Skip to content
Snippets Groups Projects
Commit a6e2195b authored by W. Spencer Smith's avatar W. Spencer Smith
Browse files

Updates to L28 (Parnas Tables).

parent 3d4c0df6
No related branches found
No related tags found
No related merge requests found
No preview for this file type
......@@ -48,8 +48,8 @@
\begin{itemize}
\item Today's slide are partially based on slides by Dr.\ Wassyng
\item Administrative details
\item Translating Englisth to Math exercise
\item Midterm question
\item Translating English to Math exercise
\item Motivating example: midterm question
\item History of tables
\item Example tables
\item Semantics for tables
......@@ -389,7 +389,7 @@ $min_d \le x_1 \le max_d$ & & $\{@{x_1}\}$ & $NULL$ \\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Example for Solving Real Roots of $ax^2 + bx + c = 0$}
\frametitle{Solving Real Roots of $ax^2 + bx + c = 0$}
\includegraphics[scale=0.5]{../Figures/QuadraticEquationExample.png}
......@@ -405,7 +405,7 @@ $min_d \le x_1 \le max_d$ & & $\{@{x_1}\}$ & $NULL$ \\
\structure<1>{What are the advantages of the tabular specification?}
\uncover<2->{
\bi
\item Understandability
\item Understandable
\item Unambiguous
\item Check for completeness and disjointness
\item Test cases
......@@ -457,7 +457,7 @@ Elseif Condition n then f\_name = Result n\\
~\newline
\uncover<2->{\structure<2>{Disjointedness $\equiv$
$\forall (i, j: \mathbb{N} | 1 \leq i \leq n \wedge 1 \leq j \leq n \wedge i \neq j : \mbox{Condition } i \wedge
\mbox{Condition } j \Leftrightarrow \mathit{false})$\\
\mbox{Condition } j \Leftrightarrow \mbox{false})$\\
~\\
Completeness $\equiv \vee (i: \mathbb{N} | 1 \leq i \leq n : \mbox{Condition } i )$}}
\end{frame}
......@@ -606,7 +606,7 @@ sequences of operations
\hhline{-|-|-|}
\uncover<2->{$llx \leq px \leq llxw$} & \uncover<3->{$py < lly$} & \uncover<7->{$(lly-py) \leq\mbox{T}$}\\
\hhline{|~|-|-|}
~ & \uncover<3->{$lly \leq py \leq llyh$} & \uncover<8->{$\mathit{true}$}\\
~ & \uncover<3->{$lly \leq py \leq llyh$} & \uncover<8->{$\mbox{True}$}\\
\hhline{|~|-|-|}
~ & \uncover<3->{$py > llyh$} & \uncover<9->{$(py - llyh) \leq \mbox{T}$}\\
\hhline{-|-|-|}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment