarchy among modules}
\label{FigUH}
\end{figure}
%\section*{References}
\bibliographystyle {plainnat}
\bibliography{../../../ReferenceMaterial/References}
\end{document}
\ No newline at end of file
# Makefile
# From https://danielkaes.wordpress.com/2009/03/14/compiling-latex-documents-using-makefiles/
PROJECT=MG
TEX=pdflatex
BIBTEX=bibtex
BUILDTEX=$(TEX) $(PROJECT).tex
all:
$(BUILDTEX)
$(BIBTEX) $(PROJECT)
$(BUILDTEX)
$(BUILDTEX)
clean-all:
rm -f *.dvi *.log *.bak *.aux *.bbl *.blg *.idx *.ps *.eps *.pdf *.toc *.out *~
clean:
rm -f *.log *.bak *.aux *.bbl *.blg *.idx *.toc *.out *.lof *.lot *~
\ No newline at end of file
# Module Guide
The folders and files for the module guide.
File deleted
\documentclass[12pt, titlepage]{article}
\usepackage{amsmath, mathtools}
\usepackage[round]{natbib}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{colortbl}
\usepackage{xr}
\usepackage{hyperref}
\usepackage{longtable}
\usepackage{xfrac}
\usepackage{tabularx}
\usepackage{float}
\usepackage{siunitx}
\usepackage{booktabs}
\usepackage{multirow}
\usepackage[section]{placeins}
\usepackage{caption}
\usepackage{fullpage}
\hypersetup{
bookmarks=true, % show bookmarks bar?
colorlinks=true, % false: boxed links; true: colored links
linkcolor=red, % color of internal links (change box color with linkbordercolor)
citecolor=blue, % color of links to bibliography
filecolor=magenta, % color of file links
urlcolor=cyan % color of external links
}
\usepackage{array}
\externaldocument{../../SRS/SRS}
\input{../../Comments}
\newcommand{\progname}{Program Name}
\begin{document}
\title{Module Interface Specification for ...}
\author{Author Name}
\date{\today}
\maketitle
\pagenumbering{roman}
\section{Revision History}
\begin{tabularx}{\textwidth}{p{3cm}p{2cm}X}
\toprule {\bf Date} & {\bf Version} & {\bf Notes}\\
\midrule
Date 1 & 1.0 & Notes\\
Date 2 & 1.1 & Notes\\
\bottomrule
\end{tabularx}
~\newpage
\section{Symbols, Abbreviations and Acronyms}
See SRS Documentation at \wss{give url}
\wss{Also add any additional symbols, abbreviations or acronyms}
\newpage
\tableofcontents
\newpage
\pagenumbering{arabic}
\section{Introduction}
The following document details the Module Interface Specifications for
\wss{Fill in your project name and description}
Complementary documents include the System Requirement Specifications
and Module Guide. The full documentation and implementation can be
found at \url{...}. \wss{provide the url for your repo}
\section{Notation}
\wss{You should describe your notation. You can use what is below as
a starting point.}
The structure of the MIS for modules comes from \citet{HoffmanAndStrooper1995},
with the addition that template modules have been adapted from
\cite{GhezziEtAl2003}. The mathematical notation comes from Chapter 3 of
\citet{HoffmanAndStrooper1995}. For instance, the symbol := is used for a
multiple assignment statement and conditional rules follow the form $(c_1
\Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n )$.
The following table summarizes the primitive data types used by \progname.
\begin{center}
\renewcommand{\arraystretch}{1.2}
\noindent
\begin{tabular}{l l p{7.5cm}}
\toprule
\textbf{Data Type} & \textbf{Notation} & \textbf{Description}\\
\midrule
character & char & a single symbol or digit\\
integer & $\mathbb{Z}$ & a number without a fractional component in (-$\infty$, $\infty$) \\
natural number & $\mathbb{N}$ & a number without a fractional component in [1, $\infty$) \\
real & $\mathbb{R}$ & any number in (-$\infty$, $\infty$)\\
\bottomrule
\end{tabular}
\end{center}
\noindent
The specification of \progname \ uses some derived data types: sequences, strings, and
tuples. Sequences are lists filled with elements of the same data type. Strings
are sequences of characters. Tuples contain a list of values, potentially of
different types. In addition, \progname \ uses functions, which
are defined by the data types of their inputs and outputs. Local functions are
described by giving their type signature followed by their specification.
\section{Module Decomposition}
The following table is taken directly from the Module Guide document for this project.
\begin{table}[h!]
\centering
\begin{tabular}{p{0.3\textwidth} p{0.6\textwidth}}
\toprule
\textbf{Level 1} & \textbf{Level 2}\\
\midrule
{Hardware-Hiding} & ~ \\
\midrule
\multirow{7}{0.3\textwidth}{Behaviour-Hiding} & Input Parameters\\
& Output Format\\
& Output Verification\\
& Temperature ODEs\\
& Energy Equations\\
& Control Module\\
& Specification Parameters Module\\
\midrule
\multirow{3}{0.3\textwidth}{Software Decision} & {Sequence Data Structure}\\
& ODE Solver\\
& Plotting\\
\bottomrule
\end{tabular}
\caption{Module Hierarchy}
\label{TblMH}
\end{table}
\newpage
~\newpage
\section{MIS of \wss{Module Name}} \label{Module} \wss{Use labels for
cross-referencing}
\wss{You can reference SRS labels, such as R\ref{R_Inputs}.}
\wss{It is also possible to use \LaTeX for hypperlinks to external documents.}
\subsection{Module}
\wss{Short name for the module}
\subsection{Uses}
\subsection{Syntax}
\subsubsection{Exported Access Programs}
\begin{center}
\begin{tabular}{p{2cm} p{4cm} p{4cm} p{2cm}}
\hline
\textbf{Name} & \textbf{In} & \textbf{Out} & \textbf{Exceptions} \\
\hline
\wss{accessProg} & - & - & - \\
\hline
\end{tabular}
\end{center}
\subsection{Semantics}
\subsubsection{State Variables}
\subsubsection{Access Routine Semantics}
\noindent \wss{accessProg}():
\begin{itemize}
\item transition: \wss{if appropriate}
\item output: \wss{if appropriate}
\item exception: \wss{if appropriate}
\end{itemize}
\newpage
\bibliographystyle {plainnat}
\bibliography {../../../ReferenceMaterial/References}
\newpage
\section{Appendix} \label{Appendix}
\wss{Extra information if required}
\end{document}
\ No newline at end of file
# Makefile
# From https://danielkaes.wordpress.com/2009/03/14/compiling-latex-documents-using-makefiles/
PROJECT=MIS
TEX=pdflatex
BIBTEX=bibtex
BUILDTEX=$(TEX) $(PROJECT).tex
all:
$(BUILDTEX)
$(BIBTEX) $(PROJECT)
$(BUILDTEX)
$(BUILDTEX)
clean-all:
rm -f *.dvi *.log *.bak *.aux *.bbl *.blg *.idx *.ps *.eps *.pdf *.toc *.out *~
clean:
rm -f *.log *.bak *.aux *.bbl *.blg *.idx *.toc *.out *~
\ No newline at end of file
# Module Interface Specification #
Suggest following something like the example used in Lab 11 (Box 3D).
Use doxygen (or equivalent) to document the interface for your modules.
# Design Documentation
The folders and files for this folder are as follows:
Describe ...
File deleted
\documentclass{article}
\usepackage{booktabs}
\usepackage{tabularx}
\title{SE 3XA3: Development Plan\\Title of Project}
\author{Team \#, Team Name
\\ Student 1 name and macid
\\ Student 2 name and macid
\\ Student 3 name and macid
}
\date{}
\input{../Comments}
\begin{document}
\begin{table}[hp]
\caption{Revision History} \label{TblRevisionHistory}
\begin{tabularx}{\textwidth}{llX}
\toprule
\textbf{Date} & \textbf{Developer(s)} & \textbf{Change}\\
\midrule
Date1 & Name(s) & Description of changes\\
Date2 & Name(s) & Description of changes\\
... & ... & ...\\
\bottomrule
\end{tabularx}
\end{table}
\newpage
\maketitle
Put your introductory blurb here.
\section{Team Meeting Plan}
\section{Team Communication Plan}
\section{Team Member Roles}
\section{Git Workflow Plan}
\section{Proof of Concept Demonstration Plan}
\section{Technology}
\section{Coding Style}
\section{Project Schedule}
Provide a pointer to your Gantt Chart.
\section{Project Review}
\end{document}
\ No newline at end of file
# Makefile
# From https://danielkaes.wordpress.com/2009/03/14/compiling-latex-documents-using-makefiles/
PROJECT=DevelopmentPlan
TEX=pdflatex
BIBTEX=bibtex
BUILDTEX=$(TEX) $(PROJECT).tex
all:
$(BUILDTEX)
# $(BIBTEX) $(PROJECT)
# $(BUILDTEX)
$(BUILDTEX)
clean-all:
rm -f *.dvi *.log *.bak *.aux *.bbl *.blg *.idx *.ps *.eps *.pdf *.toc *.out *~
clean:
rm -f *.log *.bak *.aux *.bbl *.blg *.idx *.toc *.out *~
\ No newline at end of file
# Development Plan
The folders and files for this folder are as follows:
Describe ...
# Makefile
.PHONY: SRS
all: SRS MG MIS PS SVnVP UVnVP SVnVR UVnVR
SRS:
cd SRS && make && cd ..
MG:
cd Design/MG && make && cd ../..
MIS:
cd Design/MIS && make && cd ../..
PS:
cd ProblemStatement && make && cd ..
SVnVP:
cd VnVPlan/SystVnVPlan && make && cd ../..
UVnVP:
cd VnVPlan/UnitVnVPlan && make && cd ../..
SVnVR:
cd VnVReport/SystVnVReport && make && cd ../..
UVnVR:
cd VnVReport/UnitVnVReport && make && cd ../..
clean: cleanSRS cleanMG cleanMIS cleanPS cleanSVnVP cleanUVnVP cleanSVnVR cleanUVnVR
cleanPS:
cd ProblemStatement && make clean && cd ..
cleanSRS:
cd SRS && make clean && cd ..
cleanMG:
cd Design/MG && make clean && cd ..
cleanMIS:
cd Design/MIS && make clean && cd ..
cleanSVnVP:
cd VnVPlan/SystVnVPlan && make clean && cd ..
cleanUVnVP:
cd VnVPlan/UnitVnVPlan && make clean && cd ..
cleanSVnVR:
cd VnVReport/SystVnVReport && make clean && cd ..
cleanUVnVR:
cd VnVReport/UnitVnVReport && make clean && cd ..
\ No newline at end of file
# Makefile
# From https://danielkaes.wordpress.com/2009/03/14/compiling-latex-documents-using-makefiles/
PROJECT=ProblemStatement
TEX=pdflatex
BIBTEX=bibtex
BUILDTEX=$(TEX) $(PROJECT).tex
all:
$(BUILDTEX)
# $(BIBTEX) $(PROJECT)
# $(BUILDTEX)
$(BUILDTEX)
clean-all:
rm -f *.dvi *.log *.bak *.aux *.bbl *.blg *.idx *.ps *.eps *.pdf *.toc *.out *~
clean:
rm -f *.log *.bak *.aux *.bbl *.blg *.idx *.toc *.out *~
\ No newline at end of file